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22 Abstract

23 The capability to discriminate low-magnitude earthquakes from low-yield anthropogenic

24 sources, both detectable only at local distances, is of increasing interest to the event monitoring

25 community. We used a dataset of seismic events in Utah recorded during a 14-day period (1-14

26 January 2011) by the University of Utah Seismic Stations (UUSS) network to perform a comparative

27 study of event classification at local-scale using amplitude ratio (AR) methods and a machine

28 learning (ML) approach. The event catalog consists of 7,377 events with magnitudes Mc ranging

29 from -2 and lower up to 5.8. Events were subdivided into six populations based on location and

30 source type: tectonic earthquakes (TE), mining-induced events (MIE), and mining blasts from four

31 known mines (WMB, SMB, LMB, and CQB). The AR approach jointly exploits Pg-to-Sg phase

32 amplitude ratios and Rg-to-Sg spectral amplitude ratios in multivariate quadratic discriminant

33 functions (QDFs) and was able to classify 370 events with high signal quality from the three groups

34 with sufficient size (TE, MIE, and SMB). For that subset of the events, the method achieved success

35 rates between about 80-90%. The ML approach used pre-trained convolutional neural network

36 (CNN) models to classify the populations. The CNN approach was able to classify the subset of

37 events with accuracies between about 91-98%. Because the neural network approach does not

38 have a minimum signal quality requirement, we applied it to the entire event catalog, including the

39 abundant extremely low-magnitudes events, and achieved accuracies of about 94-100%. We

40 compare the AR and ML methodologies using a broad set of criteria and conclude that a major

41 advantage to machine learning methods is their robustness to low signal-to-noise ratio (SNR) data,

42 allowing them to classify significantly smaller events.
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43 Introduction

44 A variety of seismic event identification techniques using data recorded at near-regional to

45 teleseismic distances (> 200 km) have been successfully used over four decades to discriminate

46 moderate-size and larger events (e.g., Dowla et al., 1990; Kim et al., 1993; Walter et al., 1995;

47 Taylor, 1996; Stump et al., 2002; Bowers and Selby, 2009; and references therein). Most of these

48 discrimination methods exploit differences in energy partitions between specific seismic phases

49 and event types (i.e., the difference between earthquakes and explosions in the excitation of P and

50 S waves). Recently, some of these techniques have been adapted for local distances ( 200 km),

51 driven by an increased interest in the capability to discriminate low-magnitude earthquakes from

52 low-yield anthropogenic sources, both detectable only at short distances (Kafka, 1990; Zeiler and

53 Velasco, 2009; Koper et al., 2016; O'Rourke et al., 2016; Tibi et al., 2018a,b; Kolaj, 2018). Other

54 approaches developed to identify events at local distances include those based on machine

55 learning (ML) algorithms (e.g., Del Pizzo et al., 2003; Benbrahim et al., 2007; Mousavi et al., 2016;

56 Linville et al., 2019b). ML methods are now being increasingly used in seismology, with

57 applications including signal detection, phase and polarity determination (Ross et al., 2018ab),

58 event location (Perol et al., 2018; Kriegerowski et al., 2019), aftershock location forecasting

59 (DeVries et al., 2018), and, as mentioned earlier, event classification (Del Pizzo et al., 2003;

60 Benbrahim et al., 2007; Mousavi et al., 2016; Linville et al., 2019b). Like in other fields, the

61 increased interest for ML methods in seismology has been encouraged by the combination of

62 several factors, including the availability of low or no cost sophisticated ML software (e.g., Scikit-

63 Learn, TensorFlow), the increased availability of data for model building, and the decreased cost of

64 required computational resources (Jordan and Mitchell, 2015; Bergen et al., 2019).
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65 In this study, we used a dataset of seismic events in Utah recorded during a 14-day period

66 (1-14 January 2011) by the UUSS network to perform a comparative study of event classification

67 at local distances involving an amplitude ratio (AR) method and an ML approach. The dataset was

68 compiled by an expert seismic data analyst (more than 30 years of experience), who manually

69 scanned through continuous seismic waveform data trying to identify and locate as many events

70 as possible. The Utah region is tectonically active and is also home to extensive mining activities,

71 resulting in a variety of seismic sources (e.g., Whidden and Pankow, 2012). Consequently, the

72 dataset contains tectonic earthquakes, mining-induced events (events caused by pillar or roof

73 collapses after the extraction of mined materials), and surface blasts from several mines. In the AR

74 method, amplitude ratios are exploited in discrimination functions that have been designed to

75 achieve maximum separation between the populations under consideration. The spectrogram-

76 based ML approach involves pre-trained CNN models. To our knowledge, this study is the first of

77 its kind that directly compares/contrasts the performances—in terms of discrimination power—of

78 a traditional, physics-based (AR) method with a data-driven (ML) approach using the same dataset

79 of diverse local seismic sources. The takeaways from the comparison are: (1) the relative

80 performance of the two approaches is highly dependent on the event population; (2) the ML

81 method is robust to low SNR data, allowing it to classify significantly smaller events.

82 Data

83 The end product of the expert's analysis of UUSS data described above is a comprehensive

84 list of events with associated phases known as the Unconstrained Utah Event Bulletin (UUEB)

85 (Linville et al., 2019a). The UUEB is characterized as "unconstrained" because it was not subject to

86 the typical constraints on analysis time or on minimum number of detecting stations to confirm an
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87 event that are used by event monitoring agencies that must make their bulletins available

88 promptly and that want to limit the content of their bulletins to including only events that are

89 relevant to their monitoring mission (e.g., for the UUSS this is assessing the potential hazard

90 associated with the Intermountain Seismic Belt, ISB). Without such constraints, the UUEB contains

91 many more events than the UUSS bulletin does for the same time period. Although the UUEB

92 includes some teleseismic and regional events, this study focuses on 7,377 events that occurred

93 within and around the state of Utah, at local to near-regional distances to the stations of the UUSS

94 network. The dataset consists of events with magnitude Mc (magnitude from coda duration; J. C.

95 Pechmann et al., unpublished manuscript, 2010; see Data and Resources) ranging from about -2

96 and lower up to 5.8 (Fig. 1, left). The frequency-magnitude distribution of the dataset is linear for

97 Mc above 2.7 (Fig. 1, right), with a maximum-likelihood b-value of 0.92±0.03. However, given the

98 fact that magnitudes for a large number of smaller events (about 58% of the entire catalog) could

99 not be estimated due to low signal quality, we believe that the magnitude of completeness is most

100 likely lower than 2.7. A heat map of the event locations (Fig. 2, left) reveals several well-developed

101 clusters, beside the diffuse set of events associated with the nearly NS-trending ISB (Smith and

102 Arabasz, 1991). The most prominent of those clusters is located around 38.27°E and 112.29°W

103 within the ISB and is associated with the January 2011 Circleville earthquake sequence

104 (Arrowsmith et al., 2011). The other clusters are related to activities in several known mining

105 areas.

106 We created event categories based on the event locations with respect to known mining

107 activities. Figure 2 (middle) shows a google map depicting the locations of the events along with

108 significant mine locations. The catalog contains six categories of events that are defined as follows.
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109 Five event categories are associated with mining activities. Four of these event categories

110 resulted from mining blasts occurring at specifically known mine locations: (1) Westmoreland coal

111 mine, WMB; (2) Bingham Canyon copper mine, SMB; (3) Lisbon Valley copper mine, LMB; and (4)

112 Cricket Mountain quarry, CQB. A fifth category consists of mining-induced events (MIE) not located

113 at either WMB, SMB, LMB, or CQB. These mining-induced events were identified as occurring in

114 the Wasatch Plateau—Book Cliffs region in central Utah known for its extensive coal mining

115 activities involving long-wall mining techniques (e.g., Arabasz et al., 2005).

116 Any event that did not fit one of our five event categories associated with mining activities

117 was classified as a tectonic earthquake (TE). Additionally, any event with an estimated focal depth

118 of 3 km or larger—no matter its geographic location—was considered too deep to be related to

119 human activities and so was classified as a TE. We acknowledge that mines in Utah exist outside of

120 the five defined mining locations, and therefore, we expect that some of the TEs are misclassified

121 mining blasts. However, our heat-map of event distribution suggests that additional mines were

122 not very active during the UUEB interval, so we expect there to be relatively few such

123 misclassifications.

124 Based on the procedure described above, we identified the following events in each of the six

125 categories:

126 • 1,040 TEs located mostly within the ISB. This represents a significantly larger number of TEs

127 than what one would get in a typical two-week period, due to the Circleville sequence

128 (Arrowsmith et al., 2011), which accounts for the majority of TEs;
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129 • 6,286 events induced by mining activities in the permitted coal mining regions in central

130 Utah (MIEs). These events are caused by pillar or roof collapses from long-wall mining

131 (Arabasz et al. 2005; Whidden and Pankow, 2012);

132 • 27 ripple-fired mining blasts from the Bingham Canyon open-pit copper mine southeast of

133 the Great Salt Lake (SMBs, Pankow et al., 2014; Tibi et al., 2017);

134 • 5 events associated with mining activities in Lisbon Valley copper mine, near the

135 Utah/Colorado border (LMBs);

136 • 16 events associated with the Westmoreland coal mine in southwestern Wyoming

137 (WMBs); and

138 • 3 quarry blasts from the Cricket Mountain quarry in west central Utah (CQBs).

139 The event locations reported in the UUEB were obtained with the location technique described

140 by Bratt and Bache (1988), using the AK135 velocity model (Kennett et al., 1991). More accurate

141 locations could have been determined by using different 1D velocity models for the different

142 tectonic provinces within Utah or even using a 3D velocity model, but for our purposes the AK135

143 locations were sufficient. We verified that the reported anthropogenic events are clustered within

144 known mine craters or areas of active coal-mining, as expected. In Figure 2 (right) only events for

145 which we could estimate the coda duration magnitude (Mc) values are shown. The size of each

146 symbol in that map is proportional to the Mc value of the event it represents. For the amplitude-

147 ratio-based event identification method, we restricted our investigations to events with high-

148 quality data by imposing minimum magnitudes of 2 and 2.8 for the abundant TEs and MIEs,

149 respectively; we also required that the SNR estimated from the vertical component waveform be

150 6 dB for a least three recording stations. This resulted in a dataset of 124 events for the TE
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151 group. The resulting MIE dataset consists of 219 events. Due to the limited number of the SMBs in

152 the UUEB catalog (total of only 27 events), we refrained from applying minimum magnitude cutoff

153 to that group. The sizes for the SMBs range from Mc 1.6 to —3. We found no indication that our AR

154 results have been compromised because of the small size for some of these events. We did not

155 investigate the LMBs, WMBs and CQBs using the AR method because the limited number of events

156 for each of those populations precludes sound statistics. Since, as described below in "Methods"

157 section, the phase and spectral amplitudes were measured on the vertical, radial, and/or

158 tangential components, according to the expected particle motion of the phase of interest, only

159 three-component stations were used. On the other hand, for the ML approach, both single and

160 three-component stations were used (zero-filled spectrograms were used when horizontal

161 channels were not available). We used event origin time and hypocenter information from the

162 catalog and retrieved waveform data for each event-station pair from the Incorporated Research

163 Institutions for Seismology (IRIS) Data Management Center.

164 Methods

165 Phase and Spectral Amplitude Ratio Estimation

166 The procedures followed to estimate the phase and spectral amplitude ratios exploited for

167 the event discrimination are discussed thoroughly in Tibi et al. (2018a,b). Only key aspects of these

168 procedures are described in this section. For each event investigated, broadband and short-period

169 stations at epicentral distances from 25 km to 150 km were used for both Pg-to-Sg and Rg-to-Sg

170 ratios. The minimum distance cutoff of 25 km allows for sufficient time separation between Pg and

171 Sg and between Sg and Rg. The maximum distance of 150 km was chosen to avoid interferences at

172 larger distances due to Pg-Pn crossover. Three-component (Z, N and E) waveform data were
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173 instrument-corrected to true ground velocity. The (Z) component waveforms of the instrument-

174 corrected data are first filtered with a four-pole Butterworth bandpass filter 1-15 Hz (for Pg-to-Sg

175 ratios) or 0.5-10 Hz (for Rg-to-Sg ratios) for the sole purpose of estimating the SNR. To ensure that

176 results are not unduly influenced by background noise, only stations with SNR 6 dB are used for

177 estimating the ratios.

178 For Pg-to-Sg ratios, the horizontal components of the instrument-corrected waveforms are

179 rotated to radial (R), and tangential (T) components. For each frequency from 1 to 15 Hz in 1-Hz

180 increment, Pg-to-Sg ratios are calculated as follows. The Z-, R-, and T-component waveforms are

181 filtered using a bandpass filter with a 1-Hz bandwidth centered at the frequency of interest. Pg

182 amplitude at that frequency is defined as Apfl = (PA + PA)1/2, the vector sum of the root mean

183 square of the amplitudes in Pg window for the Z and R components (Fig. S1). Similarly, Sg

184 amplitude is defined as Asfl = (S,g3 + SA + SA,)1/2, the vector sum of the root mean square of

185 the amplitude in Sg window for the Z, R and T components. Details on how we determined the Pg

186 and Sg windows are given in Tibi et al. (2018b). The calculated Apg and Asg values are then

187 corrected for attenuation and geometrical spreading. The Pg-to-Sg ratios are obtained by dividing

188 the corrected Apg by the corrected Asg. The estimated ratios show no correlation with magnitude.

189 For that reason, there was no need to correct them for event size. For each event and frequency,

190 the reported ratio consists of the average value over three or more stations, depending on the

191 number of recording stations for that event that satisfy the selection criteria.

192 To estimate the Rg-to-Sg ratios, for each event-station pair that satisfies the data selection

193 criteria described above, a mean time series of spectral amplitudes for the frequency range of

194 0.5-2 Hz is generated from the Z-component spectrogram to capture Rg energy (Fig. S2, left). A
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195 similar time series for the frequency range of 0.5-8 Hz is generated from the T-component

196 spectrogram to capture Sg energy (Fig. S2, right). max{Rg[0.5-2H,1} is defined as the maximum

197 amplitude of the smoothed Z component mean time series in a window of 20 seconds, starting

198 from the Rg arrival time predicted for a group velocity of 1.8 km/s (Tibi et al., 2018a). Similarly,

199 max{Sg[0.5-8144} is defined as the maximum amplitude of the smoothed T component mean time

200 series in a window of 20 seconds or less (depending on the time separation between Sg and Rg),

201 starting from the predicted Sg arrival time. Both max{Rg[0.5-2F0 and max{Sg[0.5-8144) are corrected

202 for the propagation effect. The Rg-to-Sg ratios we used are obtained by dividing the corrected

203 max{Rg[o.5-2m} by the corrected max{Sg[0.5-8/44} values. Similar to the Pg-to-Sg ratios discussed in

204 the previous paragraph, the estimated Rg-to-Sg ratios show no obvious trend with respect to

205 magnitude. The procedure for estimating Rg-to-Sg spectral amplitude ratios is described in detail

206 by Tibi et al. (2018a). The only change compared to that earlier study is that—to improve the SNR

207 of the filtered waveforms—we increased the low-cut frequency of the applied band-pass filter

208 from 0.1 to 0.5 Hz. Like the Pg-to-Sg ratios, the Rg-to-Sg ratio reported for each event is obtained

209 by averaging over three or more recording stations.

210 Multivariate Quadratic Discriminant Analysis

211 The multivariate quadratic discriminant analysis followed the formalism described by Tibi

212 et al. (2018b), which was adopted from Johnson and Wichern (2007). For a dataset containing n

213 event populations, let k (r) be the probability density of the measured amplitude ratios for the j-

214 th population, where r is the k-dimensional column vector of the amplitude ratios. The

215 characteristics of k(r) are inferred from a subset of the population, which is referred to as

216 learning set. Under the assumptions that (1) the sample ratios are normally distributed; (2) the
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217 populations in the event dataset have equal prior probabilities of occurrence (7-1-1 = 7-c2= = 7-cr, =

218 1/n); and (3) the n event types have equal misclassification costs (the cost for allocating an event

219 to /-th population, when, in fact, it belongs to the j-th population, c(I 11) = 1 for / ~j and c(j = 0),

220 the quadratic discriminant score for the j-th population, D1(r), is defined as:
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222 where pi and S1 are the ratio vector mean and ratio covariance matrix of the learning events for

223 the j-th population, respectively. An event of interest with the ratio vector x is allocated to the /-th

224 population if D1(x) is the largest of the score values D1(x), D2 (x), Dn(x).

225 For a scenario involving only two populations p and q (n = 2, i.e., the case of two-category

226 or binary classification), we define the score difference dpq(x) as:

227 dpq(x) = Dp(x) — Dq(x). (7)

228 An event of interest is classified as p-type if dpq(x) is positive, and as q-type if dpq(x) is negative,

229 with dpq(x) = 0 representing the classification line.

230 For each population investigated in this study, we used a learning set of 30 randomly

231 selected events to infer the QDFs. Because the UUEB dataset contains only 27 SMBs, the learning

232 set for that population was taken from the dataset of 142 events analyzed by Tibi et a/. (2018b).

233 The ratio vector r is 5-dimensional, with the first four coordinates of that vector representing Pg-

234 to-Sg ratios for four discrete frequencies, and the fifth coordinate representing Rg-to-Sg ratios

235 obtained for the frequency bands discussed in "Phase and Spectral Amplitude Ratio Estimation"

236 section. In contrast to an earlier work using the same approach, in which the selected frequencies

237 for the Pg-to-Sg ratios consisted simply of the consecutive values that provided the largest average

238 separation between the populations investigated (Tibi et al., 2018b), in the current study, the
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239 optimal frequency set for Pg-to-Sg ratios in each scenario was chosen based on a trial-and-error

240 process involving 1,365 combinations of four different frequencies, and corresponds to the set

241 associated with the lowest total misclassification rate for the populations under consideration.

242 Hence, as described later, different frequency sets were chosen for the three-category

243 classification and each of the three cases of binary classification. This allows for the capacity of the

244 designed discriminants to be fully exploited. We jointly used Pg-to-Sg and Rg-to-Sg ratios because

245 a previous study by Tibi et al. (2018b) and test analyses with the current dataset have both shown

246 that combining the two ratio types results in improved discrimination power for the QDF approach

247 compared to any of the ratio types alone.

248 Spectrogram-Based Machine Learning Approach

249 The classification models for the ML approach followed the waveform processing and CNN

250 architecture from Linville et al. (2019b). For model input, we used 90-second long spectrograms

251 (starting 10 seconds before the predicted first P arrival time) from three-component (when

252 available) or single-component stations, with zero-filled horizontal channels for single-component

253 stations. The spectrograms were generated for the frequency range from 1 to 20 Hz after filtering

254 the raw seismograms with a 1-Hz high pass filter. The input spectrograms are passed through 4

255 layers of (2x2) learned filters (filter counts: 18, 36, 54, 54) to a three-node softmax activated

256 output. The output for each sample represents the probability for each class, and the event class is

257 determined by summing the probabilities for each class over all the stations used. The

258 classification is then based on the largest summation value.

259 The model training relied on both the UUEB and UUSS event catalogs and excluded the

260 subset of events analyzed with the AR method to allow for an independent test set shared
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261 between the methods. The UUSS catalog that covers a 5-year period (Linville et al., 2019b) was

262 used in conjunction with the UUEB listing to obtain a sufficient number of labeled events of each

263 population. The UUSS catalog contained abundant representation of surface mining blasts, while

264 the UUEB catalog contained a large number of MIEs, which are comparatively underrepresented in

265 UUSS catalog. The use of both catalogs provided a large set of labeled events, which is generally

266 required for effective model building with deep learning. In the original UUSS catalog, events were

267 assigned to either the earthquake or mining blast class by UUSS analysts. We follow the category

268 assignment procedure described in "Data" section and create a MIE class in the UUSS catalog.

269 Events were then randomly assigned to 10 event partitions and models were trained using 10-fold

270 cross validation (10% validation, 10% test) with early stopping when the validation accuracy

271 ceased improving over 8 epochs. Since the subset of events investigated by the AR method did not

272 participate in any model training, classes for these events were predicted using 10 different

273 models and the standard deviation between model predictions guided our understanding of the

274 variation in accuracy for each event using the ML method. For events that are not part of that

275 subset (this constitutes the bulk of the UUEB), the class for each event is predicted with one model

276 (the model in which the event under consideration did not go into the training set); and we report

277 the average accuracies and associated standard deviations over all the events.

278 Results and Discussions

279 Depth Discrimination Using Rg-to-Sg Ratios

280 In our dataset, the depth for the TEs ranges from near the surface to about 10 km. We

281 leverage the known dependence of Rg amplitudes on event depth by using Rg-to-Sg ratios to

282 discriminate deeper TEs from shallow events (e.g., Båth, 1975; Kafka, 1990), with the latter
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283 consisting of shallow TEs and anthropogenic events. Figure 3 shows the likelihood of equality (LE)

284 between the median Rg-to-Sg ratios of shallow and deeper TEs for different depths of separation.

285 For a depth of separation dsep (in km) the population of shallow TEs consists of TEs with depth

286 dsep, and the population of deeper TEs consists of TEs with depth > dsep. The LE values reported in

287 Figure 3 were estimated using Mood's statistics (Moods, 1950). For the depths of separation 6

288 km, the LE values are under 2%, implying that for any of those depths of separation shallow and

289 deeper TEs are statistically distinct. Conversely, for any depth of separation > 6 km, the

290 populations of shallow and deeper TEs are only marginally different or even the same, as the LE

291 values in this case are no longer negligible. In other words, the distinction between the two groups

292 in terms of Rg-to-Sg ratios breaks down for the depths of separation > 6 km.

293 The distribution of Rg-to-Sg ratios for the populations of MIEs, SMBs, shallow TEs (STEs),

294 and deeper TEs (DTEs) are displayed in Figure 4. The subdivision of TEs into STEs and DTEs along

295 the depth of 5 km is based on the results discussed in the previous paragraph. Also shown in

296 Figure 4 is the median value of the ratios and the corresponding one-median absolute deviation

297 (1-MAD) for each population. In particular, the histograms for the two populations of TEs each

298 exhibit broader tails, resulting in higher 1-MAD values. Nevertheless, for the six population pairs,

299 Mood's median tests indicate probabilities of nearly zero that the median Rg-to-Sg ratios are the

300 same. This suggests that for each population pair, there is a statistically significant difference

301 between the populations. These results provide further argument for the notion that using local

302 distance Rg-to-Sg spectral amplitude ratios one can not only discriminate shallow from deeper

303 events, but is able to discriminate among different populations of shallow events (Tibi et al.,

304 2018a). This finding is also consistent with the results reported by Kolaj (2018), according to which
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305 low-frequency Sg-to-Rg ratios successfully discriminate low-magnitude shallow earthquakes and

306 road construction blasts recorded at distances less than 50 km in New Brunswick, Canada.

307 Event Classification Using the AR Method

308 The average Pg-to-Sg ratios for the frequencies of 1 to 15 Hz in 1-Hz increment for the

309 populations investigated are shown in Figure 5. The two-standard error for each measurement is

310 also indicated. The three populations are well separated from one another in the frequency range

311 from 8 to 15 Hz, but are less so for frequencies below 8 Hz. To illustrate this observation further,

312 we chose 12 and 5 Hz as representative values for the two frequency ranges, respectively, and

313 generated histograms of the Pg-to-Sg ratios calculated for these frequencies (Fig. S3). Mood's tests

314 suggest that at 12 Hz the populations are all statistically distinct; and at 5 Hz, the SMBs are

315 statistically different from the TEs, and the MIEs from the TEs. At that frequency, there is,

316 however, a non-negligible likelihood of —7% that the SMB and MIE populations are the same.

317 To improve the discrimination power of the AR method, Pg-to-Sg ratios for four discrete

318 frequencies are exploited jointly with the Rg-to-Sg ratios in the QDFs, according to the formalism

319 described above in "Multivariate Quadratic Discriminant Analysis" section. Results for the two-

320 category, pairwise classification for the three possible population pairs are summarized in Figure 6.

321 The QDFs were tailored for each pair; and the optimum set of frequencies for the Pg-to-Sg ratios

322 were selected for each pair using a trial-and-error process as described earlier. With a

323 misclassification rate (error rate, ER) of only 1.6%, the QDF approach performs best for the

324 population pair MIE/SMB, followed by the pair SMB/TE (ER = 6%). For the former and latter

325 population pairs, we used the frequency sets for Pg-to-Sg ratios of 1, 2, 10 and 15 Hz and 1, 2, 6,

326 and 8 Hz, respectively. For the population pair MIE/TE, the best-performing frequency set for Pg-
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327 to-Sg ratios of 6, 8, 14, and 15 Hz is shifted more toward higher frequencies. In terms of the

328 exploited ratios, the two populations from that pair share some characteristics, which is reflected

329 in the relatively high ER value of 14% (Fig. 6). This is particularly the case between the MIEs and

330 the shallow (depth 5 km) TEs, as implied by the fact that the ER value drops to 4.5% if only

331 deeper TEs are considered in this binary classification (Fig. 6). In which case, only four TEs, all from

332 the Circleville sequence, are misclassified as MIE.

333 Results of three-category classification, in which all the three populations are considered

334 simultaneously, are summarized in Figure 7. Since the number of events varies greatly among the

335 populations, the confusion matrix reported in Table 1 represents a better measure of the overall

336 performance of the classifier than the error rate alone. For the three-category classification, the

337 optimum frequency set for Pg-to-Sg ratios was 1, 2, 7, and 8 Hz. On average, about 85% of the

338 events in the dataset are classified correctly. The population of SMBs is associated with the lowest

339 error rate (ER = 11.1%) followed by the MIEs (14.6%). The TE group exhibits the highest error rate

340 (19.4%) of any population. The majority of the misclassified TEs are assigned to the MIE group.

341 Similarly, most of the misclassified MIEs are assigned to the TE population. This is consistent with

342 the outcome of the two-category classification discussed above, and the results from an earlier

343 study by Tibi et al. (2018a), which suggests that the two populations have some properties in

344 common, which make it difficult to discriminate between them using the AR approach. The

345 apparent strong commonality between the TEs and the MIEs in terms of the investigated ratios is

346 intriguing. In general, the source mechanisms for the TEs consists predominantly of shear

347 dislocation (i.e., negligible non-double couple components). In contrast, MIE sources should

348 include significant non-double couple components, consistent with the events being associated
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349 with pillar or roof collapses from long-wall mining (Arabasz et al. 2005; Whidden and Pankow,

350 2012). As discussed in detail by Tibi et al. (2018a), the difference in source mechanisms between

351 the two event types results in differing excitations for the phases under consideration.

352 Furthermore, compared to the TEs, signals from the MIEs are generally depleted in high-frequency

353 energy (Tibi et al., 2018a). Curiously, despite these differences the discriminant is relatively less

354 efficient than between other groups.

355 Some of the TEs that occurred in the coal mining district of central Utah overlap

356 geographically with the MIEs (Fig. 2, right). These TEs were labeled as such only because the

357 reported depths (> 3 km) are deemed too large for anthropogenic events. We investigated the

358 possibility that some of these events might be contributing to the high misclassification rate for

359 the TE population because they might actually be MIEs that were mis-labeled due to the

360 inaccuracies of the reported depths. Only two TEs located in the coal mining region are

361 misclassified, and they are all assigned to the SMB population. This observation, combined with

362 the outcome of similar investigations carried out for the SMBs and the MIEs, suggest that

363 mislabeling of the events in the UUEB dataset is not a major contributing factor for the

364 misclassification of any of the groups. The majority of the misclassified TEs are lower magnitude

365 (Mc < 2.5) events, suggesting that the performance of the AR method deteriorate at low SNRs.

366 Many of these events are from the Circleville sequence, which is also the largest subgroup in that

367 population.

368 Comparison of the AR with the ML Method

369 The comparison between the AR and the ML method is based on the subset of events

370 investigated in "Event Classification Using the AR Method" section. However, with the ML
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371 approach only 120 TEs were investigated, four fewer than with the AR method. Because the IRIS

372 data fetch failed for those four events. To emulate the ML approach that uses 10 different training

373 models for class prediction (see "Methods" section), the classification in this case was performed

374 10 times with the AR method. Each time, the learning events used to construct the discriminants

375 functions for each of the three populations (see "Multivariate Quadratic Discriminant Analysis"

376 section) were randomly selected. This allows us to assess the performance variability associated

377 with the random selection of events for the learning sets.

378 Classification results for the ML method are summarized in Figure 8; and the associated

379 confusion matrix is reported in Table 2. The reported values represent averages over the 10

380 prediction runs. These results are contrasted in Figure 9 (left) against those obtained from the AR

381 method. For each classification method and population, the standard deviations estimated from

382 the 10 prediction runs are indicated. The high variability in classification success rates (accuracy)

383 for the SMB group is mainly the consequence of the limited number of events in that group. For

384 that population, within the margin of errors, the performance of the AR method in terms of

385 success rates is comparable with that of the ML approach. For the TE and MIE groups, however,

386 the latter method outperforms the former by an average of about 14% (Fig. 9, left). For each

387 population, we also assessed the precision achieved by each classification method. The ML

388 approach shows precisions of 95-97%, which are 16% on average higher than those from the AR

389 method.

390 Using the ML approach, we were able to classify 7,350 of the 7,377 events from the UUEB

391 dataset, including the abundant, extremely low-magnitude events. For the ML models, however,

392 the SMBs, WMBs, LMBs, and CQBs were all grouped together to form a class referred to as
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393 "mining blast" or MB. The results summarized in Figure 9 (right) and Table 3 indicate success rates

394 of about 94-100%, with the highest rate associated with the population of MIEs. The standard

395 deviation for the prediction accuracy of the MB population is high (±11.8%). For that population,

396 eight of the ten cross-validation folds show accuracies of 100%, while the accuracies of about

397 67-75% for the two remaining cross-validation folds are significantly lower. The low accuracies for

398 these folds may be misleading; there is only one misclassified event in each case, implying that the

399 apparent high variability in accuracy is due to the limited number of events in the MB group.

400 Like any other approach that relies on measurements of signal amplitudes, the AR method

401 would fail if for any reason those amplitudes can no longer be estimated accurately. This would be

402 the case for the multitude of extremely low-magnitude events in the UUEB dataset due to the low-

403 SNR nature of their signals. The purpose of this work was to compare/contrast the performances

404 of the AR and ML methods in terms of their discrimination power at local distances, using the

405 same set of well-recorded low-magnitude events. The choice of the minimum cutoff magnitudes

406 to ensure high quality data for the TE and MIE populations in the subset investigated by the AR

407 method was guided simply by previous experience (Tibi et al., 2018a,b). Thus, the limitations of

408 the AR method with respect to the event size were not explicitly investigated. Nevertheless, for

409 the TE population, we noticed a deterioration of the performance of the method at low SNRs. The

410 fact that the ML approach can classify our dataset in almost its entirety (7,350 events out of

411 7,377), including extremely low-magnitude events, with the reported high success rates, suggests

412 that—compared with the AR method—the ML approach is more robust to low SNR data and is

413 therefore an attractive approach, given the right circumstances. One potential drawback to the ML

414 approach is that it is completely data-driven, not relying on any knowledge of seismic phenomena
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415 (sources types, energy partitioning into phases, signal propagation, etc.). Another limitation of the

416 ML method is that models that generalize well to new sources generally require large training sets.

417 Hence, building a robust ML model for event classification requires datasets with 100s or even

418 1000s of meticulously labeled events, and such large datasets of labeled events are not always

419 available, restricting the application of the approach only to cases for which such datasets exist. It

420 is of course possible to apply an ML model that has been developed in an area with abundant

421 labeled data to another area, and some promising results have been shown doing this (e.g., Ross

422 et al., 2018b), but this has high risks given our lack of knowledge about exactly how the ML

423 method works. Another way to deal with this problem is by applying semi-supervised learning

424 methods which require much less labeled data (e.g., Bergen et al., 2019; Chapelle et al., 2006 for a

425 review). In terms of computational demands for real-time event classification, the AR and ML

426 methods are comparable and either would only require modest computational resources.

427 Developing ML models can be computationally expensive, of course, but that is an up-front

428 expense.

429 Conclusions

430 Using the same set of tectonic and anthropogenic events in the Utah region that were well-

431 recorded at local distances by the UUSS network, we compared two methods of classifying the

432 source types of the events: a traditional method, in which amplitude ratios of different phases are

433 exploited in the QDFs, and a spectrogram-based machine learning approach. A summary of the

434 observed advantages and limitations of each of the two methods is provided in Table 4. In the AR

435 method, the QDFs are tailored to achieve maximum separation between the populations under

436 consideration. Also, the set of frequencies for the Pg-to-Sg ratios exploited in the QDFs are
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437 selected using a trial-and-error procedure and consists of values that minimize the

438 misclassification rates. With this method, we achieved classification success rates of about

439 80-90%. The ML approach used convolutional neural network models based on 90-second

440 spectrograms to classify the populations and achieves success rates above 90%. Importantly, this

441 method is more robust to low SNR data, allowing it to classify extremely low-magnitude events,

442 and hence classify a much larger portion of the Utah data set (99.6% compared by 5.0% for AR).

443 We suggest that the complex deep learning architecture involved in the ML method is able to

444 expose and exploit characteristics that are specific to each event population to the level that the

445 traditional AR approach cannot, allowing ML to achieve higher accuracies and precisions, and

446 classify significantly smaller events. An advantage of the AR method, is that the physical basis is

447 well understood (i.e., energy partitioning between specific phases). Conversely, the lack of insight

448 into the physical basis for ML classifications has traditionally been a major reason why seismic

449 event monitoring agencies have been reluctant to use ML methods, and make the transportability

450 of models developed from one region to a different region problematic. We agree with Kong et al.

451 (2019) that the best way to take advantage of the strengths of each of the two methods would be

452 to design a hybrid approach that combines the traditional physical modeling from the AR method

453 with the data-driven ML approach. This is a research topic we intend to focus on in the near

454 future.

455 Data and Resources

456 Waveform data were retrieved from IRIS database (http://www.iris.edu, last accessed April

457 2019). The coda duration magnitude (Mc) was calculated using the equation for the Utah region

458 proposed in the unpublished manuscript Correction of Systematic Time-Dependent Coda
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459 Magnitude Errors in the Utah and Yellowstone National Park Region Earthquake Catalogs,

460 1981-2001 by J. C. Pechmann, J. C. Bernier, S. J. Nava, and F. M. Terra.
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584 Tables

585 Table 1. Confusion matrix for the AR method and the subset of 370 events.

Actual Class

SMB MIE TE

Pr
ed
ic
te
d 
Cl
as
s SMB 24 3 8

MIE 2 187 16

TE 1 29 100

586 For each population, the diagonal elements in the gray cells indicate the number of events

587 classified correctly (true positives), and the off-diagonal elements the number of misclassified

588 events (false negatives and false positives).

589

590 Table 2. Confusion matrix for ML approach and the subset of 370 events.

591 Description of the elements is t

Actual Class

SMB MIE TE*

Pr
ed
ic
te
d 
Cl
as
s SMB 26 1 2

MIE 1 214 2

TE 0 4 116

le same as in Table 1. The reported values represent averages

592 from the 10 prediction runs. * Note that in this case only 120 TEs were investigated, compared

593 with 124 TEs for the AR approach (Table 1).

594



595 Table 3. Confusion matrix for the ML approach and the 7,350 events from the UUEB dataset.

Actual Class

MB MIE TE

Pr
ed
ic
te
d 
Cl

as
s MB 45 1 7

MIE 3 6280 37

TE 0 5 972

596 The same as in Table 2, but for the 7,350 events of the UUEB dataset.

597

598 Table 4: Advantages and limitations of the classification methods used in this study.

599

AR Method ML Method

• Require only limited number of • Achieve high accuracy (> 90%)

learning events for each category • Can classify extremely low-magnitude

Advantages • Fast computation events

• Physical basis well understood (i.e.,

energy partitioning between specific

phases)

• Fast to apply the model once it has

been built

• Achieve moderate accuracy • Require large dataset (100s-1000s) of

(-80-90%) labeled training events for each

Limitations • Require high-quality data category

• Computationally intensive to build the

model

• Lack of insight into the physical basis
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601 Figure 1. (Left) Magnitude (Mc) distribution for events in the UUEB catalog. The black bar at

602 magnitude —3 represents the frequency of low SNR events for which Mc could not be estimated.

603 (Right) Magnitude-frequency plot for the 3,118 events for which magnitude were calculated. The

604 black line corresponds to a- and b-value of 5.49 and —0.92, respectively, obtained using a

605 maximum-likelihood method. The magnitude of completeness, Mcompl, is estimated to be about 2.7
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607 Figure 2. (Left) Heat map of the spatial density of events in the UUEB dataset. The event cluster located around 38.27°E and 112.29°W is

608 associated with the January 2011 Circleville earthquake sequence (Arrowsmith et al., 2011). Other clusters are related to mining activities.

609 (Middle) Google map of the Utah region showing the locations of the events from the UUEB catalog (white circles). To demonstrate the

610 relationship between some of the events and mining activities, known mining areas are also indicated. The yellow polygons outline the two

611 regions of active coal mining (multiple mines). (Right) Relief map of the region shown in the Google map on the left. Navy circles represent

612 shallow mining blasts from an open-pit copper mine (SMB), gold circles are events associated with the Westmoreland coal mine (WMB),

613 green circles are blasts from the Lisbon Valley copper mine (LMB), cyan circles blasts from the Cricket Mountain quarry, purple circles are

614 mining-induced earthquakes (MIE), and red circles are tectonic earthquakes (TE). The two regions of active coal mining are outlined with

615 black polygons.
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617 Figure 3. Likelihood of equality (LE) between the median Rg-to-Sg ratios of shallow and deeper TEs

618 for different depths of separation. For a depth of separation dsep (in km) the population of shallow

619 TEs consists of TEs with depth dsep, and the population of deeper TEs consists of TEs with depth >

620 dsep. The LE values were estimated using Mood's statistics (Mood, 1950).
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622 Figure 4. Histograms of the estimated Rg-to-Sg spectral amplitude ratios for the population of

623 MIEs, SMBs, STEs (TEs with depth 5 km), and DTEs (TEs with depth > 5 km). The value of N in

624 each plot indicates the total number of contributing single ratios for the population. For each

625 population, the median (triangle for MIEs, diamond SMBs, circle STEs, and square DTEs) and one-

626 median absolute deviation values of the ratios are shown in the bottom plot.

34



-0.2

—0.3

iT's) —0.4
tr)
cm
0- —0.5

c5i
o —0.6
_i
cu
C:n„, —0.7
If
cu

< > —0.8

—0.9

—1.0

627

628 Figure 5. Average Pg-to-Sg ratios and associated two-standard errors for the discrete frequencies

629 from 1 to 15 Hz and the population of MIEs (purple triangles), SMBs (navy diamonds), and TEs (red

630 circles).
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632 Figure 6. Difference in discriminant scores for two-category classification using both Pg-to-Sg and

633 Rg-to-Sg ratios. The vertical axes represent the mean of the five coordinates of the ratio vectors

634 for each event. There is one plot for each population pair. For each pair, the discriminant scores

635 were calculated using Pg-to-Sg ratios for the optimum set of frequencies in the discriminant

636 functions inferred for that population pair (see "Multivariate Quadratic Discriminant Analysis"

637 section). The vertical dashed lines in each plot represent the projections of the multi-ratio means

638 of the populations. The ER value indicates the classification error rate for each population pair. The

639 population of DTE (deeper tectonic earthquakes) in the lower right plot consists of earthquakes

640 with depth larger than 5 km.
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642 Figure 7. Bar plots of the proportion of events allocated to each group by the AR approach in

643 three-category classification for the subset of 370 events. For each plot, the population under

644 consideration is indicated in the upper right corner; the groups, which the events from that

645 population are allocated to, are indicated along the horizontal axis. The black bar in each plot

646 represents the proportion of events that are correctly classified, and the gray bars the proportion

647 of events that are misclassified. The ER value indicates the classification error rate.
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649 Figure 8. The same as Figure 7, but for the ML approach.
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651 Figure 9. (Left) Classification accuracies for the AR method (diamonds) and ML approach

652 (triangles) for the subset of 370 events. The value above each population name on the horizontal

653 axis represents the total number of events from that population that were classified. Note that for

654 the ML approach only 120 TEs were investigated (number in parentheses). (Right) Classification

655 accuracies for the UUEB dataset using the ML approach. A total of 7,350 events were classified

656 using that method.
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