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Introduction

* Recent years have seen ever increasing availability of renewables in the
energy market

* While these sources are taking up a larger and larger market share, they suffer
from intermittency with naturally fluctuating weather conditions

* This increase in overall production with short term dry spells has posed a
problem for traditional production facilities, where the real-time demand
can now fluctuate significantly — and quickly — necessitating operational
changes

S, |U.S. DEPARTMENT OF

S/ milie N7
) 4
2 /S
) S
ST s OF

WestVirginiaUniversity. N =|NATIONAL

BENJAMIN M. STATLER COLLEGE OF TECHNOLOGY
ENGINEERING AND MINERAL RESOURCES TL LABORATORY




Load-Following

* In order to account for renewables, traditional plant must now cycle their
loads in order to meet the real-time demand

* This is both costly and operationally difficult in plants that were designed for
static operational at the nominal load

* Fast changes in plant conditions are also causing lasting damage to key
processes equipment

* Notably in the boiler, where fluctuations in the main (final) steam temperature
can cause creep and fatigue

* Effective load-following necessitates the development of better control
strategies to quickly move the plant from one load to another, while
controlling key process variables tightly
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Load-Following

* While each individual load change will clearly be different, we seek to
approach the problem by asking how they are similar
* If each load change shares certain characteristics, how can we learn from them (and

incorporate them dynamically into our control system) in order to obtain improved
control over a large range of conditions?

* As the equipment performance changes over time, the control system must
adapt for maximizing its performance

* In the existing control system designs, ‘lessons learnt’ from current or past
control strategies and actions are not utilized in the future even when same or
similar control challenges appear

* Repetitive mistakes are made

* Can the control system learn from its performance for a given load-following
task and then adapt when ‘similar’ task appear in the future?
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Reinforcement Learning

* RL is a model-free process whereby an actor takes action on a Markov
decision process, from which the transitioned state is evaluated by a critic!

* As this process continues, the knowledge base of the learner is converged,
yielding a mapping of states to optimal policies

* 'This mapping is often recorded as a lookup table that has been learned oftline,
though online implementation 1s possible

Reward
< Critic > :< Actor >—
New State — < — Current State
t <
(_ B em/
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Q-Learning

* Q-learning is an iterative tabular method for the evaluation of a guality
value for a given state-action pair!>’

* Convergence of this table yields the optimal policy mapping

* For each of the state-action pairs, the quality can be updated as:

Q(sg, ar) « Q(spap) + o 7"t + Y max Q(s¢+1,a) — Q(sy, at)

NN T

Maximum
New value Current  Learning Reward Discount ¢
ewa uture
of Q value of Q Rate Rate
value of Q
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The Curse of Dimensionality

* Q-learning algorithm involves no optimization and can be easily solved faster
than real-time thus making it very practical for real-life application in small to
medium state-space systems

* For large state-space systems such as the power plants, the number of
computations required to fill out the Q-Table can increase combinatorically
(the Curse of Dimensionality”’) making the algotithm computationally
intractable

* Here we propose to use a clustering approach to collapse the state-space into
a number of tractable number of clusters from the perspective of their
control space®

* The control space here consists of a 3xIN dimensional space of discrete control
parameter selections (i.e. K, 1, tp)
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K-means Clustering

* K-means clustering 1s a data management algorithm used to minimize

mean square error of a data set relative to a given number of cluster
centers®

* These cluster centers can then be taken to represent the data, with each center
representing its member states

* Each new state 1s evaluated with reference to the existing cluster centers

* The resulting cluster centers are used directly in place of the state space
* Given N cluster centers, C and a new state, S:

L dys= G- S
If dy¢< p, the state is already represented = Use the nearest C;and keep N centers

2.
3. If d,s> p, the state needs representation = Use as kernel for new C;and take N+1 centers
4. Perform new clustering considering Sand N or N+1 cluster centers
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Coordinated Control System

* The coordinated control system 1s developed in
SCPC plants to control the entire plant as a
function of the load®

* Years of industrial experience have yielded a
robust structure

Load
Demand
Measured Plant Measured Coal
Load Flow

l l

Unit Master

* However, static tuning and structure hinder the Boilr Master (e Turbine Master
system 1n transient and otff-design operation Ry
Demand
* The system proposed here could be
implemented alongside the CCS with minimal PAAIL - FDAir BEW
intrusion to the existing structure U it pomisions fom 5
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Main Steam Temperature Control

* Control of the main steam temperature 1s process critical

* Deviation causes efficiency losses along with long-term damage to the steam
boiler and turbine

* Control problem also exhibits significant time-delay®

* Little is known about off design or transient conditions and operating
parameters

* This point yields a system where a RL superstructure could be effective, given
that no model 1s needed to gain information about these operating states

* It is desired to develop strategies that work within the existing CCS
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Control Diagram

Measured Main 1
Steam > r, > Q-l.earn
Temperafure
St41 I
I
I
———————————— - a,={K, 1, 1p}
Main Steam :
Temperature Il
Setpoint et - Spray Yalve
N ain . Intermediate y Opening
+ Temperature * Temperature » Flow Controller >
Controller Controller
Measured Main Measured Measured Second
Steam Intermediate Attemperator
Temperature Steam Flow
Temperature
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Algorithm Flow Chart
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Resulting System Dimensionality
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Temperature-l.oad Clustering
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Control Response and Selected Parameters
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Conclusions

* Developed an algorithm for a Q-Learning augmented PID control
strategy for online tuning
* This algorithm included the use of k-means clustering for reduction of the size
ot the state space

* Algorithm was tested on the control of the main steam temperature in

an SCPC plant

* 50% reduction in maximum deviation from the setpoint was achieved
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