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Introduction

• Recent years have seen ever increasing availability of  renewables in the 
energy market

• While these sources are taking up a larger and larger market share, they suffer 
from intermittency with naturally fluctuating weather conditions 

• This increase in overall production with short term dry spells has posed a 
problem for traditional production facilities, where the real-time demand 
can now fluctuate significantly – and quickly – necessitating operational 
changes
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Load-Following

• In order to account for renewables, traditional plant must now cycle their 
loads in order to meet the real-time demand
• This is both costly and operationally difficult in plants that were designed for 

static operational at the nominal load

• Fast changes in plant conditions are also causing lasting damage to key 
processes equipment
• Notably in the boiler, where fluctuations in the main (final) steam temperature 

can cause creep and fatigue

• Effective load-following necessitates the development of  better control 
strategies to quickly move the plant from one load to another, while 
controlling key process variables tightly

5Citations: [6]



Load-Following

• While each individual load change will clearly be different, we seek to 
approach the problem by asking how they are similar
• If  each load change shares certain characteristics, how can we learn from them (and 

incorporate them dynamically into our control system) in order to obtain improved 
control over a large range of  conditions?

• As the equipment performance changes over time, the control system must 
adapt for maximizing its performance

• In the existing control system designs, ‘lessons learnt’ from current or past 
control strategies and actions are not utilized in the future even when same or 
similar control challenges appear
• Repetitive mistakes are made

• Can the control system learn from its performance for a given load-following 
task and then adapt when ‘similar’ task appear in the future? 
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Reinforcement Learning

• RL is a model-free process whereby an actor takes action on a Markov 
decision process, from which the transitioned state is evaluated by a critic1

• As this process continues, the knowledge base of  the learner is converged, 
yielding a mapping of  states to optimal policies 

• This mapping is often recorded as a lookup table that has been learned offline, 
though online implementation is possible

8Citations: [1]
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Q-Learning

• Q-learning is an iterative tabular method for the evaluation of  a quality
value for a given state-action pair1,7

• Convergence of  this table yields the optimal policy mapping

• For each of  the state-action pairs, the quality can be updated as: 

9Citations: [1], [7]

𝑸 𝑠𝑡, 𝑎𝑡 ← 𝑸 𝑠𝑡, 𝑎𝑡 + α 𝑟𝑡 + γmax
𝑎

𝑸 𝑠𝑡+1, 𝑎 − 𝑸 𝑠𝑡, 𝑎𝑡

New value 

of  Q

Current 

value of  Q

Learning 

Rate
Reward

Discount 

Rate

Maximum 

future 

value of  Q



The Curse of  Dimensionality

• Q-learning algorithm involves no optimization and can be easily solved faster 
than real-time thus making it very practical for real-life application in small to 
medium state-space systems

• For large state-space systems such as the power plants, the number of  
computations required to fill out the Q-Table can increase combinatorically 
(the Curse of  Dimensionality9) making the algorithm computationally 
intractable

• Here we propose to use a clustering approach to collapse the state-space  into 
a number of  tractable number of  clusters from the perspective of  their 
control space8

• The control space here consists of  a 3xN dimensional space of  discrete control 
parameter selections (i.e. Kc, τI, τD)

10Citations: [8], [9]



K-means Clustering

• K-means clustering is a data management algorithm used to minimize 
mean square error of  a data set relative to a given number of  cluster 
centers8

• These cluster centers can then be taken to represent the data, with each center 
representing its member states

• Each new state is evaluated with reference to the existing cluster centers

• The resulting cluster centers are used directly in place of  the state space

• Given N cluster centers, C and a new state, S:

11Citations: [8]

1. dNS= ‖Ci – Si‖
2. If dNS≤ ρ, the state is already represented→ Use the nearest Ciand keep N centers
3. If dNS> ρ, the state needs representation→ Use as kernel for new Ciand take N+1 centers
4. Perform new clustering considering S and N or N+1 cluster centers
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Coordinated Control System

• The coordinated control system is developed in 
SCPC plants to control the entire plant as a 
function of  the load6

• Years of  industrial experience have yielded a 
robust structure

• However, static tuning and structure hinder the 
system in transient and off-design operation

• The system proposed here could be 
implemented alongside the CCS with minimal 
intrusion to the existing structure 

13Citations: [6]

Used with permissions from [6]



Main Steam Temperature Control

• Control of  the main steam temperature is process critical
• Deviation causes efficiency losses along with long-term damage to the steam 

boiler and turbine

• Control problem also exhibits significant time-delay6

• Little is known about off  design or transient conditions and operating 
parameters
• This point yields a system where a RL superstructure could be effective, given 

that no model is needed to gain information about these operating states

• It is desired to develop strategies that work within the existing CCS

14Citations: [6]



Control Diagram

15Citations: [6]
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Algorithm Flow Chart
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Resulting System Dimensionality
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Temperature-Load Clustering 
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Control Response and Selected Parameters
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Conclusions

• Developed an algorithm for a Q-Learning augmented PID control 
strategy for online tuning

• This algorithm included the use of  k-means clustering for reduction of  the size 
of  the state space

• Algorithm was tested on the control of  the main steam temperature in 
an SCPC plant

• 50% reduction in maximum deviation from the setpoint was achieved
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