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Introduction Adsorption on Gibbsite basal (001) and edge (100) surfaces

® The objective is to use molecular simulation to investigate aqueous ion diffusion and adsorption Water adsorption sites
to mineral surfaces in more complex systems more representative of compact soils and rocks.

® Gibbsite is used as a model mineral because it has properties similar to a clay mineral but does
not include the additional complexity of an interlayer.

o ¢

Molecular simulations are performed for: ,
o Water and ion adsorption to the basal (001) and edge (100) gibbsite surfaces J e (001)

o Wiater and ion adsorption to a gibbsite nanoparticle S
Ion adsorption sites

o Water adsorption to gibbsite nanoparticle aggregates that are created through de-watering and
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Adsorption to Gibbsite Nanoparticle
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lLateral dimension 2.1 — 3.5 nm
2 1am Particle thickness 3 layers (1.3 nm)

Particle Aggregation Model: Gibbsite

Hydrated aggregate
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Conclusions

® The percent cation adsotrption as inner-sphere complexes depends on the gibbsite sutface.
® For all cations, surface coverages are higher on the basal surface than the edge surface.
, | _' . ® For the nanoparticles, cation surface coverages are enhanced, due to the significant number of inner-
X A) | N | = sphere cations found at nanoparticle corners.
* CI adsorption is not enhanced on NP ® Tor the nanoparticle aggregates, slow dewatering creates more sregates that fast

* Na*, Ca?", and Ba?* adsorption are enhanced on NP | dewatering.

* NPs exhibit higher concentrations of IS complexes
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