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Receivers )

= Key interface
= Concentrated sunlight
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The Road to SunShot )

= Higher performance

The Falling Cost of Concentrating Solar Power
= Higher Temperatures
= Materials
= Compatibility
= Reduce losses
= Smaller size
= Higher flux
= Modified surfaces

= Alternate working fluids

Heat transfer fluid exit

= Solids temperature from the
receiver > 650°C
= PCM’s « Thermal efficiency > 90%
, « Lifetime > 10,000 cycles
" HTF's . Cost < $150/kW,,
= SCO,
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Receivers for CSP Technologies =~ @

= Towers

= Conventional tubes
= Surround
= Cavities

Air matrix

Particles

Beam down

Novel Approaches

= Linear Focus
= Evacuated tubes
= Advanced concepts (DSG, Salt)

= Dish systems
= Cavity design optimization
= Stirling, Brayton, Steam
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Receiver Papers )

= 43 total papers =N\
r 220r (=5
= 20 Posters

= Tower emphasis consistent with SunShot
= 15 Tower (+9 poster)
= 5Trough (+10)
= 3 Dish (+4)




Geographic Trends ) . .




Geographic Trends ) . .
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Geographic Trends ) . .




Overall Trends
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= Paper Approach

Modeling/analysis
Lab experimental
Full scale hardware
Design

Literature survey

= Technology

Air receivers

Cavity receivers

Particle receivers
Selective absorbers
Higher temperature fluids
Other
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Particle Receivers: Upflow
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= Galloa (Spain): Dense
particle suspension

100 kW prototype for
10MW design

Sensible heat to
particles entrained in
air

Control residence time

Particles are HTF
replacement

81.3% efficient (70%
target)

Compressor

phardad

Fluidisation Air

| Hopper




Particle Receivers: Upflow
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i]nm Air
= Zhang (China):
Volumetric Air Receiver

hot air tank

» Stationary fluidized bed =~ Quartz Tube i
of particles in upflow air Bl | R B e
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Falling Particle
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" Ho (USA): Multi-pass
falling particle system
design

= |arge test hardware

= First test of a multi-pass
receiver

= Hot particle elevator to
accomplish sufficient
residence time

= Testing planned this fall
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Air Receivers: Pressurized ) &,

= Lubkoll (Aus): “SCRAP”
porcupine receiver (Spiky
Central Receiver Air
Preheater)

= Novel approach for an

exposed volumetric receiver vt J 1

= Flow path puts hot section Insiaton / AV -
ir out
at root Qg Spike tip/end cap
Airflow out z Airflow 180° turn

= For high pressure combined 1E llll

Cycle plant Airflow in %;/
= No window needed / i
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Air Receivers: Pressurized : o

= Del Rio (Spain): Volumetric
air receiver
= Brayton system (SOLTREC)
= Hardware testing
= Up to 1000°C

= Uhlig (Germany): Air
receiver with corrugated
tubes

= Optimization with
experiments

= More tubes = slower flow

= Corrugations to recover some
heat transfer




High Temperature Fluids ) &

= Pye (Aus): Exergy analysis
= Various HT fluids

= Optimized for higher
temperature operations

= Sodium a clear winner

= Coventry =

= Review of past sodium
experimental work

" Proposes phase change
HTF for large tower systems 700 kW/m?
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Cavity Receivers

= Dish and Tower
systems

= Focus on cavity
optimization
" Detailed modeling

" Transient models

= Heat loss
= Convection
= Radiation

" Flux profiles




Selective Coatings h &,

100

= Gray (USA): High temperature =

80

selective coatings g7

S 60 -

= 1000°C g%

< 40

re . . = 304
= Refractory metal silicide binaries 5

» Fabrication and characterization o D€

250 2500 25000

* Ho (USA): LCOE impact of L
coatings (reapplication
intervals)

= Cachafeiro (Spain): Aging
impact on energy cost




Linear Systems ) i,

" Focus on characterization
(mostly Spain)

= Test standards g

= Thermography o W

= Abrasion

= Receiver optimizatiorrand / b) i
losses (Linear Fresnel)

= High temperature options N
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Consistent Challenges ) .

= Optimization
= Low hanging fruit
= Often funds cover a one-off point design
" |ntegrated system design
* |mportant to consider collector characteristics
= Storage imposes additional constraints
= Higher performance cycles may impact receiver performance
= Materials
" Fluid compatibility
= Structural durability
= Air side corrosion

= Cost must be contained
= Move to hardware




