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ABSTRACT

There is a gap in interactive in situ solutions for HPC simulations.
While we have access to fully featured visualization Uls through
tools like ParaView Catalyst and VisIt LibSim, we lack in situ in-
frastructure to access more general interactive environments like
Jupyter. The Jupyter ecosystem of tools provides a rich paradigm
for interactive data analysis and is well suited to help expand inter-
active use of in situ. The complexity of the Jupyter ecosystem and
HPC center security requirements pose challenges to develop soft-
ware infrastructure that enables direct use of Jupyter in simulation
codes.

With this work, we describe a system that enables simulations
instrumented with Ascent to connect to Jupyter. This system allows
simulation users to interact with their data in situ using Jupyter
Notebooks. The system combines Ascent’s embedded Python filter
infrastructure with a Client/Server Jupyter Bridge Kernel design
that simplifies both deployment and security considerations on
HPC systems. We describe the design of this system, demonstrate
basic usage, and describe a prototype Ascent rendering UI built on
top of this system.
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1 INTRODUCTION

HPC simulation users are accustomed to visualizing simulation
data post-hoc using interactive tools. The portion of simulation
data available for post-hoc exploration is shrinking due to compute
power starting to greatly outpace I/O rates in HPC architectures. In
situ tools help reduce I/O when a user’s actions can be prescribed
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apriori to simulation, but more broadly a lack of human-in-the-loop
interactive access remains a barrier to adoption of in situ tools.
Despite the relative cost of I/O increasing rapidly, users prefer
post-hoc workflows because they offer interactivity and flexibil-
ity. Interactive use is critical for many visualization operations,
such as adjusting camera angles. Interactive exploration is also
often necessary to select useful actions to apply in non-interactive
contexts.

Allowing users to easily connect to a running simulation and
interactively explore their data can help mitigate the perception
that in situ tools are only viable for actions prescribed apriori. The
Jupyter ecosystem of tools provides a rich paradigm for interactive
data analysis. The Jupyter Notebook [10] is an open-source web
application that provides a read—eval-print loop (REPL) interface
to a language kernel, such as a Python interpreter, and interactive
display of results in the web browser. The Notebook paradigm also
helps users easily share both analysis logic and results. Jupyter is
flexible and extremely extensible. Creating a path to use Jupyter
for in situ analysis of simulation data would allow us to leverage
community investment in Jupyter instead of creating and teaching
our own new paradigms to simulation users. Jupyter combines
interactive access to the Python ecosystem and client-side web
technologies. The Python ecosystem provides a rich set of analysis
tools used ubiquitously in both the scientific computing and data
science communities. Client-side web technologies allow us to
rapidly develop and easily deploy interactive user interaces. This
combination will lower barriers to develop both single purpose
bespoke analysis scripts and more complex custom solutions for
specific user communities. To unlock the potential of in situ use
of Jupyter for HPC simulations, there are two key challenges that
need to be addressed:

e How do we make it easy for simulation code developers to
connect simulation data to Jupyter?
e What can we easily deploy in HPC centers?

In this work we extend Ascent to address these challenges and
provide a way to connect to Juptyer Notebooks and explore sim-
ulation data in situ. Ascent [14] is a flyweight in situ infrastruc-
ture designed for leading-edge supercomputers that supports both
distributed-memory and shared-memory parallelism. We selected
Ascent for this work because of its flyweight design and its built-in
distributed-memory Python environment. Paraview Catalyst [4]
and VisIt LibSim [18] are in situ solutions built on top of existing
full featured visualization tools. They support interactive use with
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in situ data via the user interfaces of these full featured tools. The
Paraview and VisIt teams invested substantial resources over a
long period of time to develop these user interfaces. Ascent’s de-
sign supports connecting to Catalyst and LibSim to leverage these
user interfaces and Ascent currently provides a path to connect
to Catalyst. While we will support connecting to these traditional
full featured interfaces via Ascent, we see a large opportunity to
expand interactive use by connecting simulation codes to Jupyter
Notebooks.

Our primary goal for this work is to provide a simple path to
connect a simulation code written in any language that Ascent’s
API supports (C++, C, Fortran, or Python) to Python-based Jupyter
Notebooks. The goal is general interactive access to Python in
Jupyter. Additionally, Ascent’s API is designed for batch and script-
ing use cases, so a REPL-based Jupyter Notebook provides a natural
mechanism for interactive access to Ascent as well.

In this paper, we outline two important contributions that enable
Jupyter Notebooks with interactive in situ access to data:

o The Bridge Kernel Strategy, a simple secure solution for
connecting to Jupyter

o A Bridge Kernel integration into Ascent, allowing any simu-
lation code with an Ascent integration to leverage Jupyter

2 BACKGROUND

Ascent provides a built-in distributed-memory Python environment.
To connect to Jupyter we leverage the Bridge Kernel strategy, out-
lined in Section 3.1, inside of Ascent’s Python environment. This
section provides background on the solution space we surveyed
while developing this solution. Our target HPC simulations are all
MPI-based, so we focus on solutions involving Jupyter and MPL

2.1 MPI and Jupyter

Ascent’s distributed-memory Python environment leverages mpidpy [5-

7]. We selected mpi4py because it is widely adopted and is a feature
complete Python MPI package.

Looking at MPI solutions in the Jupyter space, IPyParallel [1]
is a widely used interactive distributed computing framework for
Jupyter. It provides a cluster abstraction and a specific cluster in-
stance that supports MPI. A MPI-enabled Python-based simulation
code can use IPyParallel directly and leverage Ascent’s Python API
for interactive in situ visualization, however this approach will not
work for C++, C, or Fortran-based simulation codes. Another barrier
for using IPyParallel with a simulation code is that the primary MPI
job needs to be an instance of the IPython Parallel cluster engine.
For ease of integration and use, we chose to develop a solution that
does not change how simulation code is launched.

Dask [8, 16] is a widely used and flexible distributed computing
framework for Python. Dask.distributed scales Dask to parallel
clusters and dask-mpi provides a way to setup Dask workers using
MPI. Dask.distributed is also integrated with IPyParallel, allowing
Dask workers to use an IPyParallel cluster. For interactive use, Dask
provides a client that dispatches Dask commands to a Dask cluster
simplifying using Dask in Jupyter Notebooks. This client is specific
to the Dask API and does not provide general command forwarding.
While the Dask client does not provide the general MPI support we
are aiming for, in future work we are very interested in learning how
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to use Dask for analysis within our distributed-memory Python
environment.

2.2 Deployment in HPC Centers

JupyterHub [2] is the primary solution for multi-user hosting of
Jupyter Notebooks and it shows great promise as a solution to
support general interactive HPC [15]. It is in use at several HPC
Centers, including NERSC, LLNL’s LC, the OLCF and the ALCF.

JupyterHub provides user authentication and dynamically spawns
Jupyter Notebook servers and kernels. The communication protocol
between Jupyter Notebook servers and kernels uses up to 5 socket
connections [3] and additional sockets are used for communication
between the Notebook server and the user’s browser. On HPC clus-
ters, these sockets need to be secure and authenticated to preserve
user permissions and protect access. At LLNL, we invested to extend
JupyterHub to secure these connections by modifying JupyterHub
so that a certificate authority signs and issues certificates on-the-
fly to encrypt all channels from the Notebook server to the user’s
browser. In addition, because messaging between the Notebook
server and the kernel is unencrypted we configure JupyterHub to
enforce IPC (inner-process communication) for kernel messaging to
protect client-kernel communication with Unix’s standard filesys-
tem permissions. More details were presented in the poster [17].
These changes were contributed back to JupyterHub.

3 SYSTEM DESIGN

This section outlines the details of the Bridge Kernel strategy and
how we leverage it inside of Ascent to provide an in situ connection
to Jupyter.

3.1 Bridge Kernel

The Python Bridge Kernel allows you to connect any Python-
enabled code to Jupyter. In this paper we focus on using the Bridge
Kernel to connect Ascent to Jupyter, however this same approach
can be used with any application or library that provides an embed-
ded Python interpreter (e.g., a simulation code, VisIt’s command line
interface, etc). The Bridge Kernel strategy was first developed and
implemented at LLNL in C++ to connect an embedded Lua interface
from a C++ and FORTRAN simulation code to a Jupyter Notebook.
Given the broad interest in interactive solutions for Python, we
created a Python variant of the Bridge Kernel. This variant was
released open source and is available at [13].

The Bridge Kernel uses a Client/Server design. The Client por-
tion is a proper Jupyter kernel, built using Jupyter’s Python kernel
infrastructure modules. The Server portion only depends on a basic
Python install and mpidpy, it does not directly use Jupyter’s kernel
infrastructure. The Bridge Kernel Client and Server communicate
over a single secure socket connection. The socket is secured using
either an IPC (named Unix/file-system) socket, or a TLS-encryped
IP socket. The IPC option writes a Unix socket to the user’s home di-
rectory that is protected with standard unix filesystem permissions.
The TLS option creates a certificate authority (CA) that generates
a set of encryption keys to secure messages and authenticate con-
nections. The client gets the keys and the CA’s public key, uses
the CA to verify the server, and uses the key pair to encrypt mes-
sages. Upon connection, the server verifies the client’s public key
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Figure 1: Any application or library that provides a Python
interpreter can use a Python Bridge Kernel to connect to

Jupyter.

through its CA.In LLNL’s JupyterHub installation Notebook servers
are launched on login nodes while applications generally run on
compute nodes. To support this common case, the Bridge Kernel
automatically creates ssh tunnels for either the IP or IPC socket.
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Figure 2: The Client/Server Bridge Kernel design provides
the secure connection necessary for deployment on HPC
systems. It supports a UDP/IPC mode using native unix per-
mission controls or an OpenSSL mode for encrypted com-
munication over a regular socket.

Because the server exists as a minimal Python module, a simu-
lation code and Ascent can be built against a Python without the
Jupyter stack. This flexibility is important for deployment because
HPC centers may select a different version of Python to deploy
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JupyterHub than a simulation code is compatible with. It also gives
the simulation code developers the freedom to manage the Python
modules installed for their analysis, instead of relying on a system
install.

3.2 Ascent Integration

Ascent provides Extracts that allow users to capture data for use out-
side of Ascent. The Jupyter connection is provided by a new Jupyter
Extract that is a simple extension of Ascent’s existing Python Ex-
tract. Ascent’s Python Extract executes a Python script in an em-
bedded Python interpreter that has zero-copy access to data from
Ascent. The data passed into the Python interpreter is described
using Conduit [12] and is accessed using Conduit’s Python API.
This provides a path for a simulation code written in any of As-
cent’s supported language APIs (C++, C, Fortran, or Python) to
publish data and manipulate it using Python. When using MPI,
Ascent provides a distributed-memory Python environment that
can leverage mpidpy for coordination between MPI tasks. As shown
in Figures 2 and 3, Python code sent through Jupyter executes on
all MPI tasks, where each task has a subset of the data published
by the simulation.

The Jupyter Extract runs the server portion of the Bridge Kernel
in Ascent’s Python environment, waiting for a connection from
the Bridge Kernel client. After the client connects, it forwards com-
mands from the Jupyter Notebook for execution in Ascent’s Python
environment. When the client disconnects control returns back to
Ascent and then to the Simulation.

Simulation Code
(MPI-enabled)

4 N\scent

Jupyter
Extract

Mesh Data

Figure 3: Ascent’s Jupyter Extract gives users an interactive
way to analyze and visualize their simulation data in situ
using Jupyter Notebooks.

4 EXAMPLES

In this section we share two interactive uses of Ascent’s Jupyter
Extract.

4.1 Running an Ascent Python Extract
Example in a Jupyter Notebook

Our first example demonstrates interactive Python coding and plot-
ting in a Notebook. We compute and display a distributed-memory
histogram of an energy field in the Cloverleaf proxy simulation.
This is an extension of Ascent’s Custom Python Extract Tutorial
Example [11].

First, to use the Jupyter Extract we create an actions Node
that requests an extract of type jupyter. Actions can be spec-
ified directly where Ascent is called in the simulation code, or
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In [0]: %connect

flow_embedded_py 2013-08-07 15:15:09 shict v
codename : flow_embedded_py
date : 2019-08-07 15:15:09
protocol : ipc
argv : flow_embedded_py

Connect

Figure 4: The Jupyter widget for connecting to a simulation.

they can be selected at runtime using a ascent_actions.yaml or

ascent_actions. jsonfile. In our case we use an ascent_actions.yaml

file, with contents as shown in Listing 1.

action: "add_extracts"
extracts:
el:
type: "Jjupyter"
Listing 1: Example ascent_actions.yaml actions file used to
execute a Jupyter Extract.

We place the ascent_actions.yaml in the same directory as
the Cloverleaf executable and launch Cloverleaf using MPIL After
Cloverleaf is running, we launch the Jupyter Notebook server and
start an instance of the Ascent Bridge Kernel. We execute the %con-
nect magic, which brings up a simple UI to select and connect to the
running Ascent Bridge Kernel server. Figure 4 shows a screenshot
of the connection UL

After connecting successfully, code typed in the Notebook is for-
warded for execution on the Bridge Kernel server and any output is
returned to the Notebook. Finally, we type and execute the Custom
Python Extract script source and add code to plot the results using
Matplotlib [9]. Figure 5 shows a screenshot of the Notebook used
to run this example.

ask's publishec
nt_data().chil

# fetc P the
e_vals = mesh_data["fields/energy/values"]

compute_local_data()

# obta: i4py mpi comm object
comm = MPI.Comn. f2py (ascent_mpi_comm id())

# sun histogran counts with MPI to get final h
comm.Allreduce (hist, hist all, op=MPI.SUM)

# print resul
if comm.Get_r:

print_results()
Histogram of Energy

Counts:
(281645 1357 1236 1882 666 860 198 494 357 813 ¥
1420 98 o1 710 a2 532 778
4sa 756 284 710 737 60 1677 966 2430 1328
492 20 aa 1208 352 4 20 328 896 188 °
328 876 20 180 316 588 1492]

Bin Edges:
B 1.09183673 1.18367347 1.2755102  1.36734694 1.45918367
155102041 1.64285714 1.73469388

3130612245 4.39795918 4.48979592 4.58163265 4.6
4185714286 4.94897959 5.04081633 5.13265306 5.2244898 5.31632653
5.40816327 5.5 ]

Figure 5: Example of using Python code for data analysis
inside Jupyter via Ascent. It uses Ascent’s API to get simula-
tion data, constructs a histogram in parallel using mpi4py,
and finally plots the results with Matplotlib.
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4.2 Prototype Rendering UI for Ascent

To demonstrate the possibilities for bespoke or customized in-
terfaces, our second example leverages more aspects of the web
browser to create an interactive Ul for Ascent rendering.

We build a prototype UI using custom Jupyter Ul Widgets and
a Client/Server model to communicate with Ascent. We extend
the Ascent Bridge Kernel to create a protocol for passing messages
specifically between Jupyter and Ascent. We use JSON to synchro-
nize details about pipelines, scenes, camera parameters, etc., be-
tween the front-end client and Ascent. This design separates the
analysis code running in Ascent from the front-end code running
in Jupyter and preserves our ability to leverage separate software
stacks for the client and server.

Our custom Jupyter Widget uses a Model-view-controller (MVC)
design and is written using a combination of Python (model) and
HTML/CSS/Javascript (view, controller). The widget runs WebGL
in the browser, rendering a draggable cube which provides trackball
controls for changing the camera postion. The camera postion of
the WebGL cube is sent to Ascent which raytraces a corresponding
image and sends the result to Jupyter where the user can view it and
iterate to make further changes. The UI also responds to keypresses
and button clicks so that users can fly around their simulation data
in 3D. Figure 6 shows a screenshot of our prototype.

In 131 strackball

Move up

w)

Move left  Move down  Move right
(G () (D)

Advance
Simulation

Figure 6: Trackball controls in Jupyter provide an interactive
WebGL cube to modify the camera position for a volume plot
rendered using Ascent in a Cloverleaf simulation.

5 CONCLUSION

In this paper we presented a system that extends Ascent to enable
simulation users to run interactive Jupyter Notebooks with in situ
access to their simulation data. Our key contributions are the Bridge
Kernel design, which provides a general solution that simplifies
interfacing with Jupyter and the use of the Bridge Kernel in Ascent
to support a new Jupyter Extract. Further, we demonstrated two
interactive uses of this new capability.
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