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Iron is an important material for planetary sciences and many
2 other high energy density applications

What are we doing?

Measuring the equation of state
(EOS) of liquid iron at high
pressures by studying samples at
off-Hugoniot isentropes

Developing methods to
simultaneously measure the
optical conductivity

Why?

Expanding the region of measured EOS values allows for the refinement of
broader EOS models which are used in many high energy density applications
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• Iron is the primary constituent of rocky planet cores

• The thermal conductivity of the iron and the Earth's core continues to be a
controversial subject, with values almost spanning an order of magnitude (33
W/m K, Konopkova 2016; and 226 W/m K, Ohta 2016)



Estimations of our experimental path are close to the conditions
3 of the Earth's core
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4 
Sandia's Z machine is a pulsed power driver that provides a
unique opportunity for driving dynamic material experiments to
extreme pressures
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The strip-line target configuration is a common method of
5 driving planar samples to high pressure and density states on Z

Load hardware details

o Top Sample Pair Shown

, Parallel counter-propagating
current drives the panels apart
symmetrically

, Flight gap leads to initial shock
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The shock-ramp drive takes full advantage of Z's pulse shaping
6 capabilities to compress a sample along an elevated isentrope

Load hardware details

, The drive panel is accelerated to a steady velocity at impact, and then subsequently
continues to ramp up, driving a quasi-isentropic ramp into the shocked sample
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Conductivity and Ellipsometry



Ellipsometry uses a polarized laser to probe material dielectric
8 properties

• The beam must have a non-zero incidence angle
• Input: Circular polarization
• Output: Phase shift and amplitude changes lead to an elliptical

polarization S

Am bient
(n1 = na)

Window
(n2)

Sample
(n3: Complex)

pi

Directly obtains full complex refractive index at a single wavelength, unlike
common reflectivity techniques that require a wide range of wavelengths and the
use of the Kramers-Kronig relation to obtain complex information



9 The basic design is a fiber/free-space hybrid
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10  Obtaining specular reflections on dynamic experiments is difficult

Surface roughness and impactor tilt can severely hinder such measurements

, Surface roughness can be propagated through the shock wave

, Tilt will lead to a sudden change of the reflected beam

, For ellipsometry, cannot simply increase the collection

Ensure all surfaces are as smooth as possible

, Diamond turned metals (maybe lapping too)

, Polished single crystal LiF

Specular Reflection Scattered Reflection



Past experiments have had variable success, but almost always
saw significant losses at high shock speeds

The "good": -20% loss
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12 We opted for the best we could do easily
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13 With this sample stacic setup we obtained the best collection yet
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14 We calculate the AC electrical conductivity directly from the data
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If we rely on Wiedemann-Franz Law and simulations that show a relatively flat DC-
to-AC electrical conductivity (Pozzo 2013), we get a DC thermal conductivity of
15 +8/-5 W/m K.

This is lower even than the lower literature values (33 W/m K, Konopkova 2016),
and significantly lower than the upper values (226 W/m K, Ohta 2016)



Iron Equation of State



VISAR provides measurements of the particle velocity at all of
16 the sample/window interfaces
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An iterative backward-integration forward Lagrangian analysis is
17 used to build the equation of state

Backward Integration
The Lagrangian hydrodynamic equations are• 6[P (p)] (Su
backward integrated to obtain the drive profile

=

6x P° 6talong with a guess of the equation of state:

1 (Su 
6 [pll

Forward Propagation
• The drive state can then be propagated forward

po 6x 6t

to the sample interface to obtain the in-situ
particle velocity (the particle velocity that would
have been present at that location had there not
been a release interface)

Lagrangian Sound Speed and EOS
• A sound speed can then be directly calculated

from Ax/At measurements and an EOS formed
from the sound speed:

Iterate
• The process is then repeated with this new

EOS, iterating until the EOS reaches
convergence

1 1 uPf duP— =

Pf Ps ups POCL

Up f

P- =P + poCLdup
ps

Seagle, C. T., and A. J. Porwitzky. "Shock-ramp compression of tin near the

melt line." AIP Conference Proceedings. Vol. 1979. No. 1. AIP Publishing, 2018.



An iterative backward-integration forward Lagrangian analysis is
18 used to build the equation of state

Iterate to convergence:

If EOS Guess(n) = EOS Guess(n_l), then EOS guess(n) = EOS Solution
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19 Our equation of state results agree well with current EOS tables
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2o Our equation of state results agree well with current EOS tables

Sound Speed (rills)
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21  Conclusions and Future Work

Conclusion:

o We have performed shock-ramp experiments on Sandia National Laboratories' Z Machine
to evaluate the equation of state of liquid iron along an elevated isentrope near Earth core
pressure and temperature conditions. The results agree well with current EOS tables,
validating their use at and near these conditions.

o We have gotten the best light return yet with enipsometry by focusing on creating smooth
sample interfaces

Future Plans:

• We would like to try reaching higher pressures

• It would be even more beneficial to planetary models to get better measurements on iron
alloys

In-depth questions: Wednesday planetary science break-out session



22 Acknowledgements

Sandia:
NSTech: Sheri Payne and Richard Hacking

DICE team: Randy Hickman, Nicole Cofer,
Keith Hodge, and Josh Usher

Managers: John Benage and Dawn Flicker

SEERI Program: Trish St. John and Kristy
Martinez



Iron Equation of State (Extra
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VISAR provides measurements of the particle velocity at all of
24 the sample/window interfaces
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Sample thicknesses are optimized to balance data output and
25 error

The thicknesses of the samples have to balance a few factors
• Thicker samples risk having the ramp drive shock up

• Thinner samples release quicker, leading to a lower maximum pressure

• Larger thickness difference between a given sample pair reduces error

We used two sample thickness pairs to optimize this balance
• 1.2 mm and 0.9 mm (smaller error)

• 1.2 mm and 1.0 mm (higher pressure range)
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An iterative bacicward-integration forward Lagrangian analysis is
26 used to build the equation of state

Backward Integration
• The Lagrangian hydrodynamic equations are

backward integrated to obtain the drive profile

along with a guess of the equation of state:

15[P (PA äu

(Sx P° St
1

1 äu  6N 
Po 15x ät

Seagle, C. T., and A. J. Porwitzky. "Shock-ramp compression of tin near the

melt line." AIP Conference Proceedings. Vol. 1979. No. 1. AIP Publishing, 2018.



The drive conditions for the two samples should be equal until
27 the release wave from the thin sample reaches this interface
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An iterative bacicward-integration forward Lagrangian analysis is
28 used to build the equation of state

Backward Integration
• The Lagrangian hydrodynamic equations are

backward integrated to obtain the drive profile

along with a guess of the equation of state:

Forward Propagation
• The drive state can then be propagated forward

to the sample interface to obtain the in-situ
particle velocity (the particle velocity that would
have been present at that location had there not
been a release interface)

15[P (PA äu

(Sx Po St
1

1 äu  6N 
Po 15x ät

Seagle, C. T., and A. J. Porwitzky. "Shock-ramp compression of tin near the

melt line." AIP Conference Proceedings. Vol. 1979. No. 1. AIP Publishing, 2018.



The drive condition is propagated forward to the sample-window
29 interface location
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An iterative bacicward-integration forward Lagrangian analysis is
30 used to build the equation of state

Backward Integration
• The Lagrangian hydrodynamic equations are 15[P (PA äu

backward integrated to obtain the drive profile
(Sx — PO at

along with a guess of the equation of state:

1 Su a [—pll
Forward Propagation
• The drive state can then be propagated forward po Sx St

to the sample interface to obtain the in-situ
particle velocity (the particle velocity that would
have been present at that location had there not
been a release interface)

Lagrangian Sound Speed and EOS
• A sound speed can then be directly calculated

from Ax/At measurements and an EOS formed
from the sound speed:

1 1 uPf dup

P f Ps ups Po CL

Pf =
Upf

Ps + Po CI di-2p

Ups

Seagle, C. T., and A. J. Porwitzky. "Shock-ramp compression of tin near the

melt line." AIP Conference Proceedings. Vol. 1979. No. 1. AIP Publishing, 2018.



Lagrangian sound speed is determined, and used to calculate the
31 equation of state

Sound Speed
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An iterative backward-integration forward Lagrangian analysis is
32 used to build the equation of state

Backward Integration
The Lagrangian hydrodynamic equations are• 6[P (p)] (Su
backward integrated to obtain the drive profile

=

6x P° 6talong with a guess of the equation of state:

1 (Su 
6 [pll

Forward Propagation
• The drive state can then be propagated forward

po 6x 6t

to the sample interface to obtain the in-situ
particle velocity (the particle velocity that would
have been present at that location had there not
been a release interface)

Lagrangian Sound Speed and EOS
• A sound speed can then be directly calculated

from Ax/At measurements and an EOS formed
from the sound speed:

Iterate
• The process is then repeated with this new

EOS, iterating until the EOS reaches
convergence

1 1 uPf duP— =

Pf Ps ups POCL

Up f

P- =P + poCLdup
ps

Seagle, C. T., and A. J. Porwitzky. "Shock-ramp compression of tin near the

melt line." AIP Conference Proceedings. Vol. 1979. No. 1. AIP Publishing, 2018.



An iterative backward-integration forward Lagrangian analysis is
33 used to build the equation of state

Iterate to convergence:

If EOS Guess(n) = EOS Guess(n_l), then EOS guess(n) = EOS Solution
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34 Our equation of state results agree well with current EOS tables

Pressure (GPa)
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35 Comparison with some past work
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36 Our equation of state results agree well with current EOS tables

Sound Speed (mis)
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39  The bad

6.2 km/s impactor at STAR
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40 The ugly

0.3

0.25

0.05

0

41"4/14.1wooloft0"...0.01

Nimiketaimaemlessummeek~i

2.95

1
3

1
3.05

Time

1
3.1

1
3.15 3.2

x 10-6



4 1 We convert this data into complex refractive index

Refractive Index
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A good local minima was found (at least)
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The refractive index solution was put back through my functions to solve for
output signal. These match the data over the relevant time range.



Reflectivity Contours
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