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Abstract

We develop a thermodynamically consistent, fractional visco-elasto-
plastic model coupled with damage for anomalous materials. The model
utilizes Scott-Blair rheological elements for both visco- elastic/plastic parts.
The constitutive equations are obtained through Helmholtz free-energy po-
tentials for Scott-Blair elements, together with a memory-dependent frac-
tional yield function and dissipation inequalities. A memory-dependent
Lemaitre-type damage is introduced through fractional damage energy re-
lease rates. For time-fractional integration of the resulting nonlinear sys-
tem of equations, we develop a first-order semi-implicit fractional return-
mapping algorithm. We also develop a finite-difference discretization for
the fractional damage energy release rate, which results into Hankel-type
matrix-vector operations for each time-step, allowing us to reduce the
computational complexity from O(N3) to O(N2) through the use of Fast
Fourier Transforms. Our numerical results demonstrate that the fractional
orders for visco-elasto-plasticity play a crucial role in damage evolution,
due to the competition between the anomalous plastic slip and bulk dam-
age energy release rates.
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1. Introduction

Accurate and predictive modeling of material damage and failure for a
wide range of materials poses multi-disciplinary challenges on experimental
detection, consistent physics-informed models and efficient algorithms. Ma-
terial failure arises in mechanical and biological systems as a consequence
of internal damage, characterized in the micro-scale by the presence and
growth of discontinuities e.g., microvoids, microcracks and bond breakage.
Continuum Damage Mechanics (CDM) treats such effects in the macroscale
through a representative volume element (RVE) 31 . When loading plastic
crystalline materials, an initial hardening stage is observed from motion,
arresting and network formation of dislocations, which is later overwhelmed
by damage mechanisms, e.g. multiplication of micro-cracks/voids, followed
by their growth and coalescing, releasing bulk energy from the RVE. Clas-
sical CDM models were proposed and validated in the past decades to de-
scribe the mechanical degradation, e.g., of ductile, brittle, and hyperelastic
materials 30, 48]. Particularly, Lemaitre's ductile damage model 30,
has been extensively employed for plasticity and visco-plasticity modeling
of ductile materials. In such models, developing proper damage potentials
driven by the so-called damage energy release rate [31 is a critical step.

Modeling the standard-to-anomalous damage evolution for power-law
materials has additional challenges due to the non-Gaussian processes oc-
curring on fractal-like media. Fractional constitutive laws utilize Scott-
Blair (SB) elements R,5 as rheological building blocks that model the soft
material response as a power-law memory-dependent device, interpolating
between purely elastic/viscous behavior. A mechanical representation of
the SB element was developed by Schiessel 47 , as a hierarchical, contin-
uous "ladder-like" arrangement of canonical Hookean/Newtonian elements
(see Figure 1). Later on, Schiessel [46 generalized several standard visco-
elastic models (Kelvin-Voigt, Maxwell, Kelvin-Zener, Poynting-Thompson)
to their fractional counterparts by fully replacing the canonical elements
with SB elements. Of particular interest, Lion 33] proved the thermody-
namic consistency of the SB element from a mechanically-based fractional
Helmholtz free-energy density.

With particular arrangements of SB and standard elements, fractional
models were applied, e.g., to describe the far from equilibrium power-
law dynamics of multi-fractional visco-elastic 23, 26, 37 40 , distributed
visco-elastic [17] and visco-elasto-plastic [25, 50, 51, 54, 59 complex ma-
terials. Concurrently, significant advances in numerical methods allowed
numerical solutions to time- and space- fractional partial differential equa-
tions (FPDEs) for smooth/non-smooth solutions, such as finite-difference
(FD) schemes [32, 341, fractional Adams methods [16, 60], implicit-explicit
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(IMEX) schemes [11,63], spectral methods [44,45], fractional subgrid-scale
modeling 43  , fractional sensitivity equations 29  , operator-based uncer-
tainty quantification 28] and self-singularity-capturing approaches 53

Despite the significant contributions on fractional constitutive laws, few
works incorporated damage mechanisms. Zhang et al. 62 developed a
nonlinear, visco-elasto-plastic creep damage model for concrete, where the
damage evolution was defined through an exponential function of time. A
similar model was proposed by Kang et al. 27 and applied to coal creep.
Caputo and Fabrizio 12 developed a variable order visco-elastic model,
where the variable order was regarded as a phase-field driven damage. Al-
fano and Musto 2] developed a cohesive zone, damaged fractional Kelvin-
Zener model, and studied the influence of Hooke/SB damage energy release
rates on damage evolution, motivating further studies on crack propagation
mechanisms in visco-elastic media. Tang et al. 55 developed a variable or-
der rock creep model, with damage evolution as an exponential function
of time. Recently, Giraldo-Londolio et al. [22 developed a two-parameter,
two-dimensional (2-D) rate-dependent cohesive fracture model.

A key aspect to develop failure models relies on consistent forms of dam-
age energy release rates, usually appearing in the material-specific form of
Helmholtz free-energy densities. For standard materials, direct summa-
tions of elastic/hyperelastic free-energies of the system are used. How-
ever, such process is non-trivial when modeling anomalous materials, due
to the intrinsic mixed elasticity/viscosity of SB elements. Fabrizio 20 in-
troduced a Graffi-Volterra free-energy for fractional models, but defined
it without sufficient physical justification. Deseri et al. 15 developed
free-energies for fractional hereditary materials, with the notion of order-
dependent elasto-viscous and visco-elastic behaviors. Lion 33 derived the
isothermal Helmholtz free-energy density for SB elements using a discrete-
to-continuum arrangement of standard Maxwell branches, and employed it
in the Clausius-Duhem inequality to obtain the stress-strain relationship.
Later on, Adolfsson et al. I employed Lion's approach to prove the ther-
modynamic admissibility of the SB constitutive law written as a Volterra
integral equation of first kind.

To the authors' best knowledge, only Alfano and Musto g coupled the
fractional free-energy density to a damage evolution equation in viscoelas-
ticity, but fractional extensions of (non-exponential) damage for visco-
elasto-plastic materials are still lacking. In addition, for damage mod-
els, efficient numerical methods for fractional free-energy computations are
also virtually nonexistent in the literature. A numerical approximation
was done by Burlon et al. , through a finite summation of free-energies
from Hookean elements, which is a truncation of the infinite number of
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relaxation modes carried by the fractional operators. Alfano and Musto 2
briefly described how to discretize the SB free-energy using a midpoint
finite-difference scheme. A few numerical results were presented for dam-
age evolution, but the authors did not describe the discretizations and no
accuracy is investigated for the numerical scheme.

In this work we develop a thermodynamically consistent, one-dimensio-
nal (1-D) fractional visco-elasto-plastic model with memory-dependent da-
mage in the context of CDM. The main characteristics of the model follow:

• We employ SB elements in both visco-elastic and visco-plastic parts,
respectively, with orders OE„3.[<- E (0, 1), leading to power-law ef-
fects in both ranges.

• The damage reduces the total free-energy of the model, while con-
stitutive laws are obtained through the Clausius-Duhem inequality.

• The yield function is time-fractional rate-dependent, while the dam-
age potential is Lemaitre-like. The damage energy release rate
is taken as the SB Helmholtz free-energy density to describe the
anomalous bulk energy loss.

• We prove the positive dissipation, and therefore the thermodynamic
consistency of the developed model (see Theorem 4.1).

Since obtaining analytical solutions for the resulting nonlinear system
of multi-term visco-elasto-plastic fractional differential equations (FDEs)
coupled with damage is cumbersome or even impossible, we performed an
efficient time-integration framework as follows:

• We develop a first-order, semi-implicit fractional return-mapping
algorithm, with explicit evaluation of damage in the stress-strain
relationship and yield function. An implicit FD scheme is employed
to the ODEs for plastic and damage variables. The time-fractional
stress-strain relationship and yield function are discretized using
the L1 FD scheme from Lin and Xu

• We develop a fully-implicit scheme for the SB Helmholtz free-energy
density, and hence to the fractional damage energy release rate. We
then exploit the structure of the discretized energy and apply Fast
Fourier Transforms (FFTs) to obtain an efficient scheme.

• The accuracy of free-energy discretization is proved to be of order
0(At2-0), and numerical tests show a computational complexity of
order O(N2 log N), with N being the number of time-steps.

The developed fractional return-mapping algorithm can be easily incor-
porated to existing finite element (FE) frameworks as a constitutive box.
Numerical tests are performed with imposed monotone and cyclic strains,
and demonstrate that:
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• Softening, hysteresis and low-cycle fatigue can be modeled.
• Memory-dependent damage energy release rates induce anomalous

damage evolutions with competing visco-elastic/plastic effects, with-
out changing the form of Lemaitre's damage potential.

The developed model motivates applications to failure of biological ma-
terials 7 , where micro-structural evolution can be upscaled to the contin-
uum through evolving fractional orders OE, )3K 36 and damage D . The
memory-dependent fractional damage energy release rates motivate studies
on anomalous bulk-to-surface energy loss in damage accumulation/crack
propagation of, e.g., bone tissue, where intrinsic/extrinsic plasticity/crack-
bridging mechanisms 58 lead to a complex nature of failure.

This work is organized as follows: In Section 2 we present definitions
of fractional operators. In Section 3, we present the thermodynamics and
rheology of SB elements. In Section 4, we develop the fractional visco-
elasto-plastic model with damage, followed by its discretization. A series
of numerical tests are shown in Section 5, followed by discussions and con-
cluding remarks in Section 6

2. Definitions of Fractional Calculus

We start with some preliminary definitions of fractional calculus [41
The left-sided Riemann-Liouville integral of order 0 E (0, 1) is defined as

1 

) t 

f 

i, (t 

t  f(s)  d
s, t > tL,

(iliji: f)(t) = r(o, _ s)1-13
P

where F represents the Euler gamma function and t L denotes the lower
integration limit. The corresponding inverse operator, i.e., the left-sided
fractional derivative of order 0, is then defined based on (2.1) as

(2.1)

1  d it  f (s) 

F(1 - 0) dt iti, (t - s)13 
ds, t > tL.(1ILTY:f)(t) = cl(711-'8 n(t) =dt L t

Also, the left-sided Caputo derivative of order 0 E (0, 1) is obtained as

L -odf \t
t ) 
\ 
= 

1  it  ft(s)  ds, t>tL.(tcL,74f)(t) = (117,1t
1 
Tt A r(1-,3) Jti, (t - s)a

The definitions of Riemann-Liouville and Caputo derivatives are linked by
the following relationship:

MDM(t) = f (tL) + (tc,,DM(t),F(1 - (t + WO

which denotes that the definition of the aforementioned derivatives coincide
when dealing with homogeneous Dirichlet initial/boundary conditions.
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2.1. Interpretation of Caputo derivatives in terms of nonlocal vec-
tor calculus. In this section we show that the Caputo derivative can be
reinterpreted as the limit of a nonlocal truncated time derivative 11191. This
fact establishes a connection between nonlocal initial value problems and
their fractional counterparts, which can benefit from the nonlocal theory.

Given a nonnegative and symmetric kernel function p6 (s) = 13,5(1,31), a
nonlocal, weighted, gradient operator can be defined as

5

g,f(t) = 1 . 1, (f (t) - f (t - s))spj(s) ds, (2.2)

when the limit exists in L2(0, T) for a function f E L2(0, T). It is common
to assume that the kernel function p5 has compact support in [-S, 6] and a
normalized moment:

Jo5s2 ps(s) ds = 1.

18

(2.3)

Here, the parameter å > 0 represents the extent of the nonlocal interactions
or, in case of time dependence, the memory span. In the nonlocal theory
it is usually referred to as horizon.

Note that at the limit of vanishing nonlocality, i.e. as 6 0, gs
corresponds to the classical first order time derivative operator 1. In this
work, we are interested in the limit of infinite interactions, i.e. as 6 oo.
Specifically, when the initial data f (t) := f (0) for all t E (—co, 0) and the
kernel function is defined as

)3 
/3) 

s -0-2 for )3 E (0, 1), (2.4)
pc° (s) = F(1 - ,

the nonlocal operator G5 corresponds to the Caputo fractional derivative
for t > 0, for a piecewise differentiable function f E C(—oo, T) such that
f ' E L1(0, T) n co, 7]. Formally,

goof(t) = (coDi f)(t). (2.5)

Note that a similar property holds true for fractional derivatives in space,
see 14].

2.1.1. Note on well-posedness. Paper 19 analyzes the well-posedness
of nonlocal initial value problems. More specifically, it proves, under certain
conditions on the parameters, that the following equation has a unique
solution and depends continuously upon the data.

gry + My = F t E (0, 71

-y = G t E (-6, 0),

for H > 0 and F and G in suitable functional spaces.

(2.6)
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FIGURE 1. (left) Schematics of the SB element recovering
standard limit cases. (right) The SB element seen as an
infinite, hierarchical mechanical representation of canonical
elements, coding an infinite number of relaxation times. The
pair (E, 0) represents a dynamic process of the material.

3. Thermodynamics of Fractional Scott-Blair Elements

We present the thermodynamic principles used in this work, and then
we introduce the Helmholtz free-energy density and constitutive law for the
fractional SB element. Such fractional element is the rheological building
block of our modeling approach, providing a constitutive interpolation be-
tween a Hookean (0 0) and Newtonian (0 1) element (see Figure
D. Furthermore, the SB element can be interpreted as an infinite self-
similar arrangement of standard Maxwell elements, which naturally leads
to fractional operators in the constitutive law 47

3.1. Thermodynamic Principles. Let a closed system undergo an irre-
versible, isothermal, strain-driven thermodynamic process. We analyze an
infinitesimal material region at a position x and time t of a continuum de-
formable body B. Let the first law of thermodynamics in rate form be
defined as:

= 4 - (3.1)

where e(x,t)[J.8-1.kg-1] denotes the specific rate of internal energy, 4(x,t)
[J.8-1.kg-1] represents the rate of specific heat exchange and the term

t)[J.8-1.kg-1] denotes the stress power transferred into the bulk due
to external forces 24 . In this work, r(x,t) represents the stress state
and e the strain rate. We also consider the second law of thermodynamics,
postulating the irreversibility of entropy production, given, in specific form,
by:

> 4/0, (3.2)

where 4x,t)[J..9-1.kg-1.K-1] denotes the rate of specific entropy pro-
duction and 0(x,t) = 00[K] represents the constant temperature. Let
11)(x,t) : R x R+ R+ be the Helmholtz free-energy density with units
[J.m-3], representing the available energy to perform work, defined by
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7.p := p (e — s), with the rate form '11) = p (é — .§) for the isothermal case.
Combining the first and second laws, respectively, (3.1) and (3.2), with
lp and taking the stress power = —Tg., we obtain the Clausius-Duhem
inequality, which states the non-negative dissipation rates 13 :

— Tg. > 0, E B. (3.3)

Satisfying the dissipation inequality (3.3) is here taken as the necessary
condition for the potential and the stress T to be thermodynamically
admissible.

3.2. Helmholtz Free-Energy Density. We present the free-energy un-
der consideration for the employed SB element, here referred to a given
material coordinate of a continuum body or a lumped mechanical system.
We start with the fractional Helmholtz free-energy density developed by
Lion [33 , obtained through an integration of a continuum spectrum of
Maxwell branches leading to the

oo
1

following definition for

t

t 
—

(E) :

2

R+:

7,b(E) =  f
z o

k(Z)[f exp (
o

s) e(s) dz, (3.4)cis]
z

where we the strain E is taken as the state variable. The term t(z) : R+
R+ denotes the power-law relaxation spectrum, given by

E(z) F(1 — /3)F(,3)z0+1 '
O<O<1, EE

which with (3.4), codes an infinite number of relaxation times. The pseudo-
constant IE has units [Pa.s0], where the unique pair (IE, /3) codes a dynamic
process instead of an equilibrium state of the material 26  . Let Dmech
denote the mechanical dissipation of the SB element. We introduce the
following Lemmas:

LEMMA 3.1. The SB element stress-strain relationship T(t) : r+
resulting from (1) and the Clausius-Duhem inequality (M is given by

I exp 
t" t —

T(t) = f E(z) ( 
s) 

e(s) ds) dz = E PY:E(t), (3.5)

11:

0

where the Caputo definition for the fractional derivative is a consequence
of the adopted free-energy. The mechanical dissipation Dmech(e): R
for the SB element is given by the following form:

Dmech(E) =
" t(z) z (fot exp t s) 

2

  e(s) ds) dz. (3.6)

P r o o f. See Appendix ❑
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(A) Rheological diagram. (B) Stress vs. strain response.

FIGURE 2. Damaged fractional visco-elasto-plastic model.
(A) Constitutive diagram with visco-elastic/plastic rheolog-
ical elements. (B) Stress response showing the yield surface
expansion (hardening) and contraction (softening).

REMARK 3.1. The limit cases for the fractional free-energy (3.4)
with respect to 0 are consistent with the well-known stress-strain rela-
tionship (3.5). Therefore, 0(E) recovers a fully conserving Hookean spring
when lim0_,0 = EE2/2, and a fully dissipative Newtonian dashpot when
lim0_,1 = O. We refer the readers to 45,33 for additional details regard-
ing memory-dependent free-energies.

4. Fractional Visco-Elasto-Plastic Model with Damage

We develop a damage formulation for a fractional visco-elasto-plastic
model (M1) by Suzuki et al. 54 . The closure for the damage variable is
obtained through a Lemaitre-type approach [30, 34 We later prove the
thermodynamic consistency of the damage model, and hence for the visco-
elasto-plastic model (M1) as a limiting, undamaged case.

4.1. Thermodynamic Formulation. The fractional visco-elasto-plastic
device is illustrated in Figure 2. It consists of a SB element with material
pair (IE, 0E) for the visco-elastic part, under a corresponding logarithmic
visco-elastic strain e"(t) : 11+ R. The visco-plastic part is given by
a parallel combination of a Coulomb frictional element with yield stress
TY [Pa] E R+, a linear hardening Hooke element with constant H [Pa] E
R+, and a SB element with material pair (IK, 3K), with K [Pa.s0K] E R±,
all subject to a logarithmic visco-plastic strain EvP(t) : R+ R and an
internal hardening variable a(t) : R+. The entire device is subject
to a Kirchhoff stress T. The total logarithmic strain is given by:

E(t) = Eve(t) EvP(t). (4.1)

Let D(t) : R+ QD, with QD = [0, 1) be a time-dependent and monotoni-
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cally increasing internal damage variable representing the internal material
degradation. Our model has the following assumptions:

ASSUMPTION 1. The visco-elastic response is linear, under an isother-
mal strain-driven process.

ASSUMPTION 2. There is a state coupling between the visco-elastic
strains/hardening variable eve, a, and damage D. However, the damage
evolution is solely driven by the visco-elastic free-energy potential.

ASSUMPTION 3. There is no state coupling between visco-elasticity
and visco-plasticity.

ASSUMPTION 4. The damage D(t) and hardening a(t) are irreversible,
i.e., there is no material healing. Also, there are no crack closure effects.

ASSUMPTION 5. A11 state and internal variables are subject to homo-
geneous initial conditions, e.g., E(0) = e(0) = EvP(0) = a(0) = D(0) = 0.

Assumption (3) implies a linearity between the visco-elastic and visco-
plastic free-energy components, both multiplicatively coupled with damage.

4.1.1. Free-Energy Densities. We write the Helmholtz free-energy den-
sity 0(5", a, D) : x R+ x 12D N+ for the model as:

0(E", (Y, D) = (1 — D) (0" (Eve) + qPvP (a)) , (4.2)

where ove (Eve \) : R R+ and OVP(a) : N+ N± represent the undamaged
visco-elastic and visco-plastic free-energy densities. Utilizing (3.4) for the
SB elements and the Hookean spring, the free-energy density is given by:

oo (ft 2

O(Eve, a, D) = —2 (1 — D) E(z) 0 exp 
t —z s 

eve (s) ds) dz

(4.3)

2

f k(z) 

./ 

t exp t 
Z
s) (s) ds) dz + H ,

0 C1 

with the following relaxation spectra for visco-elasticity and visco-plasticity:

E 
=  -E' (z) = r(1 _ i3E)rpozo k(z) E+1' r(1 — OK)r(i3K)zoic+l'

where 0 < 3E, OK < 1.
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REMARK 4.1 (Recovery of classical free-energy potentials). Similar to
the SB element case, we recover the Hookean and Newtonian limit cases for
the asymptotic values of )3E, )3K-. Also, if D —> 0, we recover an undamaged
case, and when D 1, we have (1 — D)z/) 0 (material failure).

4.1.2. Constitutive Laws. We use the Clausius-Duhem inequality (3.3)
in the local form of classical thermodynamics of internal variables, which
induces near-equilibrium states for every time t of the thermodynamic pro-
cess. However, the fractional free-energy densities introduce memory effects
and therefore far-from-equilibrium states in the scope of rational thermo-
dynamics 201. Using (4.2) and (4.1), inequality (3.3) is given by:

— plb(E", a, D) + T (éve + evp) > 0,

where we evaluate 0 as follows:

11)(Eve  gve  a, ex, D, to = DO gve + ao a + 00 15
i aEve ace aD 

D.

(4.4)

(4.5)

Similar to the proof of Lemma ilt, the partial derivatives are obtained by
chain and Leibniz rules For the first term on the RHS of (4.5), we have:

ao eve =(1 _ D) [lc.° t(z) (f t exp ( t s) eve(s) ds) dz eve
zaEve 0 0

f: 

E(z)

  (fot exp ( 
t — S 
z ) e 

2 

e(s) ds) dd.

Recalling ( ), we rewrite the above equation as:

aEve gve = (1 — D)[f °.° t(z) (ft exp (
o o 

t — s) .ve

z 
E (S) ds) dz šve

alp

—DLch(Eve)] , (4.6)

where DIch(Eve): R R+ represents the visco-elastic mechanical energy
dissipation, given by:

3.6

2
" t(z) t  t — s\ ve

D7gech(eve)= fo  z ( Jo exp(  z ) E. (s)ds) dz.

Similarly, we obtain the second term on the RHS of (

ao

act
& = R(t)et — (1 — D)D7ech (a), (4.7)

where R(t) : R+ -- R+ represents the accumulated stress acting on the
SB and Hooke elements on the visco-plastic part due to the accumulated

4.5):
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visco-plastic strains. Recalling Lemma 3.1, R(t) reads:

R(t) = (1 — D)[fcx) K(z) (ft exp ( t s) d(s) ds) dz + Ha]
0 0 z

= (1 — D) [][q VP' (a) + Ha] .

On the other hand, the term D
m e c h a n i c a 1 e n e r g y dissipation the model, which is given by:

InviPnech (a): R+ R+ denotes the visco-plastic

2
D7ech(a) = f k(z) (ft exp (z o 

t — s)

z 
a(s) ds) dz.

Finally, the direct calculation of the last term on the RHS of ( ) yields:4.5

ao 
ap 

[yve(Eve) y-Vp(a)} 1,-(Eve, a)D, (4.8)

where Yve(Eve) : R IR— and YvP(a) : R+ R— denote, respectively,
the visco-elastic/plastic damage energy release rates. From (4.2), they are
respectively given by:

yve(Eve) = _Iiive(Eve)
2

2 0
--1 f°° t(z) (ft exp t  eve(S) ds) dz.

(4.9)
oo t 2

YVP(a) = —0vP(a) 
1 

= 2 Jo k(z) (/ exp 
t — s 

a(s) ds) dz.
o z

(4.10)
We observe from the above result that, in principle, both visco-elastic and
visco-plastic parts release bulk energy with respect to damage. Inserting
( ), ( ) and ( ) into ( ), recalling Lemma 3.1, and dropping the
function variables, we obtain:

— (1 — D) E we)] eve + rep Rd

4.6 4.7 4.8 4.4

(4.11)

— YD  + (1 D) (D +DmvPech) 0'

Since the strain rate eve in (4.11) is arbitrary, without violating the inequal-
ity, we can set its multiplying argument to zero, and obtain the following
stress-strain relationship:

(t) = (1 — D) E PY:E (Eve) , (4.12)

and alternatively, using (4.1), we obtain:

T(t) = (1 — 13) E:7:YZE (E , (4.13)

and hence, the total energy dissipation (4.11) becomes:

rEvP — Ra — Y D + (1 — D) (Meth DmiTech) (4.14)
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Hence, we obtained the stress-strain relationships and dissipation poten-
tials.

4.1.3. Evolution Laws for Visco-Plasticity and Damage. In order
to obtain the kinematic equations for the internal variables, we define a
combined hardening and damage dissipation potential F (7-, a, Y, D) : R x
+ x r x R+ -> R, in the form 30 31  :r

F (7-, a, Y, D) := f (7-, a, D) + FD y( ve , D) , (4.15)

where f (r, a, D) : R x R+ x R+ -> R- U {0} represents a yield function,
defined here as the difference between the absolute value of the applied
stress in the device and the stress acting on the visco-plastic part [54  :

f (7-, a, D) := Irl - [(i - D)TY + R]

= 171 - (1 - D) [TY + K W Di ;3' (a) + H a] ,

which softens the visco-plastic stresses.

(4.16)

LEMMA 4.1. The set of admissible stresses lies in a closed convex space
(see Fig4 with respect to the associated thermodynamic variables 7- and
R IA, given by:

ET = fr E RI f (r, a, D) < 01. (4.17)

The boundary of ET, denoted by 0E,, is the convex set given by:

3E,_ = fr E RI f (7-, a, D) = 01,
where f (7-, a, D) = 0 denotes the yield condition in classical plasticity.

P r o o f. See Appendix I=1

The term FD (y-ve, D): R- x R+ R+ represents a damage potential
driven by the plastic strains and visco-elastic free-energy (see Assumption
g, where we adopt Lemaitre's form for ductile materials 31 :

FD(Y, D) := 
S

(s + 1)(1 - D) 
(4.18)

S

where S E R+ [Pa] and s E R+ represent material parameters, identified,
e.g., by Cao et al. 1q for a Zirconium alloy, and by Bouchard et al. 8
for highly ductile metals. In the latter, an inverse power-law form for FD
was defined with respect to the equivalent plastic strains to avoid damage
over-estimation. The sensitivity of Lemaitre's model with respect to S and
s was studied by Roux and Bouchard 42 .

From the defined yield function (4.16), and the principle of maximum
plastic dissipation 49 , the following properties hold: i) associativity of the

( yve ) .9+1
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flow rule, ii) associativity in the hardening law, iii) Kuhn-Tucker compli-
mentary conditions, and iv) convexity of E,-. Therefore, we obtain a set of
evolution equations for svP, a and D:

. a fEvp ,:y
aT 1

ev — —
a f • 

= 
OFD .

 j,' DaR ayve ') ' 1

where ;y(t) : R± 118+ denotes the plastic slip rate. For simplicity, we
consider only variations of the potential FD with respect to the free-energy
from the visco-elastic component for the damage evolution. Evaluating
the above equations using (4.16) and (4.18), we obtain, respectively, the
evolution for visco-plastic strains, hardening variable, and damage:

gvP = sign(T)-ji, (4.19)

& = '',

D =  'Y  
yve \•9

(1 — D) 

( 

SY )

where the first two evolution laws coincide with the ones defined for the
model M1 by Suzuki et al. 54 for fractional visco-elasto-plasticity.

(4.20)

(4.21)

REMARK 4.2. The obtained nonlinear damage evolution (4.21) co-
incides with local Lemaitre's form 30, 311. However, due to the time-
fractional form of Y", power-law memory effects for damage are introduced
in the model.

THEOREM 4.1 (Positive dissipation). The mechanical dissipation for
the damaged, fractional visco-elasto-plastic model is positive and given by,

(1 — D(t)) [TY iY(t)
 + Dniveech(sve) +Dvpmech(a)] y(eve,a)D(t) > 0,

where the above Clausius-Duhem inequality holds. Therefore, the defined
Helmholtz free-energy density (4.3), the obtained stress-strain relationship
(4.13) and evolution equations (4.19)-(4.21) of the developed model are
thermodynamically admissible.

P r o o f. See Appendix H. I=1

4.2. Time-Fractional Integration. We develop two new algorithms for
time-fractional integration of the developed model. The first one is a semi-
implicit fractional return-mapping algorithm, that can be implemented in
zero- or one- dimensional systems as a constitutive box. The second one is
an FD discretization for the fractional Helmholtz free-energy density and
damage energy release rate Y (4.9). Let t E (0, T], and an uniform time grid
given by t„= nAt, with n = 0, 1, .. . , N and time-step size At = T/N.
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4.2.1. Semi-Implicit Fractional Return-Mapping Algorithm. We
employ a backward-Euler scheme considering all variables to be implicit,
except the damage D in the stress-strain relationship and yield function.
We refer the readers to 8 for a comparison between implicit/semi-implicit
integer-order return-mapping algorithms. Such explicit treatment of D
weakly couples the damage and plastic slip, simplifying the visco-plastic
time-integration. Given known total strains En at time tn, and a strain
increment Acn+1 we have En+1 = En + AEn+1. The discrete form of the
stress-strain relationship (4.13) reads:

Tn-ki = (1 — DOE WIY:E (e — e") It=t

The backward-Euler discretization of the flow rule (4.19) yields:
E
77+
vp 

n1 
,ign(Tn+1)

(4.22)

(4.23)

with Ary = -yn+1 — -yn representing the plastic slip increment in the interval
[tn, tn+1] • Similarly, the discretization of the hardening law (4.20) and the
damage evolution (4.21) are given, respectively, by

Dn+i = Dn
1 — Dn+i S

with the following discrete form for the damage energy release rate

an+1 = an +

•6.7  (yrItLeF1  )
S

(4.24)

(4.25)

4.9

2
1

yr12"I-1 = 2 0 = f È(z)(f
tn+1 

n+1 s) 
exp 

t
Eve (S) ds) dz.

Similarly, the yield function (4.16) evaluated at tn+1 is given by:

fn+1 = ITn+11 (1 Dn)[TY ci'Dit3K (a)
&—tn+1 

Han+i] • (4.26)

We utilize trial states, were we freeze the internal variables (except for
damage) for the prediction step at tn±i. Therefore, we have:

„trio,/ trial _
En+1 = 62) an+1 t-clz•

The trial visco-elastic stress and yield function are given, respectively, by

trial (1 — Evptriat)
t=tn-F1Tn+1 -1-/rt )" '0 t (4.27)

trial trial v („,trial) Hatrial]
fn+1 = I Tn+1 I — Dn) [TY -`"'0 lut 1 t=tn+, •

Substituting (4.23) into (4.22) and recalling (4.27), we obtain:

Tn+i = — sign(Tn+i) (1 — Dn)E (c'D'E (6.7) t=tn-kt
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where we observe that

[irn+11+ (1 - Dn)]EWVI:E (A7) It=tn+1] sign(rn+1) = 
14,711 I sign(TV71).

Since the argument inside. brackets on the LHS above is positive, we note
that signern+i) = sign(4,71/). Hence, we have updatedthe 7) tn+ s,t.r ess:

rn+i = 7.ntr_ia/ sign (427:11) (1 Dn)E Dit3E 

(A 

(4.28)

Our last step is to derive the closure to for the plastic slip A-y. Substituting
4.28) and ( ) into (4.26), we obtain:4.24

fn+1 = - (1 - Dn) []E WDit3E (07 t=tn+1 
K tr'130)1 - 3". (0̀T)1 t= tn+ - HAH .

Finally, setting the discrete yield condition fn+1 = 0, we obtain the fol-
lowing multi-term fractional differential equation for the plastic slip:

trial

E (A-y) It=tn+1 KW/YZK (A-y)
f

It=tn+1 + (1 - Dn) = n •
(4.29)

After solving (4.29) for A-y, we directly update the internal variables an+1
and svnP±i. The damage update is done through Newton iteration. Let P4'±1
given at a sub-iteration k:

pnk±i = Drik±i Dn  Ynv,-eki  )8
1 - Dnk+1 S

with the following derivative, obtained analytically:

dP A'y  1'n+t  1 s
dDk t=tn+1 1 + (1 — Dk )2 Sn+1

Therefore, the new iterated damage is given by:

pk

Dkn 1 + Dk+1 
n+1 

1 n (dP/dDk)
t=tn+1

The developed fractional return-mapping algorithm is summarized in
Algorithm I.

4.2.2. Numerical Discretization of Fractional Operators. The frac-
tional derivatives in the fractional return-mapping Algorithm 1 are evalu-
ated implicitly using the L1 FD method 32  . Let u(t) : r+ R. The
time-fractional Caputo derivative of order 0 < < 1 is discretized as:

un+1-j un-3 n+1C-ni3„, I 1

o tzkui t=tn+1 
- 

F(2 - 0) E + rAt (4.30)
3=0
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Algorithm 1 Fractional return-mapping algorithm.

1: Database for 6, EvP, a, Ay, Dr, and total strain F.-n+1 •

2 E 
vntrial vp „,trial „,: n+1 = En

3: trial - __ (1 - Dn)E WTY-E (E eptrial
Tn+1 

 ) t=tn+i

4: J t=tn+1
x
n+1
trial 
- I rn-F1 

trial 
- - Dn) 

[TY + pf3K (atrial) H atrial]

if ftiri.l5: < 0 then
tr_il6: Evnp+1 = E2), a an+i = n, Dn+i = Dn, Tn+1 = 
Tna

7: else
8: Solve for Ary:

9: = +1 + HAI/ AZ.11/ (1 - Dm)E WIY:E (A'Y) t=tn±i (A7) Ltn

10: = TntiV sign(rntV)(1 - Dri)EWD E (Ay) It=tn+i

11: sn+1 = en'P + sign(Tn+i)A7
12: an+i = an + Dry 213: 17.741 = KG t(z) (fotn+1 exp ts) (s) ds) dz (Algorithm
14: while IP7411 > E do

k k (y15: p D D  
n+1 n+1 

rtql S
n 1—Dk S )n+1 

y ve \ 8
16: (dP/dDk ) t=tn+l = (1-f.;k7+1)2 71 )

pk

17: Dk+1 - k71+1 D71+1 I 
n+1 

OP/dDk 
t=ty,±1

18: end while
19: end if

2

where rlr < CuAt2-i3 and di := + 1)" j1-0, j = 0, 1, , n. The
above expression can be rewritten and approximated as:

L'
,r1/3 14\
0 t

t=tn+1

1 

Or (2 ) kin-F1 Un 'WU] ,

where the so-called history term 7-tOu is given by:

n

wou = E d [LItn+1- j Un- j] •
j=1

(4.31)

Using (4.30) does not cause any loss of accuracy for the return-mapping,
since the backward-Euler approach for internal variables is first-order accu-
rate. For trial state variables utjai/ = un, the discretized Caputo fractional
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derivatives are given by:

C -1-10
u 
trial (t)

L't t=tn+, 
Ator(2 

— i3) •

Free-Energy/Damage Energy Release Rate: We now discretize
the visco-elastic damage energy release rate Y" = —0". We first rewrite
(3.4) as 33 :

'*) = 
E m jot 

fo(2t

t 

e(sis):(7s)2)13 
dsl ds2.2ro_ 

We then decompose the integral signs of (4.33) into a discrete summation of
n integrals and approximate e(t) using a backward-Euler scheme to obtain,

E 4,41 tn+1 e(s1)e(s2) 

t-- i fo o (2i--n-ki — Si — s2)
0 (En+1) =   

0 
dsl ds2

2F(1 — A)

=  
E 

n n 14

i

+1 t 3 +1
AEz+1,6,63+1

, dsi ds2 + rAT1,2F(1 — )3) 
i=o 3=o 
E E ta At2 (2tn+i — sl — s2)"

(4.34)

(4.32)

with A6k+1 = Ek+1 Ek

(4.33)

-n 1THEOREM 4.2. The local truncation error rAT for (4.34) satisfies

At _< CAt2-1

where C denotes a constant depending only on the strain 6(0.

P r o o f. See Appendix

(4.35)

Let the first term of the RHS of (4.34) be the approximation 1Pn°±1
tP(En+i) evaluated at t = tn±i. Performing a change of variables v1

tn+1 si and v2= - tn+1 — 82, we obtain:

n n A6 1AE..+1 tn+l-z tn+1-3

0726 +1 = E E  i+ 3 f f (vl + v2)-0 dvi dv2,
At2

i=0 j=0 tn-z tn_3

❑

(4.36)
with E* = E/ pro_ - 0. Using the symmetry between the indices of
strains and integration limits in (4.36), we obtain:

n n Asn_i+i Aen_ j+1 iti+1 tj+1

041 = E* E E At2 (vi + v2)-3 dvid,.
i=0 j=0

(4.37)
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We can analytically evaluate the double integral sign in (

1.4+1 ft3+1
(vi + v2)-13 dv1 dv2 =

At2-i3

4.37) to obtain:

(1 - )3)(2 - (3)
[(i + j)" 2(i + j + 1)" + (i + j + 2)21 .

(4.38)

Substituting ( ) into (4.37), we obtain the discrete free-energy density,4.38

n

14+1 = 20tOF(3 - /3) i=o 3=o

with the following entries for the convolution weight matrix:

biT) = (i + j)" - 2(i + j 1)" (i j + 2)", i, j = 0, 1, . . . , n.

We can also rewrite ( ) as the following matrix-vector product:

'cb +1=  2AtOF(3 - 3) AenT
+1Bn+1 AEn+1, (4.40)n 

where we note that Bn+i is an n x n Hankel matrix of convolution weights

with 2n - 1 unique entries b,(3'3). The n x 1 vector Aen+i is given by:

= [En+i - En, En — En-1, • • • , E2 El, El E0]T • (4.41)

Fast Computation of Matrix-Vector Products: The form (4.40)
requires a full matrix-vector product with complexity O(n2) for every time-
step, and consequently O(N3) for full time-integration. Our aim is to re-
duce such complexity by leveraging the obtained matrix forms. Since B
is a Hankel matrix, it relates to a Toeplitz matrix Tn+i through 13„2+1 =

Tn+1jn-F1) where Jn+1 represents a reflection matrix with ones in the sec-
ondary diagonal and zero everywhere else. Therefore, we obtain:

4.39

'06
n+1 20tOr(3 —

A6nT±lirn-FlJn-FlASn+1- (4.42)

The Toeplitz matrix has a circulant embedding of size 2n x 2n  , fully
described by a 2n x 1 vector of unique coefficients:

b0, . . . , b1(31Ti_i]
T 
. (4.43)

Let the following zero-padded vector Aen*+1, with size 2n x 1:

,(0)
-n+1— [b (()130) n, n .. . , bSill 0,

E

b(3) En+l-i En-i)(En+l-j En-j), (4.39)

AEri+1 = [(Aeri+Onx 1 (0)nxl]

21

(4.44)
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Algorithm 2 Fast computation of fractional damage energy release rate.

1: Database: Eve and 2N -1 coefficients , , b(3.' , . . . ,

2: Compute AEvne±i using (4.41), and form AEvne:E'l using (4.44).

3: Compute the FFT T(AEriv 1).

4: Compute cm63±Ei) using (4.43), using the known WE) coefficients.

5: Compute the FFT T(cn(13+E1)).

6: 
 

Yven+l = 2pti3E(3_0E)A6Inie- T-1 (T(CZ) -F(A6M)) I.

7: return 17,41.

where AEnf_pi = Jn+10en+i denotes the reflection of AEn+11 given by:

Aefn+1 [61 — 60, 62 — Ell • • • — En-1, En-HI En1T •

Finally, we obtain the fast form of (4.40) for every time-step 4,41:

,,I,S
'1'n+1 = 

E A ,,T -c-1 (T•t ,..(0) \ (-:-, T1 A ,.* 1
‘—kcn-F1-' -' l'-'1) ̀Li.' l'—'G•n+1/) ,2AtOr(3 - )(3)

where TO and T-1(.) denote, respectively, the forward and inverse FFTs
and 0 represents the Hadamard entry-wise product. Recalling yve(eve) =
ove(eve ), the discrete damage energy release rate is given by:

(4.45)

yrt;:1 n

 AeveTiy-1 (F(CZ) 0 .T(Ae;)ie:E"i))
2AtoEr(3 - 13E) ±

(4.46)

(4.47)

where,

AerT+1 = [641 - Tie — 1r)te_ 1 . . . 612)e — ET, 
ve 
— itde1T , (4.48)

and with Aevne:Fi being the reflected and zero-padded form of (4.48). Also,

the vector cnC3+Ei) is given by:

,(0E) [1,0E) WOE) 
b(i3E) 0 b(13E) b(13E) • 

b(0E) T (4.49)-̀'n+1 'O,n '1,n " • , n,n , 0,0 , 0,1 , • • • , 0,n—l]

with b c°1E) = (i + j)2-0E - 2(i + j + 1)2-0E + (i + j + 2)2-0E and i, j =
0, 1, ..., n. Algorithm 2 demonstrates the numerical evaluation of the
damage energy release rate for every time-step t = 41+1.

Computational Complexity of the Developed Scheme: Employ-
ing (4.47) for the full time-fractional integration over SZ yields a total com-
putational complexity of O(N2 log N), similar to the O(N2) complexity of
the employed Ll FD scheme for fractional Caputo derivatives. Further-
more, the required storage for the developed scheme is O(N).
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5. Numerical Tests

We present two qualitative examples with monotone/cyclic loads for
the SB free-energy density and the developed damaged, visco-elasto-plastic
model, where we verify the convergence and computational complexity of
the developed algorithms. For convergence analyses, let u* and '15 be,
respectively, the reference and approximate solutions in 1-2 = (0, T], for a
specific time-step size At. The global relative error and convergence order
are given, respectively, as:

I 11* 11511Lc9(Q) 
, Order = log2 

[  err (At)
err (At) = (5.50)

err(At/2)]

We consider homogeneous initial conditions for all model variables in
all cases. The presented algorithms were implemented in MATLAB R2019a
and were run in a system with Intel Core i7-6700 CPU with 3.40 GHz, 16
GB RAM and Ubuntu 18.04.2 LTS operating system.

EXAMPLE 5.1 (Convergence for Free-Energy Density). We start with
two convergence tests for the fractional Helmholtz free-energy density using
fabricated solutions. The first one employs second-order increasing mono-
tone strains, and the second uses cyclic varying strains.
• Monotone Strains. Let t E (0, T], with total time T = l[s]. We de-

fine the quadratic strain form E(t) = (tIT)2 . Therefore, analytical solution
for the Helmholtz free-energy (3.4) can be obtained directly as:

22-13 [8 + 213 (13 - 5)] 
4 2—0* (E) = 

F(5 — /3) 
TEE.

We set IE = 100 [Pa.s0], and estimate the computational complexity of the
direct ( ) and fast (4.46) forms, with varying At. Figure 3 presents the
approximate free-energy solution, where we recover the standard limit cases
of a Hookean spring (0 0) and a Newtonian dashpot (0 1), as well as
second-order accuracy for the developed discretization. Figure 4 presents
the obtained O(N3) and O(N2 log N) computational complexities, respec-
tively, for the direct and FFT-based free-energy time-integration schemes.
The break-even point lies at N = 200 time-steps.
• Cyclic Strains. We utilize a fabricated sinusoidal strain solution

E(t) = Eo sin(wt), with t E (0, T], with amplitude co and frequency w.
The corresponding analytical solution for V)* is cumbersome, and therefore
not shown here. We set eo = 1, w=7r [s-1], T = 50 [s], = 0.5 and
E = 1 [Pa.s°.5], and start with a sufficient number of time-steps to capture
the oscillation modes. Figure 5 illustrates the obtained results, where we

4.42
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FIGURE 3. Numerical results for the free-energy computa-
tion with a quadratic form for s(t). (Left) te vs strain with
varying O. (Right) Relative error vs time-step size for vary-
ing 0, with second-order accuracy.
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FIGURE 4. CPU time vs number of time-steps of the devel-
oped time-integration schemes for the fractional Helmholtz
free-energy density under monotone strains.

100

capture the highly oscillatory behavior for both transient and steady-state
parts with second-order accuracy.

EXAMPLE 5.2 (Fractional Visco-Elasto-Plastic Model with Damage).
We test our developed model and fractional return-mapping algorithm sub-
ject to prescribed monotone/cyclic strains. The convergence analysis is
done with a benchmark solution and we analyze the quality of the anoma-
lous damage response with respect to the fractional orders )3E, i3K from
visco-elasticity/plasticity under different strain amplitudes/frequencies.
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(A) Free-energy vs time. (B) Relative error vs time-step

FIGURE 5. (A) Free-energy density computations for cyclic
strains vs time, N = 3200 time-steps and = 0.5. (B)
Convergence analysis showing second-order accuracy.
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0.005 0.01 0.015
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FIGURE 6. Stress vs strain for the benchmark solution with
time-step size At = 2-20, = 0.5 and different f3K values.

10°

size.

• Monotone Strains. Let 6(0 = where t E (0, T], final time
T = 0.03125 [s] and strain rate e = 0.64 [s-1], and therefore 6(T) = 0.02.
We set OE = 0.5, E = 50 [Pa.s°.5], K = 10 [Pa.sOK], TY = 1[Pa], S =
10-4[Pa] and s = 1. A benchmark solution for the stress (see FigA is
computed with time-step size At = 2-20 [s] and varying fractional orders
OK, where we observe that higher values for OK led to increased hardening
and damage for the prescribed strain rate. We observe a linear convergence
rate in Figure 7a, due to the employed backward-Euler discretization in
the fractional return-mapping algorithm. A second-order computational
complexity for the fractional return-mapping algorithm is also verified in
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(A) Convergence behavior. (B) Computational complexity.

FIGURE 7. Fractional visco-elasto-plastic model with dam-
age under monotone strains. (A) First-order convergence
behavior. (B) Computational time vs number of time-steps,
with second-order computational complexity.

Figure 7b. The influence of hardening and visco-elastic damage energy
release rate is shown in Figure 8. We observe that higher damage values
are obtained for ii3K = 0.7, despite the higher accumulated plastic strains
for lower values of 13K. The higher damage is instead due to higher values of
damage energy release rates shown in Figure 8b for ii3K = 0.7. We note that
similar to the stress-strain response, the visco-elastic fractional free-energy
is power-law memory-dependent on the strain rates, therefore leading to
the observed anomalous behavior.
• Cyclic Strains. To investigate the interplay between the dam-

age/hardening/viscosity and hysteresis effects, we perform a constant rate
loading/unloading cyclic strain test, mathematically expressed as:

2EA
E(t) = — arcsin (sin (27rwt)) ,

7r

where EA and w represent, respectively, the amplitude and frequency of
total strains Here, we focus on low-cycle fatigue behavior, and there-
fore we set E. = 0.1, and three strain frequencies w = {27r, 47r, 87r} [s-1],
which correspond, respectively, to approximate absolute strain rates of
1E1 {2.51, 5.02, 10.05}. We set a total time T = 10 [s], and for each
frequency, we use N = {8 000, 16 000, 32 000} time-steps, corresponding to
At = {1.25 x 10-3, 6.25 x 10-4, 3.125 x 10-4} [s]. The material parameters
are set to E = 25 [Pa.s0E], = 10 [Pa.sOK], TY =1[Pa], S =1[Pa] and
s = 1, where we set the fractional order values i3E = )31( = {0.3, 0.5, 0.7}.
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FIGURE 8. Developed model under monotone strains: (A)
Damage vs accumulated plastic strain, with higher damage
but less plasticity for higher OK. (B) Damage energy release
rate vs visco-elastic strains, which are both larger for higher
values of fractional order 13K.

0.01

The stress-strain hysteresis results are presented in Figure 9. We ob-
serve that higher frequencies led to more softening in the model, while
higher values of fractional orders OE, OK led to increased hardening, fol-
lowed by softening. Such damage increase is illustrated in Fig. 10, where
we observe that higher ii3E and OK values led to increased plasticity for all
cases, with a significant increase of damage rates for )3E = = 0.5, 0.7
when w = 87r. We also observe from Fig. 11 that due to the anomalous
nature of the fractional visco-elastic free-energy potential, the damage en-
ergy release rates substantially increase with higher fractional orders and
loading rates, which contribute to the observed higher values of damage.
Therefore, for this model, higher material viscosity in both visco-elastic
and visco-plastic parts might be sufficient to yield lower values of damage
at low frequencies due to internal dissipation mechanisms, but at higher
frequencies and therefore more loading cycles, they lead to earlier material
failure.

6. Conclusions

We developed a thermodynamically consistent, fractional visco-elasto-
plastic model with memory-dependent damage using fractional Helmholtz
free-energies, visco-plastic/damage potentials and the Clausius-Duhem in-
equality. The damage energy release rate was derived from the visco-elastic
free-energy to obtain a consistent bulk energy loss for anomalous materials.



26 J.L. Suzuki, Y. Zhou, M. D'Elia, M. Zayernouri

0.06

0.05

a 0.04

1'0 03
E

8 0.02

0.01

0 05 0 0.05
Total Strain

(A) OE = OK = 0.3.

.1 0 05 0 0.05
Total Strain

(D) OE = OK = 0.3.

.1 0 05 0 0.05
Total Strain

(G) OE = OK = 0.3.

0.1 -0.1 -0.05 0 0.05 0.1
Total Strain

0.1

0.1

(B) OE = OK = 0.5.
6

4

2

gl 0

4

-0.1 -0.05 0 0.05
Total Strain

(E) OE = OK = 0.5.

6[
4 -

gl 0

4

6

-0.1 0.05 0 0.05
Total Strain

(H) OE = OK = 0.5.

-0.1

4

,!A 2

4

6

-0.05 O 0.05
Total Straln

(c) OE = OK = 0.7.

0.1 -0.1 -0.05 0 0.05
Total Strain

0.1

(F) OE = OK = 0.7.

O 0.05
Total Strain

(I) OE = OK = 0.7.

FIGURE 9. Stress hysteresis response for cyclic strains with
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10

A first-order, semi-implicit fractional return-mapping algorithm, which
generalizes existing standard ones, was developed to solve the resulting non-
linear system of FDEs. We note that most existing algorithms for standard
plasticity models are not more accurate than ours. We also developed a
new FD scheme with accuracy O(At2-0) for the free-energy/damage energy
release, with computational complexity of O(N2 log N) through FFTs.

We also performed a set of numerical tests and observed that:

• The fractional orders 0E and 0K tune the competition between the
plastic slip and damage energy release rate for damage evolution.

• Higher values of 0E, OK yielded lower damage levels for lower strain
rates/cycles; However, the damage increased significantly faster
than lower values of 0E, Ok for higher strain rates/cycles.

• For the free-energy discretization, the break-even point between the
original and fast schemes was low, about N = 200 time-steps.

• The developed discretization recovered the limit Hookean 0
and Newtonian )3 —> 1 cases for the free-energy.

In the presence of single- to multi- singularities, the accuracy of the de-
veloped scheme can improve through a variant of a self-singularity-capturing
approach 53 for all fractional operators. Nevertheless, non-smooth load-
ing/unloading conditions pose additional challenges to develop high-order
schemes for the model. In terms of efficiency, the computational bottleneck
lies in the free-energy discretization, which needs further improvements be-
fore employing fast schemes for the fractional derivatives, e.g., fast convolu-
tion [35, 611 and fast multi-pole approaches 57]. Variants of the developed
model can be incorporated in a straightforward fashion. The visco-elastic
part could be composed of any data/design-driven arrangement of SB el-
ements, e.g. Kelvin-Voigt, Maxwell, Kelvin-Zener [46  , while adding the
corresponding energy release rates to the damage potential. In addition,
similar frameworks involving fractional damage energy release rates can be
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employed to phase field models Potential applications of the developed
work could be, e.g., failure of polymers, bio-tissues, and ductile metals,
where the fractional-orders )3E, OK can be related to the evolving fractal-
like microstructure 36 . The presented model could also be employed in
the context of nonlinear dynamics of mechanical systems 52,

Finally, the employment of nonlocal truncated time derivatives 19 and
potentials could have additional impacts on reducing the computational
complexity of the developed scheme, due to the shorter memory. Further-
more, the use of such operators seems particularly interesting to naturally
address the "memory reset" for internal variables such as the hardening a
for hysteresis loading [54

Appendix A. Proof of Lemma

We take the time derivative of the free-energy (

3.1

3.4

56

) and obtain:

_ )= r t(z) ft exp 
t s) 

g(s)ds (
dt 
d it exp 

t s 
g(s)ds) dz

(1.51)
with

dt I exp

d ft t - s)
g(s)ds = g(t) 

lot 1 
exp 

t - s) 
g(s)ds. (1.52)

o 

Substituting ( ) into (1.51), we obtain:1.52

[f° k(z) (ft exp t -
z 
s)g(s)ds) ddg

- fc° E(z) ( f t exp
Jo 

t 
z )

Let E* =  
r(1-0 

E
)r(0)• 

Note that the term inside brackets in (

I 0°° E(z) (f 
z

t exp ( t — s e(s)ds) dz
o  )

c°  E*  ( ft 
exp 
( t s)

48) ds) dz0+1 j.10 z 0 z

E* It [f °° z-(13+1) exp ( t - s) dz] g(s) ds
0 0 Z

ft 1- ro uv_i
 s,, exp(—u) du]

E* 

Jo [J o (t — )P 
e(s) ds

2
g(s)ds) dz.

1.53

=E* t [  r(0) E() 
0 

s tr(1—,3) (t— sr[(t — sr 
ds = E E(s) ds

=E (E)

(1.53)

) equals:

(1.54)
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Substituting (1.54) into (1.53), and the result into (3.3), we obtain:

2

E— (E)] E(z) f z (lot exp t —
Z
s) e(s)ds) dz > O. (1.55)

Since the strain rate e is arbitrary, we set the argument inside brackets
to zero without violating the above inequality, to obtain the stress-strain
relationship for the SB model:

T = E WV: (E) .
Furthermore, the remainder of ( ) represents an internal positive me-
chanical dissipation, given by:

Dmech(e) =
JO z 

E(z) 
o

(ft exp 
t — s) 

2
e(s)ds) dz 0,

where the above inequality holds, since z and t(z) are positive.

1.55

Appendix B. Proof of Theorem

We recall the mechanical dissipation (4.14

4.1

TevP Ree + (1 — D) mech + DmvPech) (2.56)

where we must prove that the above inequality holds. Substituting (
4.20) into (4.14) yields:

4.19),

Tsign(T)-y — 11,:y — Y + (1 — D) (VnIch DmvPech) >

Rearranging the above equation, we obtain:

[17-1— ((1 — D)TY R)] -5/ — Y + (1 — D) (TY Mech DmvPech) >

where the first term is is related to the persistency condition [49

((1 — D)TY R (a))] = f (T, a, D);)/ = 0,

and therefore,

(1 — D) (TY ,51 DZech DiZech) — YD  > 
(2.57)

We check the positiveness for each term of the above inequality. For the
first term, since the damage is always positive, so is (1 — D). Also, we have
TY > 0 and ry> 0 49 . From Lemma 3.1 the mechanical dissipations Dmveech
and DmvPech are also positive. For the second term, —Y is positive and so

is A since D is a monotonically increasing function. Therefore, inequality
(2.57) holds, and thus the developed model is thermodynamic admissible.
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Appendix C. Convexity of the Yield Function

P r o o f. Recalling (4.16), we have

f (7-, a, D) := - [(1 - D)rY + ,

where R(a, D) = (1 - D) [Ko T4'-' (a) + H a]. We fix D since we are in-

terested in showing the convexity of f with respect to T and R. Let x1 =

Ri), x2 = (T2, R2), E [0, 1], with R, = (az, D) = lq,'D';3K (a) cx +=a,
Hai. Therefore, we have:

f + (1 — )x2) =10-1 + (1 — )T21 — (1 — D)TY — (1 — 6)1:12

=10-1 + (1 — )721 — 6 [(1 - D)ry + R1]
- (1 - 6) [(1 - D)7Y + R2] ,

<6 {17-1 1 - [(1 - D)TY + (by Jensen inequality)

+ (1 - {17-2 1 - [(1 - D)TY + ,

=6f (xl) + (1 — (x2).

0

Appendix D. Local Truncation Error for the Free-Energy
Discretization

We prove the local truncation error (4.35) for the discretized Helmholtz
free-energy density. Before we prove it, we need the following result.

LEMMA D.1. Let /3 E (0, 1), then

[
tz

(tri+1 - s)-l) - (2tn+i - s)-1 ds < , 0 < i < n, (4.58)

where C1 is a constant independent of At.

Proo f. We can obtain
f

Rtn+i - s)-13 - (2tn+1 - s)-1 ds

(tn+1 —
t,+ ti+l

(2tn+1 — 8)1—'3

1 -
t,

[(n + 1 - 01-'3 - (n - 01-'3 + (2n + 1 - 01-'3 - (2n + 2 - 01-1 .
1 -
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Since

0
(n + 1)1-13 - = (1 - )3) f (n - s)-I3ds < (1 - )3)n- , n > 1,

then, when 0 < i < n - 1, we have

r+1 Rtri+1_ sro (2tri+1_ 5)-1 ds < Atl-° [
(n 00 (2n + 1 — 00]

for i = n, it holds that

ftn+1

itn

Ati-o
(n - 00'

[(tn+1 - s)-3 - (2tn+1 - s)-1 ds

Atl- 

1 - 

[
1 + (n + 1)" - (n + 2)1- 1

At1-0 [
1 

1 - 3 1 < At1-0

- 1 - (n + 1)0 - 1 - •

Therefore this lemma is proved. Next, we prove the local truncation error
for the free-energy discretization. From

PO(En+1) =E
Ltn+1 ftn+1

(2t,i — — s2)0
g.(s1)4s2) 

=É E
n iti+1 

AEi-piAEj+1 
dslds2 + FIF1

i,J=o i tj At2(2tn-ki - si - s2) 

dsids2
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with It =   k+1
21-(1-0) and AE= Ek-F1— Ek. We know that

rti+l ft;+1

1 1711-1 1 = E 
(2tn+i — si — s2)—

id=0

E
fti+i itj+1

i,j=0 ti

+E(s1) 
AEi-FlAEj+11

At At2 
dslds2

Aet+1.6,E,i-ki]
k(si)e(s2) At2 

dslds2

[ 
E. ,6, j+i

(2tn+1 - si - .92) 13 e(81)492) — 6(si)
At

n fti+1 f ti+1

E (an+, - s1 - S2r3

i,j=0 ti

1- Aei+1)] dsids2
, Aei+1 (451)

A 
L1L At

<it
i,j=0 ti t;

Tr 

+ 
AEi+i f ti

AEi+1-) dslds2(2tn+i Si S2)-3 (e(si,
At A Atit;i,j=0

+ /21

[e(si)(e(s2) 6'2;1

where

n ft.+1 ft3+1
AEAir dsids2(2tn+i - - s2)-Se(si)(e(s2)

n ti+1 ti+1 

AAt 

Ej+i 
ds1c1s211-- E (2tn+i - si - s2r3e(si) (e(s2)

i,j=0 ti ti 

and
A

12 =1E' 
E

At
i,j=0

f ii+1 itj+1

(2tn+1 s1 s2)-0 
At 

dsids2
.1t,

Assume E(t) E C2[0,7], then one can obtain that:

E(t) < C2, e(t) < C3, t E [O,T].
On each small interval [ti,ti+1] (0 < i < n), denoting the linear interpola-
tion function of 6(0 as HiE(t):

t - 4+1 t - ti
ILE(t) =  ei  Ei+11

ti 4+1 ti+1 ti

it follows from the linear interpolation theory that

(i)
E(t) - Hie(t) =e  (t ti)(t - 4+1) t E E (4,4+1),

2
with 0 < i < n, and here ci is a constant independent of At.
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For /1, we have

ft,F1
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ta+1
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ti 3

ft,F1 ta+1

e(si) (2tn+i — si — s2)-13d[e(s2) —113e(s2)]dsi
zo_o t3

n

JO=

tj+1

<,@IE E
ftt •

(si) cjAt2(2tn+i — si — s2)-i'ldsids2

<,a2c4At2

= -tc4 At2

<Itc3c4At2

tj+1
e(si) f [e(s2) —Hje(s2)](2tn+i — si — s2)-0-1dsids2

E
n fti+1 t,,+,

e(si) f (2tn+1 — si — s2)-0-1dsids2
i=0 ti 

Ecsi) Rtn+, — so—P — (2tn+i — so—o] &Si
n iti_Fi

i=0 ti
n 

Rtn-Fi — Si)—'3 — (2tn-Fi — Si)1 &Si

i

E
ti+3

i=0 ti

where C4 = max c3. For /2, it holds that
O<j<n

12 =IE

=it

n 
Aej+1 f

ti_F1 ftj+1

f
(2tn+1 — — s2)-0 [e(so —nie(sor dsids2

tiAti,J=o Jtj

n j+1 jtj+,  ti+1

At
(2tn+1 — s1 — s2)—' d[e(s1) — llis(si)] ds2

i,j=o tj Jti

=4

<sit

<i3ItC5At

=1Eci5At

t3+1 ft,F1ft

j 

[6(51) — (2tn+i — si — s2)-13-1c/sids2
it,

f
tj+1 f ti+1

ciAt2(2tn+i — Si — 82) 13 1615162

tj_F1 ftn+1

EAei+i (2tn+i — si — S2)-13-16162
j=0 

n 

E A6i-F1 
ft t 1.jj+

Rtn-Fi S2)-13 — (2tn-Fi — S2)-1 ds2
i=o



34 J.L. Suzuki, Y. Zhou, M. D'Elia, M. Zayernouri

where C5 = max ci. Then, it follows from Lemma
O<i<n

Il + /2 <
2F(1 - 3)

nEC1C3C40t3-

1.).1

EC1C5At2-0

2F(1 - 3)

that
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(c3c4T + 2c2C5) At2_0.
2F(1 - 3)

I=1
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