

Development of a Reinforcement Learning-Based Control Strategy for Load Following in Supercritical Pulverized Coal (SCPC) Power Plants

Elijah Hedrick¹, Katherine Reynolds¹, Parikshit Sarda¹, Debangsu Bhattacharyya¹,
Stephen E. Zitney², and Benjamin Omell³

¹ Department of Chemical and Biomedical Engineering, West Virginia University, 395 Evansdale Drive, Morgantown, WV 26506-6070, USA

² National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26507, USA

³ National Energy Technology Laboratory, 626 Cochran's Mill Road, Pittsburgh, PA 15236, USA

Clearwater Clean Energy Conference – Clearwater, Fl

16-21 June 2019

Outline

- Introduction
- Theory
- Control Application
- Algorithm
- Results
- Conclusions
- Bibliography

Outline

- Introduction
- Theory
- Control Application
- Algorithm
- Results
- Conclusions
- Bibliography

Introduction

- Recent years have seen ever increasing availability of renewables in the energy market
 - While these sources are taking up a larger and larger market share, they suffer from intermittency with naturally fluctuating weather conditions
- This increase in overall production with short term dry spells has posed a problem for traditional production facilities, where the real-time demand can now fluctuate significantly – and quickly – necessitating operational changes

Load-Following

- In order to account for renewables, traditional plant must now cycle their loads in order to meet the real-time demand
 - This is both costly and operationally difficult in plants that were designed for static operational at the nominal load
- Fast changes in plant conditions are also causing lasting damage to key processes equipment
 - Notably in the boiler, where fluctuations in the main (final) steam temperature can cause creep and fatigue
- Effective load-following necessitates the development of better control strategies to quickly move the plant from one load to another, while controlling key process variables tightly

Load-Following

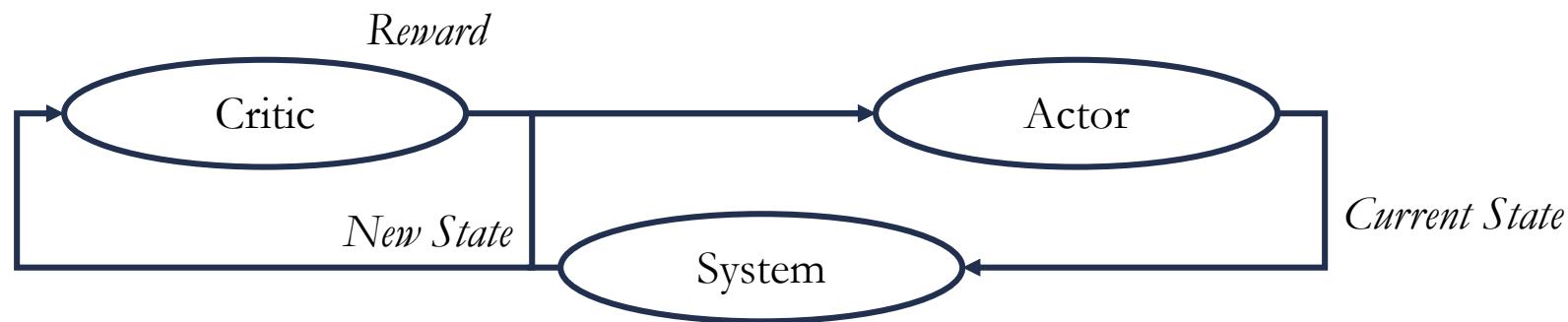
- While each individual load change will clearly be different, we seek to approach the problem by asking how they are similar
 - If each load change shares certain characteristics, how can we learn from them (and incorporate them dynamically into our control system) in order to obtain improved control over a large range of conditions?
- As the equipment performance changes over time, the control system must adapt for maximizing its performance
- In the existing control system designs, ‘lessons learnt’ from current or past control strategies and actions are not utilized in the future even when same or similar control challenges appear
 - Repetitive mistakes are made
- Can the control system learn from its performance for a given load-following task and then adapt when ‘similar’ task appear in the future?

Outline

- Introduction
- **Theory**
- Control Application
- Algorithm
- Results
- Conclusions
- Bibliography

Reinforcement Learning

- RL is a model-free process whereby an actor takes action on a Markov decision process, from which the transitioned state is evaluated by a critic¹
- As this process continues, the knowledge base of the learner is converged, yielding a mapping of states to optimal policies
- This mapping is often recorded as a lookup table that has been learned offline, though online implementation is possible



Q-Learning

- Q-learning is an iterative tabular method for the evaluation of a *quality* value for a given state-action pair^{1,7}
 - Convergence of this table yields the optimal policy mapping
- For each of the state-action pairs, the quality can be updated as:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

↑ ↑ ↑ ↑ ↘ ↘

New value of Q Current value of Q Learning Rate Reward Discount Rate Maximum future value of Q

The Curse of Dimensionality

- Q-learning algorithm involves no optimization and can be easily solved faster than real-time thus making it very practical for real-life application in small to medium state-space systems
- For large state-space systems such as the power plants, the number of computations required to fill out the Q-Table can increase combinatorically (the Curse of Dimensionality⁹) making the algorithm computationally intractable
- Here we propose to use a clustering approach to collapse the state-space into a number of tractable number of clusters from the perspective of their control space⁸
 - The control space here consists of a $3 \times N$ dimensional space of discrete control parameter selections (i.e. K_c , τ_I , τ_D)

K-means Clustering

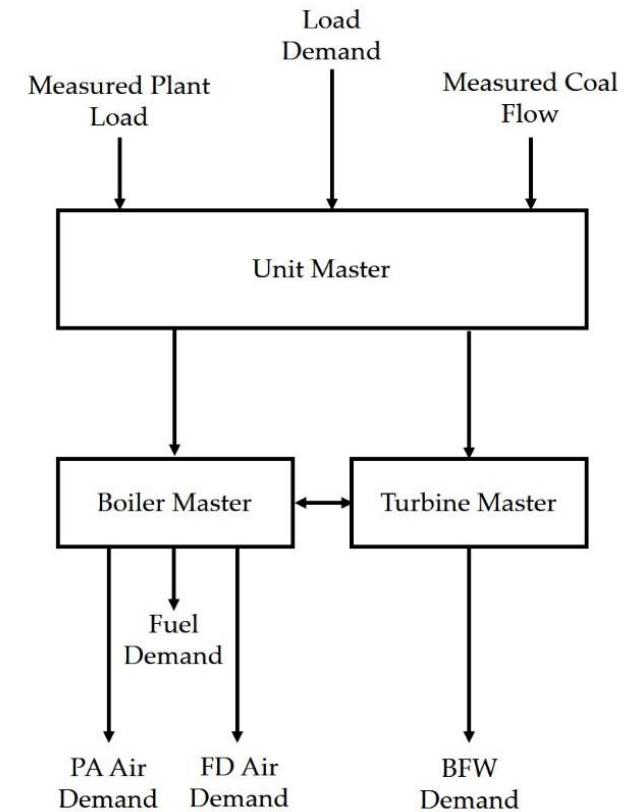
- K-means clustering is a data management algorithm used to minimize mean square error of a data set relative to a given number of cluster centers⁸
 - These cluster centers can then be taken to represent the data, with each center representing its member states
 - Each new state is evaluated with reference to the existing cluster centers
 - The resulting cluster centers are used directly in place of the state space
 - Given N cluster centers, C and a new state, S :
 1. $d_{NS} = \|C_i - S\|$
 2. If $d_{NS} \leq \rho$, the state is already represented → Use the nearest C_i and keep N centers
 3. If $d_{NS} > \rho$, the state needs representation → Use as kernel for new C_i and take $N+1$ centers
 4. Perform new clustering considering S and N or $N+1$ cluster centers

Outline

- Introduction
- Theory
- **Control Application**
- Algorithm
- Results
- Conclusions
- Bibliography

Coordinated Control System

- The coordinated control system is developed in SCPC plants to control the entire plant as a function of the load⁶
- Years of industrial experience have yielded a robust structure
- However, static tuning and structure hinder the system in transient and off-design operation
- The system proposed here could be implemented alongside the CCS with minimal intrusion to the existing structure

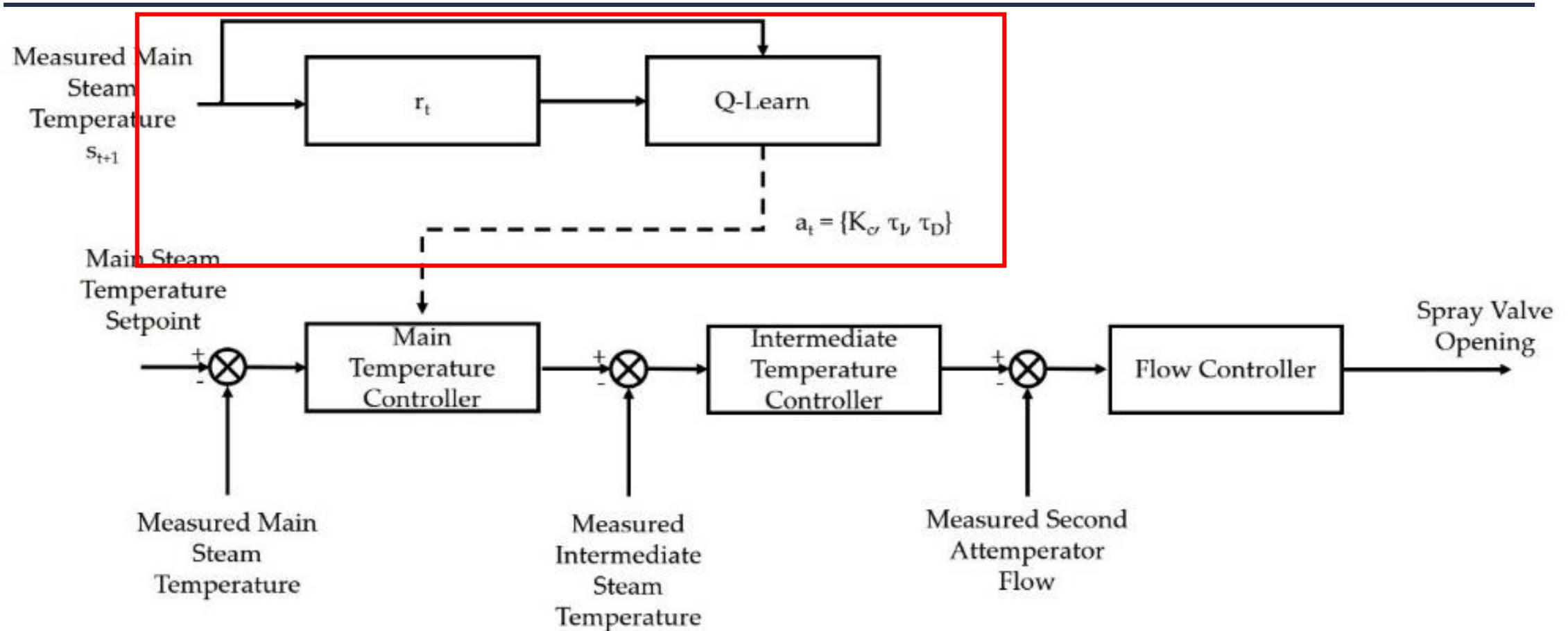


Used with permissions from [6]

Main Steam Temperature Control

- Control of the main steam temperature is process critical
 - Deviation causes efficiency losses along with long-term damage to the steam boiler and turbine
- Control problem also exhibits significant time-delay⁶
- Little is known about off design or transient conditions and operating parameters
 - This point yields a system where a RL superstructure could be effective, given that no model is needed to gain information about these operating states
- It is desired to develop strategies that work within the existing CCS

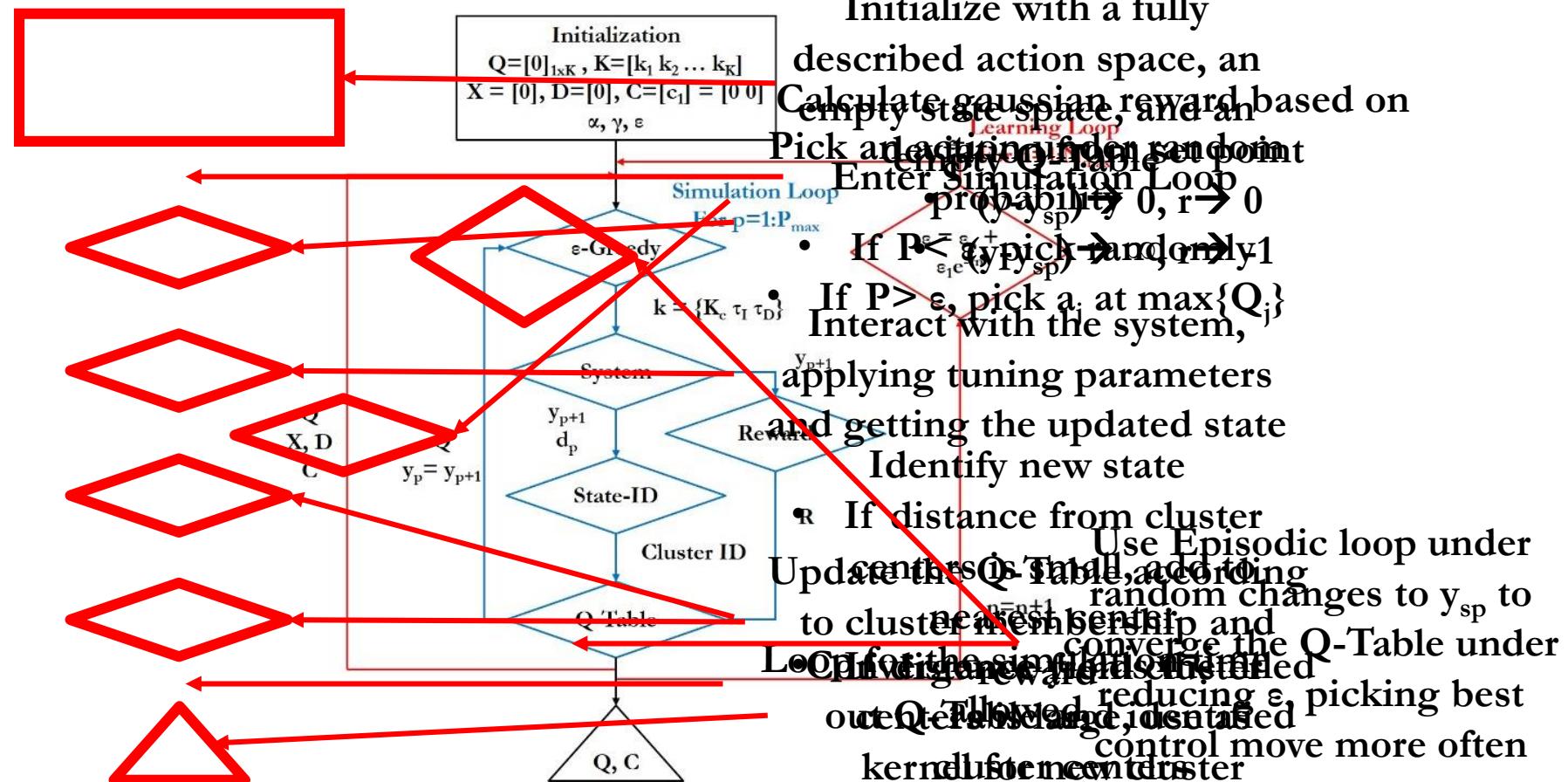
Control Diagram



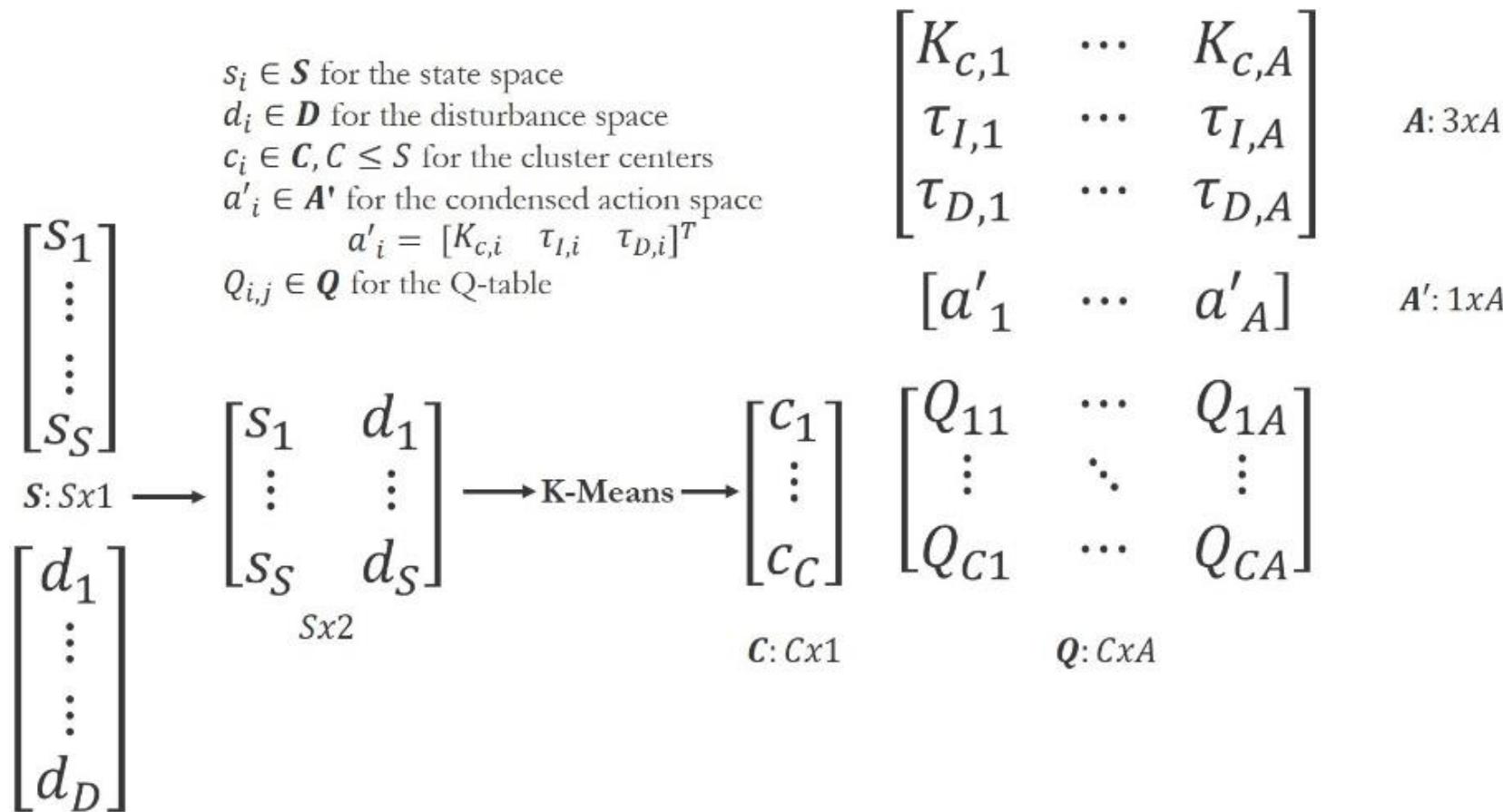
Outline

- Introduction
- Theory
- Control Application
- **Algorithm**
- Results
- Conclusions
- Bibliography

Algorithm Flow Chart



Resulting System Dimensionality

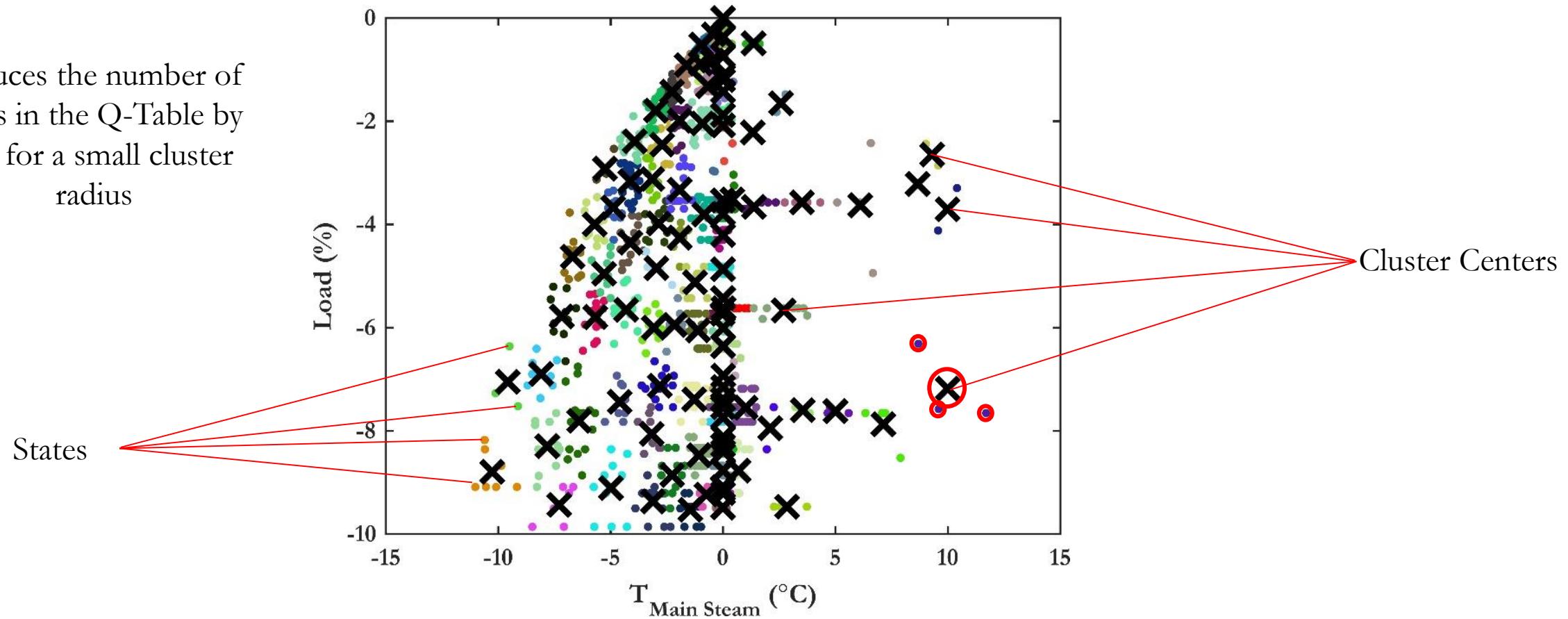


Outline

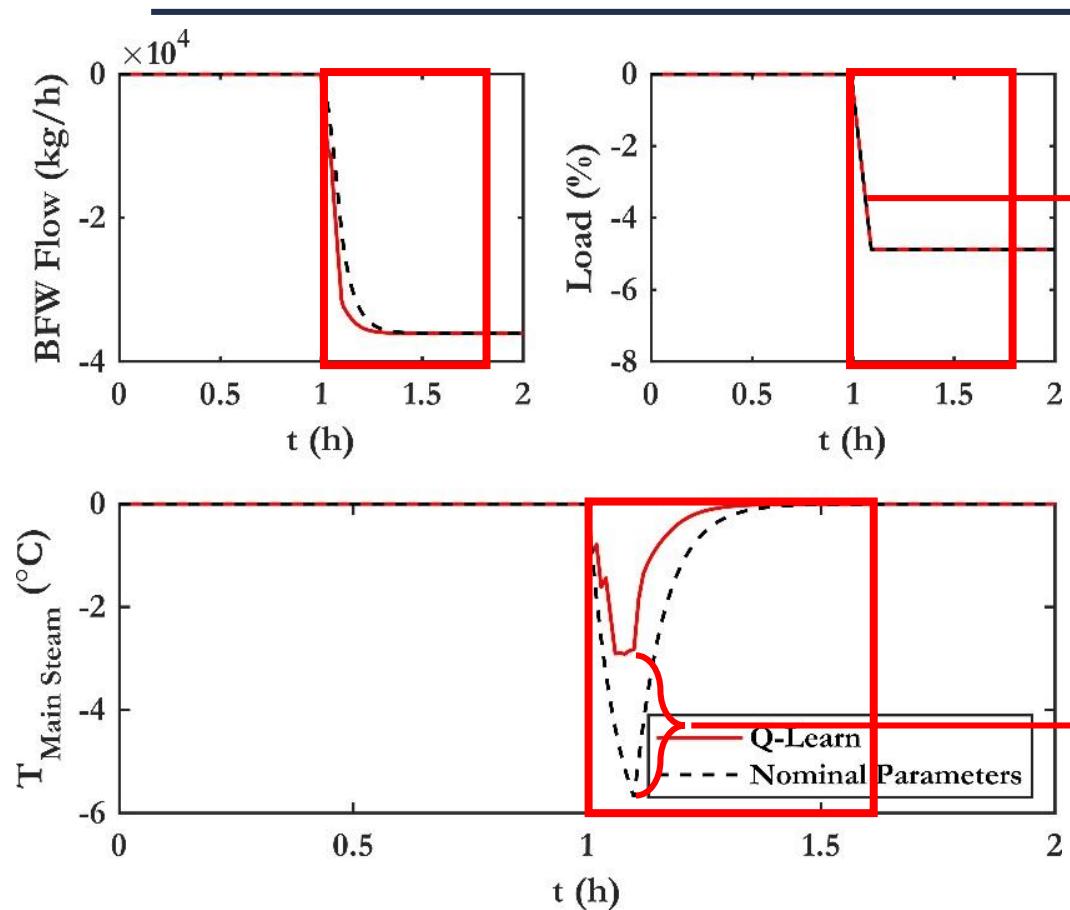
- Introduction
- Theory
- Control Application
- Algorithm
- **Results**
- Conclusions
- Bibliography

Temperature-Load Clustering

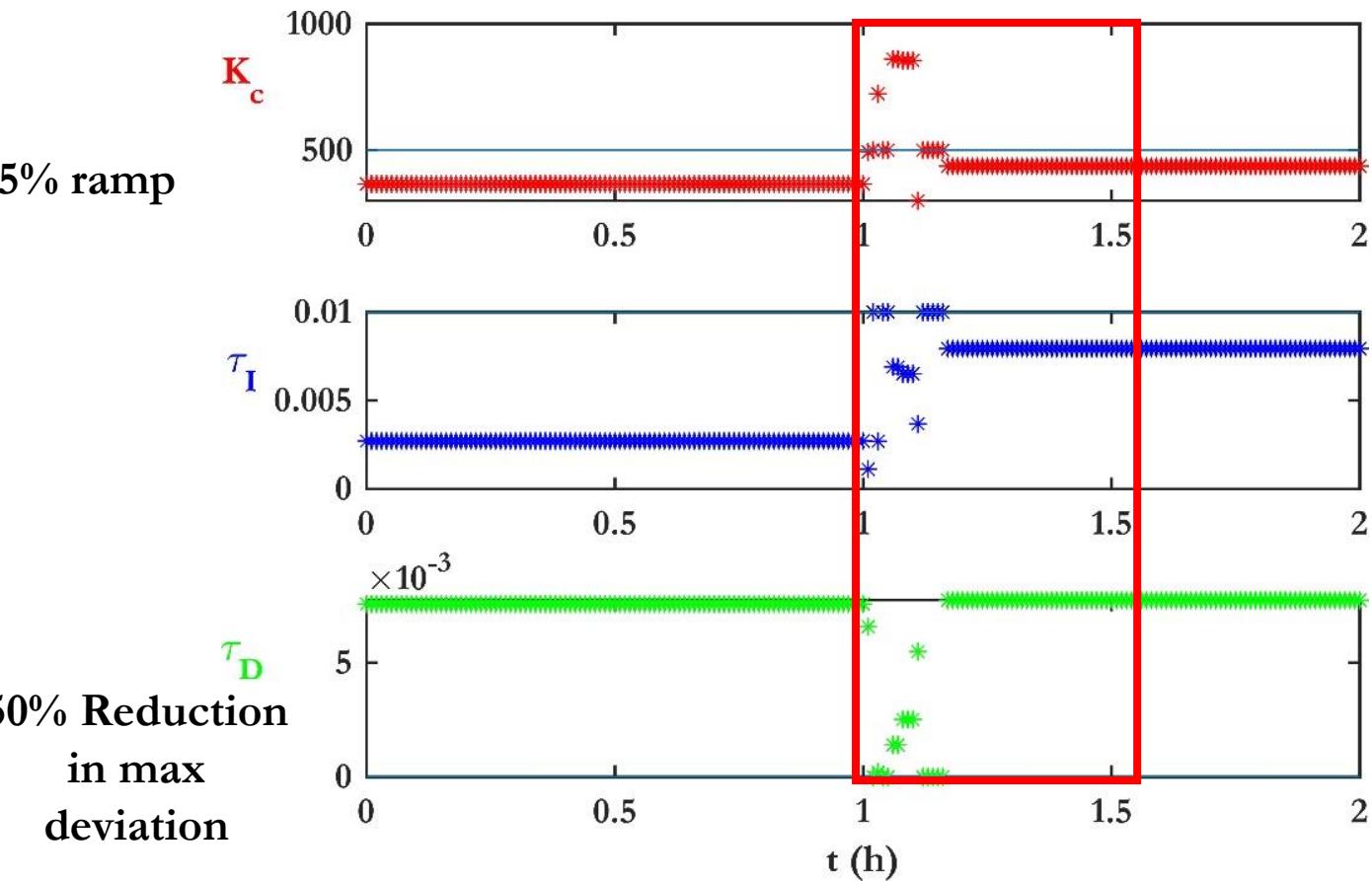
Reduces the number of rows in the Q-Table by 10^2 for a small cluster radius



Control Response and Selected Parameters



5% ramp
50% Reduction
in max
deviation



Outline

- Introduction
- Theory
- Control Application
- Algorithm
- Results
- **Conclusions**
- **Bibliography**

Conclusions

- Developed an algorithm for a Q-Learning augmented PID control strategy for online tuning
 - This algorithm included the use of k-means clustering for reduction of the size of the state space
- Algorithm was tested on the control of the main steam temperature in an SCPC plant
 - 50% reduction in maximum deviation from the setpoint was achieved

Bibliography

1. R. S. Sutton and A. G. Barto, *Reinforcement Learning - An Introduction*, 2nd ed. United States of America: Westchester Publishing Services, 2018.
2. T. A. Badgwell, J. H. Lee, and K.-H. Liu, “Reinforcement Learning – Overview of Recent Progress and Implications for Process Control,” in *Computer Aided Chemical Engineering*, vol. 44, M. R. Eden, M. G. Ierapetritou, and G. P. Towler, Eds. Elsevier, 2018, pp. 71–85.
3. L. A. Brujeni, J. M. Lee, and S. L. Shah, “Dynamic tuning of PI-controllers based on model-free methods,” in *ICCAS 2010*, 2010, pp. 453–458.
4. I. Carlucho, M. De Paula, S. A. Villar, and G. G. Acosta, “Incremental Q-learning strategy for adaptive PID control of mobile robots,” *Expert Syst. Appl.*, vol. 80, pp. 183–199, Sep. 2017.
5. J. E. Morinelly and B. E. Ydstie, “Dual MPC with Reinforcement Learning,” *11th IFAC Symp. Dyn. Control Biosyst. DYCOPS-CAB 2016*, vol. 49, no. 7, pp. 266–271, Jan. 2016.
6. P. Sarda, E. Hedrick, K. Reynolds, D. Bhattacharyya, E. S. Zitney, and B. Omell, “Development of a Dynamic Model and Control System for Load-Following Studies of Supercritical Pulverized Coal Power Plants,” *Processes*, vol. 6, no. 11, 2018.
7. C. Watkins, “Learning from Delayed Rewards,” Dissertation, Cambridge, London, 1989.
8. S. P. Lloyd, “Least Squares Quantization in PCM,” *IEEE Trans. Inf. Theory*, vol. 28, no. 2, pp. 129–137, Mar. 1982.
9. R. Bellman, *Dynamic Programming*. Courier Corporation, 2013.

Acknowledgements

- This project was supported by National Energy Technology Laboratory (NETL) through KeyLogic Systems, Inc. Grant#PO-5000-074-001.
- This project was also supported by the Benjamin M. Statler Fellowship

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Thank you

Questions?