
LA-UR-19-31480
Approved for public release; distribution is unlimited.

Title: Quantification of Margins and Uncertainty for Multicomponent Systems

Author(s): Marcy, Peter William
Williams, Brian J.
Tippetts, Trevor Bair

Intended for: Report

Issued: 2019-11-14

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Quantification of Margins and Uncertainty for

Multicomponent Systems

Peter W. Marcy, Brian J. Williams, Trevor B. Tippetts

November 14, 2019

1 Introduction

This report describes and illustrates several metrics for application to the analysis of a multicom-
ponent system. Specifically, three metrics are calculated for each system component. The first
metric is component failure probability (π). This will typically be expressed as the probability
that a component performance variable (P) exceeds a specified or random threshold (T). The
margin (M) for component performance is defined as M = P − T and will be the focus of analysis
throughout this report. The second metric is referred to as margin to failure rate φ (MTFφ). This
is an estimate of the allowable “slack” in component performance that could be tolerated to modify
its failure rate from π to a user-specified value φ. The third and final metric is margin sensitivity
(MS). This quantity orders components based on the degree to which changes in their failure rates
are affected by shifts in their margin distributions. We first motivate the metrics in an idealized
setting, and then expand to the typical application scenarios where they must be estimated from
experimental or simulated data. In this environment, we discuss methods for estimating the metrics
with uncertainty quantification.

2 The Metrics

Suppose that there is a multicomponent system and that each of the S components (subsystems)
has failure probability πs (s = 1, . . . , S) which depends on a number of factors. The whole system
functions via serial and parallel operations of subsystems and so the joint failure probability πsys =
P(system failure) may be computed as follows. If it is an entirely parallel system and all components
are statistically independent of one another, then

πsyspar = P(all components fail) =
S∏
s=1

πs . (1)

If, on the other hand, it is an entirely serial system, then

πsysser = 1− P(all components work) = 1−
S∏
s=1

(1− πs) . (2)

For mixture systems these rules can be combined to compute the overall πsys. The full system
reliability is then 1−πsys. The first and most important set of metrics for analyzing system failure
or reliability is then {πs}Ss=1. We will motivate and provide two more metrics below.

Suppose further that there is a latent mechanism such that a subsystem fails when some physical
margin is (without loss of generality) positive; that is, πs = P (Ms > 0). This quantity can also be

1

written as 1 − FMs(m = 0) =
∫∞
m=0 fMs(u)du, where FMs is the cumulative distribution function

(cdf) and fMs is probability density function (pdf) for the random variable Ms.

If a margin variable is shifted by ms, i.e. Ms → (Ms +ms), the resulting failure probability is
the function

πs(ms) = P (Ms +ms > 0) = P (Ms > −ms) = 1− FMs(−ms)

(the original failure rates are πs ≡ πs(0) for all s). Substituting this into (1) and (2) gives the
functions

πsyspar(m1, . . . ,mS) =

S∏
s=1

[1− FMs(−ms)] and πsysser (m1, . . . ,mS) = 1−
S∏
s=1

FMs(−ms) . (3)

Using the above expressions (combining, if necessary), an analyst may then see the trade-offs in
the overall system failure probability as a function of shifts in the individual margin variables.

The analyst may ask what shift of a particular margin variable gives a prescribed failure rate
of φs. A second metric is the answer to this question; the margin to failure rate φs (MTFφs) is
negative of the (1− φs)th quantile of Ms since by definition, Q1−φs satisfies 1− FMs(Q1−φs) = φs.
Note that the analyst can also use the quantile to investigate a simultaneous shift (by ms) and
scale (by σs) to produce a change in the failure probability. If a success rate of 99% were desired
then

0.99
set
= P (σsM +ms ≤ 0) = P

(
M ≤ −ms

σs

)
= FM (−ms/σs)

⇒ −Q1−0.01
set
=
ms

σs
.

A third metric is related and comes from taking differentials

dπs(ms) = d (1− FMs(−ms)) =
−dFMs

dms
· −dms = fMs(ms) · dms ,

so that

∆πs = (φs − πs) ≈ fMs(0) · (∆ms = −Q1−φs − 0)

= fMs(0) · (−Q1−φs) .

This third metric, margin sensitivity MSs = fMs(0), is a relative measure of sensitivity to small
changes in the component margin distributions. The rearrangement of fM1(0), . . . , fMS

(0) into
descending order provides a ranking of the importance of the variables M1, . . . ,MS to the system
reliability (when perturbed by the same ∆m1 = . . . = ∆mS).

The three (sets of) metrics we have proposed for multicomponent failure analysis appear when
linearizing the system failure probability. Differentials for parallel and serial systems are, as a
function of the shift variables,

d
(
πsyspar

)
= d

S∏
s=1

πs(ms) =
(S∏
s=1

πs(ms)
)
·
(S∑
s=1

1

πs(ms)
dπs(ms)

)
d (πsysser) = d

(
1−

S∏
s=1

[1− πs(ms)]
)

=−
(S∏
s=1

[1− πs(ms)]
)
·
(S∑
s=1

1

1− πs(ms)
(−dπs(ms))

)
.

2

Thus at m1 = . . . = mS = 0 these differentials imply that

∆
(
πsyspar

)
≈ d

(
πsyspar

)
= πsyspar ·

S∑
s=1

fMs(0)

πs
· (∆ms = −Q1−φs)

∆ (πsysser) ≈ d (πsysser) = πsysser ·
S∑
s=1

fMs(0)

1− πs
· (∆ms = −Q1−φs) ,

so that in both cases feature {πs}, {MTFφs = −Q1−φs}, and {MSs = fMs(0)}, as desired. This
is purely illustrative, for one wishing to actually compute the change in total probability would
instead use (3) with ms = −Q1−φs .

The discussion above provides motivation for three metrics, and now to solidify the concepts,
consider the following analytic (closed-form, exact) examples in hypothetical two-component (S =
2) systems.

2.1 Example: Two Normal Margins in Parallel

Suppose that two subsystems operate in parallel with Normal margin distributions

M1 ∼ N(µ1 = −2, σ1 = 1.0)

M2 ∼ N(µ2 = −3, σ2 = 1.6) .

Let Φ(·) denote the standard normal cdf function. Then the failure probability for each system
(first metric) is π1 = 1 − Φ(0+2

1.0) = 0.0228 and π2 = 1 − Φ(0+3
1.6) = 0.0304; the system failure

probability is the product of these two numbers: πsyspar = 0.0007.

For the second metric, to achieve a φ = 0.01 (for example) failure probability in each margin,
each would have to be shifted by MTFφ1 = −Q1

N,0.99 = −F−1N (0.99;µ1, σ1) = −0.3263 and MTFφ2 =

−Q2
N,0.99 = −F−1N (0.99;µ2, σ2) = −0.7222 units. Note that both are negative values meaning a

shift to the left, as expected.

And as for the third metric, the sensitivities are the respective normal densities evaluated at
the origin; these are MS1 = 0.0540 and MS2 = 0.0430. This would imply that the “easiest” way
to change the system failure probability would be to change the failure probability for the first
component. �

2.2 Example: Two Generalized Pareto Margins in Series

Now suppose that two subsystems operate in series with generalized Pareto distributions (GPDs)
as margins,

M1 ∼ GPD(µ1 = −10, σ1 = 1.0, ξ1 = 1)

M2 ∼ GPD(µ2 = −25, σ2 = 0.5, ξ2 = 1.5) .

The GPD density and cumulative distribution functions are, respectively

fGPD(x;µ, σ, ξ) =
1

σ

(
1 +

ξ(x− µ)

σ

)− 1
ξ
−1

(4)

FGPD(x;µ, σ, ξ) = 1−
(

1 +
ξ(x− µ)

σ

)− 1
ξ
, (5)

3

either for x ≥ µ and ξ ≥ 0; or for µ ≤ x ≤ µ − σ/ξ and ξ < 0. When ξ = 0 the GPD becomes a
shifted and scaled exponential distribution.

The failure probability for each system is derived from πs = 1−FGPD(0;µs, σs, ξs) for s = 1, 2;
specifically these values are π1 = 0.09091 and π2 = 0.05573. The system failure probability is
πsysser = 1− (1− 0.09091)× (1− 0.05573) = 0.14158.

For the second metric, to achieve a φ = 0.01 (again, just for illustration) failure probability in
each margin, each would have to be shifted by MTFφ1 = −Q1

GPD,0.99 = −F−1GPD(0.99;µ1, σ1, ξ1) =

−89 and MTFφ2 = −Q2
GPD,0.99 = −F−1GPD(0.99;µ2, σ2, ξ2) = −308 units. These seemingly extreme

numbers are necessary due to the heavy tailed nature of the GPD.

And as for the third metric, the sensitivities are the respective densities above evaluated at the
origin; these are MS1 = 0.00826 and MS2 = 0.00147. Again it is the case that the system failure
probability is more sensitive to the first component. �

Closed-form examples are tidy and useful, but in reality each metric must be estimated from
data. Furthermore, the resulting uncertainties in {π̂s}, {−Q̂1−φs}, and {f̂Ms(0)} (especially the
first) can also be used by a systems analyst. For example, an analyst should be interested not only
in components with large failure probabilities but also those with considerable uncertainty in the
estimates. The purpose of the remainder of this report is to detail the inference, i.e. estimation and
uncertainty quantification, for the three metrics when they are obtained from data. This involves
two main cases. In the first, a margin random variable M is measured directly, as in the discussion
above. In the second, there is a performance variable P and a threshold variable T ; a failure occurs
when the performance exceeds the threshold, M = P − T > 0. Data is obtained on both of these
random variables and the three metrics are to be determined from both samples.

For the sake of expositional clarity, note that in the remainder of the report we will focus
on inference involving a single margin variable, so that “s” subscripts can be dropped; instead a
subscript will refer to an observation number.

3 When the Margin Variable is Observed Directly

It is worth noting that a margin will often depend on controllable factors x and unknown physical
parameters θ (i.e., M ≡ M(x,θ)), but we will ignore this dependence for the sake of clarity.
However, all of what we present could be expanded to a more detailed discussion in which knowledge
of x and θ could be used in an analyst’s uncertainty analysis.

When independent and identically distributed (iid) samples M1, . . . ,MN are observed, the es-
timators are straightforward. In what follows I{·} is an indicator function and M(1) < · · · < M(N)

are the order statistics; also assume that there are F observed failures (F of the N cases have

4

M > 0):

π̂ =
1

N

N∑
n=1

I {Mn > 0} =
F

N
sample proportion of positive margins (6)

Q̂1−φ such that
1

N

N∑
n=1

I
{
Mi ≤ Q̂1−φ

}
≈ 1− φ sample (1− φ) quantile (7)

= M(bvc) + (v − bvc)(M(bvc+1) −M(bvc)) v = (N + 1/3)(1− φ) + 1/3

Ŝ = f̂M (0;h) =
1

Nh

N∑
n=1

K

(
Mn

h

)
kernel density estimate at 0 . (8)

The first metric (estimated failure probability) is straightforward and needs no further explanation.
The second metric (MTFφ) is one of many definitions of the appropriate sample quantile. In the
case of the third metric (MS), the bandwidth h must be selected. Usually this is chosen to satisfy
a goodness-of-fit criterion across the entire range of the data ([16], [18]). We note that because we
only care about one point (m = 0), which is likely in or close to the right tail, we could appeal
to a more tailored criterion (i.e. mean squared error at m = 0 instead of integrated mean squared
error). There are other more sophisticated options, such as those based on transformations ([17],
[3]) which are worth mentioning, but we do not discuss here.

Uncertainty in each of these metrics are reflected in confidence intervals. These can be ob-
tained through parametric techniques wherein a distributional family is assumed for M1, . . . ,MN ,
parameters are estimated, and the metrics are derived using equations above. We shall however
discuss classical, nonparametric intervals wherein no distributional assumptions are required. More
sophisticated machinery is required when M1, . . . ,MN are samples from a heavy-tailed distribution;
this is covered in Section 3.1. This same machinery is also useful in the case that F (number of
observed failures) or φ (prescribed failure rate) is small.

A conservative 100(1− α)% interval for the first metric is obtained by a direct method known
as “pivoting the cdf” (see [12], pgs. 103, 465) and is given by

[˜π, π̃] =
[
qbeta

(α
2

; F, N − F + 1
)
, qbeta

(
1− α

2
; F + 1, N − F

)]
where “qbeta(p; a, b)” is the pth quantile of the Beta distribution having parameters a, b. An
improvement comes through a slight modification known as Jeffreys Approximate Method ([12],
pg. 107); this interval takes the form

[˜π, π̃] =
[
qbeta

(α
2

; F + 0.5, N − F + 0.5
)
, qbeta

(
1− α

2
; F + 0.5, N − F + 0.5

)]
. (9)

A conservative 100(1− α)% confidence interval for Q1−φ can also be obtained by pivoting the
cdf of the order statistics ([12], pg. 498-499). For the given level of coverage, integers 1 ≤ l < u ≤ N
are sought such that the interval [M(l),M(u)] satisfies

1− α
set
≤ P

(
M(l) ≤ Q1−φ ≤M(u)

)
= P

(
M(l) ≤ Q1−φ

)
− P

(
M(u) ≤ Q1−φ

)
= P

(
FM (M(l)) ≤ 1− φ

)
− P

(
FM (M(u)) ≤ 1− φ

)
= P

(
U(l) ≤ 1− φ

)
− P

(
U(u) ≤ 1− φ

)
= pbeta (1− φ; l, N − l + 1) − pbeta (1− φ; u, N − u+ 1)

= pbinom (u− 1; N, 1− φ) − pbinom (l − 1; N, 1− φ)

5

with maximal l and minimal u. Above it was used that if U(l) is the lth order statistic in a size
N sample of Unif(0, 1) random variables then U(l) ∼ Beta(l, N − l + 1); “pbeta” and “pbinom”
denote the cdf of the beta and binomial distributions. In addition, the binomial and beta cdfs are
related by

FBin(x; N, p) = 1− FBeta(p; x+ 1, N − x)

(see [12] (C.19) pg. 439); this identity is most useful when N is large. As for how to choose l and
u, one may proceed by finding two one-sided 100(1 − α/2)% intervals; that is, given the observed
order statistics, find l and u such that

l
def
= arg maxr P

(
M(r) ≤ Q1−φ

)
≥ 1− α/2

≡ arg maxr 1− pbinom (r − 1; N, 1− φ) ≥ 1− α/2
≡ arg maxr pbinom (r − 1; N, 1− φ) ≤ α/2
= qbinom (α/2; N, 1− φ)

u
def
= arg minr P

(
M(r) ≥ Q1−φ

)
≥ 1− α/2

≡ arg minr pbinom (r − 1; N, 1− φ) ≥ 1− α/2
= qbinom (1− α/2; N, 1− φ) + 1 .

Improvements are possible by linearly interpolating order statistics ([13], [2]). That is, an adjusted
interval can be formed using adjacent order statistics,

P
(
Q1−φ < (1− λl)M(l) + λlM(l+1)

)
≈ α/2

P
(
Q1−φ < (1− λu)M(u) + λuM(u+1)

)
≈ 1− α/2

⇒ [˜Q1−φ, Q̃1−φ] =
[
(1− λl)M(l) + λlM(l+1), (1− λu)M(u) + λuM(u+1)

]
(10)

after solving for the weights λl, λu in the final equation of [13] (pg. 131).

Finally, on to the third metric. Typically in kernel density estimation, a bandwidth is chosen
to undersmooth the data in order to get an unbiased, though higher variance, estimator of the
density. Then using a plug-in or bootstrap estimate of the variance allows for a confidence interval
with near nominal coverage. The following variance estimate can be used to form an approximate
100(1− α)% interval ([8], bottom of pg. 678):

s2N
def
= V̂ ar(Ŝ) =

1

(Nh)2

N∑
n=1

K2

(
Mn

h

)
− Ŝ2

N

⇒ [˜S, S̃] =
[
Ŝ + qnorm(α/2)sN , Ŝ + qnorm(1− α/2)sN

]
. (11)

R code to obtain the metrics as well as perform a simulation study for confidence interval
coverage is given in Appendix A.1. We end by noting that while it may be tempting to obtain
uncertainties in the metrics via simple bootstrap resampling [5], this is not advisable. There are
theoretical reasons, but the bottom line is that intervals found in this manner do not have proper
frequentist coverage. Taking the third metric as an example, [5] (pg. 226) reports that, “bootstrap
confidence intervals for the value of a density raise some awkward issues.” (The authors then go on
to motivate the need for transformations, a double bootstrap, and careful choice of the bandwidth.)
By comparison, in our investigations, the simple nonparametric and asymptotic intervals provided
earlier in this section outperformed the bootstrap intervals and required less work.

6

3.0.1 Section 2 Examples (continued)

Here we demonstrate the potential for UQ by constructing confidence intervals using the methods
above, within the context of the two examples of Sections 2.1 and 2.2. Samples of size 1000 are
drawn for two margins M1 and M2 when these have either normal or generalized Pareto (GPD)
distributions with parameters given in Sections 2.1 and 2.2. Point and interval estimates are given
in Table 1. The estimated values are derived from equations (6) – (8); the upper and lower bounds
for the intervals are derived from equations (9) – (11). R code to produce the numbers within the
table is given in Appendix A.1.

For this one particular realization, the confidence intervals cover the true values in all but one
of the cases: the third metric for the second GPD margin. In a further simulation study (code also
provided in Appendix A.1), these trends held — intervals for MS always had lower than nominal
coverage compared to the other two metrics which behaved favorably. �

M1 M2

Example Metric Lower Estimate Upper Lower Estimate Upper

π 0.0111 0.0180 0.0277 0.0166 0.0250 0.0361

Normal MTFφ −0.501 −0.2405 −0.0286 −1.2745 −0.8562 −0.2709

MS 0.0538 0.0703 0.0869 0.0292 0.0386 0.0480

π 0.0799 0.0970 0.1165 0.0457 0.0590 0.0749

GPD MTFφ −200.72 −97.004 −46.423 −591.65 −266.04 −82.232

MS 0.0049 0.0091 0.0134 −4.44× 10−6 8.12× 10−5 0.00016

Table 1: Estimates together with lower and upper bounds of 95% confidence intervals for the true
values of the metrics (π,MTFφ,MS). Intervals failing to cover the true value are highlighted in red.

3.1 When M Has Heavy Tail

It is possible that the margin distribution FM is not just skewed, but heavy-tailed with extreme tail
index ξ, in which case more machinery is needed. To motivate computation of the three metrics in
this setting, we begin with a summary of relevant concepts from extreme value theory. A function
`(x) is said to be slowly varying if for any t > 0,

lim
x→∞

`(tx)

`(x)
= 1 .

The margin distribution FM is heavy-tailed if

FM (x) = 1− x−1/ξ `(x) , x > 0 ,

for some slowly varying function ` and ξ > 0.

Given threshold um > 0, the excess distribution function FM,um for the margin M is defined by

FM,um(x) = P[M − um ≤ x |M > um] =
FM (x+ um)− FM (um)

1− FM (um)
.

Recalling definition (5) of the GPD, the peaks over threshold (POT) theorem ([1], [14]) states that
FM is heavy-tailed with index ξ > 0 if and only if there exists σ(um) such that

lim
um→∞

sup
x
|FM,um(x)− FGPD(x; 0, σ(um), ξ)| = 0 .

7

It is shown in [11] that in the context of the POT theorem, σ(um) is asymptotically (um → ∞)
equivalent to ξum, in which case the GPD becomes a shifted Pareto distribution,

FP̂ (x;um, ξ) = 1−
(

um
x+ um

)1/ξ

for x > 0 .

The practical import of the POT theorem is that the tail of the unknown margin distribution
FM can be approximated in two ways for the purpose of estimating the metrics. The first utilizes
a GPD(um, σ, ξ) distribution,

F̂M (x) = pum + (1− pum)FGPD(x;um, σ, ξ) for x > um , (12)

where pum = P[M ≤ um] and FGPD(·;um, σ, ξ) is given by equation (5). The second utilizes a
Pareto(um, ξ) distribution,

F̂M (x) = pum + (1− pum)FP (x;um, ξ) for x > um , (13)

where

FP (x;um, ξ) = 1−
(um
x

)1/ξ
for x > um .

For the benefit of the subsequent discussion, observe that the Pareto approximation (13) to the
margin tail is obtained by setting σ = ξum in the GPD approximation (12).

We assume without loss of generality that M has been shifted by a specified constant c to ensure
um > 0. Although such a shift is easily accommodated theoretically for metric calculation, it has a
potentially non-negligible practical impact on tail estimation. Simulation studies suggest that such
shifts should be limited as much as possible. For example, removing observations clearly not part
of the relevant tail (say, keeping 15% – 40% of the observations in the tail of interest) prior to tail
estimation has worked well in practice. See Section 3.1.2 for additional discussion.

The first metric (failure probability π) is approximated as follows,

π = P[M > c] = 1− F̂M (c) = (1− pum)(1− FGPD(c;um, σ, ξ)) for c > um .

The second metric (margin to failure rate φ, MTFφ) solves the equation φ = P[M+MTFφ > c]
and is approximated by

MTFφ = c−QGPD,(1−pum−φ)/(1−pum) for pum + φ < 1 .

Here QGPD,α = um+(σ/ξ)[(1−α)−ξ−1] is the α quantile of the GPD(um, σ, ξ) distribution, giving

MTFφ = c− um −
σ

ξ

[(
1− pum

φ

)ξ
− 1

]
for pum + φ < 1 .

The third metric (margin sensitivity, MS) is approximated by

MS = (1− pum)fGPD(c;um, σ, ξ) for c > um ,

where fGPD(·;um, σ, ξ) is given by equation (4).

Use of the GPD approximation implies the ability to estimate the threshold, scale, and tail index
triplet (um, σ, ξ), say by (ûm, σ̂, ξ̂). This simplifies in the case of the Pareto approximation, reducing

8

to the estimation of (um, ξ) by (ûm, ξ̂). Given samplesM1,M2, . . . ,MN from the margin distribution
FM , shifted by c = −M(1)+ε (for any ε > 0) if necessary (see caveat above) to guarantee positive tail
observations (if not, set c = 0), form the corresponding order statistics M(1) < M(2) < · · · < M(N).
The basic idea is to identify the set of observations M(N−k),M(N−k+1), . . . ,M(N) constituting the
tail via choice of integer k. The tail index (and scale if necessary) are then estimated from this
subset of observations. We utilize the double bootstrap method of [4] as improved by [15] to
estimate k. The estimate k̂ of k is found by minimizing the estimated asymptotic mean squared
error of the Hill estimator [9] of ξ given by

ξ̂h =
1

k

k∑
i=1

logM(N−i+1) − logM(N−k) . (14)

The threshold is estimated by ûm = M(N−k̂). Three approaches to estimating the remaining

parameter(s) using the tail observations M(N−k̂),M(N−k̂+1), . . . ,M(N) are considered:

• GPD: Use the GPD(ûm, σ, ξ) tail approximation and set (σ̂, ξ̂) to the maximum likelihood
estimates of (σ, ξ). These can be found using the fpot function in the R package evd.

• Pareto-I: Use the Pareto(ûm, ξ) tail approximation and set ξ̂ to the maximum likelihood
estimate of ξ, which is straightforwardly shown to be the Hill estimate ξ̂h (14).

• Pareto-II: Use the Pareto(ûm, ξ) tail approximation. Fit a linear regression to the I/O pairs
(logM(N−k̂+i), log(k̂ − i + 1/2)), i = 1, . . . , k̂, and set ξ̂ = −1/b̂ where b̂ is the least squares

estimate of the slope (see [7]).

If c > ûm and φ < k̂/N , the metrics above can be estimated by taking pum = (N − k̂)/N and using
estimates of the remaining parameters calculated as just described.

Uncertainty quantification for each of the three metrics and estimation approaches is based on
the Delta method ([6], Theorem 7), conditional on the value of ûm found from the double bootstrap.
To obtain confidence intervals for each metric, transformations (Q1, Q2, Q3)← (π,MTFφ,MS) are
taken to facilitate asymptotic normal approximations,

Q1 = log(π)− log(1− π)

Q2 = log(c− um −MTFφ)

Q3 = log(MS) .

The form of the estimated asymptotic variance for transformed metric Qi with GPD estimation
is

ÂVi = g>i (σ̂, ξ̂) Σ̂ gi(σ̂, ξ̂) .

Here Σ̂ is the estimated asymptotic covariance matrix of the MLEs (σ̂, ξ̂), obtained from the fpot

function in the R package evd, and

g>1 (σ, ξ) =
1

π(1− π)

(
(c− um)MS

σ
−π(log(π)− log(1− pum)) + (c− um)MS

ξ

)
g>2 (σ, ξ) =

(
1

σ

(ξ − σ/(MTFφ − c+ um))(log(1− pum)− log(φ))− 1

ξ

)
g>3 (σ, ξ) =

(
1

σ

c− um − σ
ξ(c− um) + σ

−1

ξ

(
(ξ + 1)(c− um)

ξ(c− um) + σ
+

log(MS) + log(σ)− log(1− pum)

ξ + 1

))
.

9

For Pareto estimation, the form of the estimated asymptotic variance for transformed metric
Qi is

ÂVi = Ŝ2 [gi(ξ̂)]
2 .

Here Ŝ2 is the asymptotic variance of ξ̂, which is ξ̂2/k̂ = ξ̂2h/k̂ in the Pareto-I case and 2 ξ̂2/k̂ =

2/(k̂ b̂2) in the Pareto-II case. The sensitivities are given by

g1(ξ) = − 1

π(1− π)

π(log(π)− log(1− pum))

ξ

g2(ξ) =
(MTFφ − c)(log(1− pum)− log(φ))

MTFφ − c+ um

g3(ξ) = −1 + log(MS) + log(ξ) + log(c)− log(1− pum)

ξ
.

Estimates Q̂i of the transformed metrics Qi are obtained by substituting the estimated param-
eters corresponding to the selected estimation approach. An approximate asymptotic 100(1−α)%
confidence interval for Qi is obtained by(

Q̂i − zα/2
√

ÂVi , Q̂i + zα/2

√
ÂVi

)
,

where zα/2 is the upper α/2 quantile of the standard normal distribution. The inverse transforms
are applied to the endpoints of these intervals to obtain approximate asymptotic 100(1 − α)%
confidence intervals for the original metrics (π,MTFφ,MS). Approximate asymptotic standard
errors for the estimates of the original metrics are also obtained in straightforward fashion,

se(π̂) = π̂(1− π̂)

√
ÂV1

se(ˆMTFφ) = (c− um − ˆMTFφ)

√
ÂV2

se(M̂S) = M̂S

√
ÂV3 .

3.1.1 Example: Using Samples from Pareto Distributed Margins

We continue with the generalized Pareto margins example of Section 2.2. Appendix A.3 provides R
code that implements the three approaches to estimating the metrics with uncertainty quantification
as described in Section 3.1. Appendix A.4 contains all the support code necessary to perform the
required calculations. Assume N = 1000 samples are taken from the distributions of M1 and M2.
This results in bootstrap sample sets of size 500 in the double bootstrap procedure, the minimal
sample size for which the tail estimation methods were tested.

The estimates of k̂ from the shifted M1 and M2 samples using the double bootstrap procedure
were 264 and 344, giving threshold estimates ûm of 2.92331 and 1.44836. The GPD method resulted
in scale and tail index estimates (σ̂, ξ̂) = (3.71369, 1.07198) and (2.23524, 1.54971) for the POT tail
distributions of M1 and M2. The corresponding estimated asymptotic covariance matrices Σ̂ were
found to be (

0.21845 −0.02968

−0.02968 0.01640

)
and

(
0.08111 −0.01972

−0.01972 0.02031

)
.

10

The Pareto-I method produced tail index estimates ξ̂ (estimated asymptotic standard errors Ŝ) of
1.16219 (0.07153) and 1.54719 (0.08342) for the POT tails of M1 and M2, while for Pareto-II these
quantities were 1.12739 (0.09813) and 1.49490 (0.11398).

Table 2 gives estimates of the three metrics (nominal and transformed) and their associated
standard errors for margins M1 and M2 corresponding to the three methods of estimation discussed
in Section 3.1. Recall that the second metric MTFφ is computed assuming φ = 0.01.

Margin Method π MTFφ MS Q1 Q2 Q3

GPD 0.09343 −105 0.00826 −2.27241 4.72111 −4.79598

(0.00647) (31) (0.00049) (0.07636) (0.27314) (0.05933)
M1 Pareto-I 0.09157 −121 0.00787 −2.29464 4.85446 −4.84431

(0.00597) (31) (0.00003) (0.07174) (0.23947) (0.00362)
Pareto-II 0.08862 −107 0.00786 −2.33057 4.73778 −4.84659

(0.00842) (38) (0.00006) (0.10425) (0.32943) (0.00797)

GPD 0.05459 −322 0.00141 −2.85178 5.84507 −6.56497

(0.00555) (128) (0.00009) (0.10745) (0.36962) (0.06173)
M2 Pareto-I 0.05456 −320 0.00141 −2.85228 5.84028 −6.56405

(0.00542) (102) (0.00006) (0.10500) (0.29638) (0.04536)
Pareto-II 0.05116 −262 0.00137 −2.92028 5.65440 −6.59408

(0.00743) (116) (0.00009) (0.15314) (0.40533) (0.06906)

Table 2: Estimates and standard errors (in parentheses) of metrics (π,MTFφ,MS) and transformed
metrics (Q1, Q2, Q3) derived from N = 1000 samples of margins M1 and M2.

The transformed metrics were used to compute 95% confidence intervals for the true values
of the metrics (π,MTFφ,MS) using the approach described in Section 3.1. Although unknown in
typical applications, these true values for this example are stated in Section 2.2. The resulting
intervals for the three estimation methods are provided in Table 3. We observe that these intervals
cover the true values with two exceptions for the third metric MS of margin M1. �

M1 M2

Method Metric Lower Upper Lower Upper

π 0.08151 0.10691 0.04469 0.06653

GPD MTFφ −185 −59 −689 −144

MS 0.00736 0.00928 0.00125 0.00159

π 0.08052 0.10395 0.04487 0.06621

Pareto-I MTFφ −198 −73 −591 −169

MS 0.00782 0.00793 0.00129 0.00154

π 0.07345 0.10657 0.03840 0.06785

Pareto-II MTFφ −211 −53 −608 −105

MS 0.00773 0.00798 0.00120 0.00157

Table 3: Lower and upper bounds of 95% confidence intervals for the true values of the metrics
(π,MTFφ,MS) from each of the three estimation methods. Intervals failing to cover the true value
are highlighted in red.

11

3.1.2 Example: Using Samples from T Distributed Margins

We consider three margins assumed to possess T distributions with different rates of tail decay,

M1 ∼ T (µ1 = −6, σ1 = 1.5, ξ1 = 1/3)

M2 ∼ T (µ2 = −10, σ2 = 1, ξ2 = 1)

M3 ∼ T (µ3 = −25, σ3 = 0.5, ξ3 = 1.5) .

This notation indicates that (Mi − µi)/σi is distributed as standard T having 1/ξi degrees of
freedom. This setting is of interest as the T distribution is encountered fairly frequently as a
predictive distribution for quantities such as margin in applications where uncertainties in variance
parameter(s) are accounted for. The margin M1 has finite mean and variance, which will typically
hold in most applications. The margins M2 and M3 have infinite moments analogous to the Pareto
cases covered in the previous example. These represent more challenging scenarios for tail index
estimation.

Table 4 provides the true values of the three metrics for margins M1, M2, and M3. The second
metric MTFφ is computed assuming φ = 0.01.

Margin π MTFφ MS

M1 0.01400 −0.811 0.00611
M2 0.03173 −21.8 0.00315
M3 0.02295 −61.9 0.00061

Table 4: True values of metrics (π,MTFφ,MS) associated with distributions of margins M1, M2,
and M3.

Sample-based estimates of the assumed POT tail distribution parameter(s) and the three metrics
with uncertainty quantification are obtained using the R code of Appendix A.5. At first, a sample
of size N = 1000 was taken from the margin distributions and submitted to the double bootstrap
procedure to estimate k̂. However, these estimates and the resulting Hill estimates ξ̂h of the
tail index parameter ξ were extremely poor. This was rectified by increasing the sample size to
N = 2500, and only keeping the largest 40% of the samples from each margin. The result was a
sufficiently extensive sample of size Ntail = 1000 from only the tail being approximated, rectifying
the estimation deficiencies arising from the original sample. The value of pum = (N − k̂)/N is
calculated using the full sample size N = 2500, while k̂ is estimated from the double bootstrap
procedure using only the Ntail = 1000 tail samples.

The estimates of k̂ from the shifted M1, M2, and M3 tail samples using the double boot-
strap procedure were 148, 260, and 415, giving threshold estimates ûm of 2.89523, 2.94011, and
1.15777. The GPD method resulted in scale and tail index estimates (σ̂, ξ̂) = (1.42073, 0.52445),
(3.53014, 1.00035), and (1.92308, 1.45803) for the POT tail distributions of M1, M2, and M3. The
corresponding estimated asymptotic covariance matrices Σ̂ were found to be(

0.04150 −0.01457

−0.01457 0.01566

)
,

(
0.20864 −0.03194

−0.03194 0.01675

)
, and

(
0.04532 −0.01217

−0.01217 0.01497

)
.

The Pareto-I method produced tail index estimates ξ̂ (estimated asymptotic standard errors Ŝ)
of 0.50195 (0.04126), 1.09434 (0.06787), and 1.53661 (0.07543) for the POT tails of M1, M2, and

12

M3, while for Pareto-II these quantities were 0.52183 (0.06066), 1.02288 (0.08971), and 1.50529
(0.10450). The estimates of ξ for margin M1 vary substantially from the true value of 1/3. Shifting
the margin samples by any amount modifies the estimate of the tail index, removing any expectation
that the estimates should resemble the true values used for simulation in this example. This effect
is more pronounced for smaller ξ as seen in these results.

Table 5 gives estimates of the three metrics (nominal and transformed) and their associated
standard errors for margins M1, M2, and M3 corresponding to the three methods of estimation
discussed in Section 3.1. Recall that the second metric MTFφ is computed assuming φ = 0.01.

Margin Method π MTFφ MS Q1 Q2 Q3

GPD 0.01593 −1.492 0.00563 −4.12343 1.42916 −5.17908

(0.00178) (0.528) (0.00049) (0.11380) (0.12644) (0.08635)
M1 Pareto-I 0.01603 −1.490 0.00572 −4.11737 1.42878 −5.16321

(0.00172) (0.519) (0.00014) (0.10916) (0.12427) (0.02521)
Pareto-II 0.01684 −1.745 0.00579 −4.06674 1.48796 −5.15227

(0.00246) (0.790) (0.00017) (0.14861) (0.17841) (0.02986)

GPD 0.03565 −26.4 0.00346 −3.29775 3.50261 −5.66644

(0.00256) (5.8) (0.00022) (0.07460) (0.17418) (0.06354)
M2 Pareto-I 0.03491 −28.4 0.00328 −3.31957 3.56094 −5.71843

(0.00236) (6.1) (0.00002) (0.07016) (0.17221) (0.00569)
Pareto-II 0.03234 −22.6 0.00326 −3.39849 3.37828 −5.72717

(0.00331) (6.8) (0.00005) (0.10586) (0.23116) (0.01473)

GPD 0.02209 −54.3 0.00061 −3.79016 4.35625 −7.40688

(0.00228) (18.3) (0.00004) (0.10537) (0.23518) (0.05856)
M3 Pareto-I 0.02260 −62.0 0.00059 −3.76712 4.45001 −7.43037

(0.00221) (18.4) (0.00003) (0.10016) (0.21478) (0.04880)
Pareto-II 0.02168 −54.7 0.00058 −3.80955 4.36079 −7.45127

(0.00306) (23.3) (0.00004) (0.14445) (0.29792) (0.07190)

Table 5: Estimates and standard errors (in parentheses) of metrics (π,MTFφ,MS) and transformed
metrics (Q1, Q2, Q3) derived from N = 1000 tail samples of margins M1, M2, and M3.

The transformed metrics were used to compute 95% confidence intervals for the true values of
the metrics (π,MTFφ,MS) using the approach described in Section 3.1. Table 4 states these true
values which are known for this example. The resulting intervals for the three estimation methods
are provided in Table 6. We observe that these intervals cover the true values with three exceptions
for the third metric MS of margins M1 and M2. �

4 When the Margin Depends Upon Performance and Threshold

Let P and T denote the random variables performance and threshold. To analyze system failure,
the random variable M = P −T is the margin of interest. When P is independent of T , the pdf of
M is

fM (m) =

∫ ∞
−∞

fT (p−m)fP (p) dp =

∫ ∞
−∞

fP (t+m)fT (t) dt (15)

13

M1 M2 M3

Method Metric Lower Upper Lower Upper Lower Upper

π 0.01279 0.01983 0.03095 0.04103 0.01805 0.02702

GPD MTFφ −2.666 −0.575 −39.9 −16.8 −100.0 −25.5

MS 0.00476 0.00667 0.00305 0.00392 0.00054 0.00068

π 0.01298 0.01977 0.03056 0.03985 0.01864 0.02736

Pareto-I MTFφ −2.641 −0.588 −42.6 −18.3 −106.8 −32.6

MS 0.00545 0.00601 0.00325 0.00332 0.00054 0.00065

π 0.01264 0.02241 0.02644 0.03951 0.01642 0.02857

Pareto-II MTFφ −3.598 −0.438 −39.4 −11.9 −116.8 −20.0

MS 0.00546 0.00614 0.00316 0.00335 0.00050 0.00067

Table 6: Lower and upper bounds of 95% confidence intervals for the true values of the metrics
(π,MTFφ,MS) from each of the three estimation methods. Intervals failing to cover the true value
are highlighted in red.

and as such is seen to be a convolution of the densities of P and −T . The cdf of M is FM (m) =
P (P − T ≤ m) and can be rewritten as∫

p−t≤m
fP (p)fT (t) dp dt =

∫ ∞
−∞

fP (p)
(∫ ∞

t=p−m
fT (t) dt

)
dp = 1−

∫ ∞
−∞

FT (p−m)fP (p) dp (16)

OR
=

∫ ∞
−∞

fT (t)
(∫ p=t+m

−∞
fP (p) dp

)
dt =

∫ ∞
−∞

FP (t+m)fT (t) dt .

Recall that the failure probability for a component is π
def
= P (P > T) ≡ P (M > 0) = 1 − FM (0),

i.e. the probability in the tail to the right of 0; the component reliability is then 1− π.

Estimators for the three metrics are now given for the case when independent and identically
distributed P1, . . . , PNp and T1, . . . , TNt are observed. Let M be the Np × Nt matrix of pairwise
differences Mi,j = Pi − Tj :

π̂ =
1

NpNt

Np∑
i=1

Nt∑
j=1

I {Pi ≥ Tj}

=
1

NpNt

NpNt∑
n=1

I {vec(M)n > 0} sample prop. of positive margins

Q̂1−φ such that
1

NpNt

Np∑
i=1

Nt∑
j=1

I
{
Pi − Tj ≤ Q̂1−φ

}

=
1

NpNt

NpNt∑
n=1

I
{
vec(M)n ≤ Q̂1−φ

}
≈ 1− φ sample (1− φ) quantile

Ŝ = f̂M (0;hp, ht)

=
λ

Nt

Nt∑
j=1

f̂P (Tj ;hp) +
1− λ
Np

Np∑
i=1

f̂T (Pi;ht) kernel density estimate at 0 (17)

14

for 0 ≤ λ ≤ 1. Further observe that for the third metric estimator

Ŝ =
λ

Nt

Nt∑
j=1

 1

Nphp

Np∑
i=1

K
(Tj − Pi

hp

) +
1− λ
Np

Np∑
i=1

 1

Ntht

Nt∑
j=1

K
(Pi − Tj

ht

)
=

λ

NpNthp

Np∑
i=1

Nt∑
j=1

K
(Pi − Tj

hp

)
+

1− λ
NpNtht

Np∑
i=1

Nt∑
j=1

K
(Pi − Tj

ht

)

=
λ

NpNthp

NpNt∑
n=1

K
(vec(M)n

hp

)
+

1− λ
NpNtht

NpNt∑
n=1

K
(vec(M)n

ht

)
(18)

which shows that it is a weighted combination of two kernel density estimators using vec(M) based

upon effective sample sizes of Np and Nt; λ =
Np

Np+Nt
is then a natural choice.

All of the above are plug-in estimators based upon (16) or (15). To see this, note that an
estimator of the cdf of M is

F̂M (m) =
1

Nt

Nt∑
j=1

F̂P (Tj +m) =
1

NpNt

Np∑
i=1

Nt∑
j=1

I {Pi ≤ Tj +m}

The estimator of π is obviously 1− F̂M (0), and the expression above is the famous nonparametric
Wilcoxon-Mann-Whitney statistic. The form of Q̂1−φ is immediately seen to be derived from (16)
as well. The two equivalent forms within (15) give rise to two naive estimators and these are
averaged to form Ŝ. The integrals within both forms are replaced by sample means to make (17).
The quantity S could also be estimated by using kernel density estimates under the integral within
(15); the integral would be performed numerically. Alternatively, it could be formulated using
properties of the Fast Fourier Transform (taking care in the implementation to avoid wrap-around
effects ([18], Appendix D)). Of course these two alternatives lack the simplicity of the simple plug-in
estimator (17, 18) and are unlikely to significantly outperform it in practice. R code for computing
the three metrics using the methodology of this section is provided in Appendix A.2.

Uncertainties in the estimates of the metrics are again reflected in confidence intervals. Before
a more in-depth discussion it is worth pointing out that vec(M) is not an iid sample of size NpNt;
obviously Cov(Mi,j ,Mi′,j′) = V ar(P)I{i = i′} + V ar(T)I{j = j′} 6= 0. Therefore one cannot
immediately use the confidence intervals of Section 3 with vec(M). An analyst could however
obtain a random sample from M by taking a sample of size N ≤ min(Np, Nt) from P and T and
then forming the differences Mn = Pn − Tn (n = 1, . . . , N). From here, intervals for the three
metrics could be derived using the methodology in Section 3. This is “quick-and-dirty” UQ but
does disregard

(
max(Np, Nt)−N

)
of the observations. The bootstrap here again seems particularly

appealing, but we urge careful implementation and assessment to avoid undesirable properties such
as poor frequentist coverage of the confidence intervals. A major contributor to the problem is
estimator bias (especially for the second metric Q1−φ), so bias-correction is a necessary step for
inferences based upon the bootstrap. This suggests a computationally intensive nested bootstrap,
which makes simulation studies far more difficult. Consequently, further investigation is needed at
present.

We conclude this section by providing an asymptotic interval for the first and most important
metric, the failure probability. There is a whole literature (both parametric and nonparametric) on

15

the point and interval estimation of π [10]. An interval based upon the unbiased Wilcoxon-Mann-
Whitney statistic can be derived using a consistent estimate of V ar(π̂) ([10], pg. 147),

V̂ ar(π̂) =
1

NpNt

[
π̂ + (Np − 1)v1 + (Nt − 1)v2 − (Np +Nt − 1)π̂2

]
v1 =

∫ ∞
−∞

[F̂P (t)]2dF̂T (t) =
1

N2
pNt

Nt∑
j=1

(Np∑
i=1

I {Pi ≤ Tj}
)2

v2 =

∫ ∞
−∞

[1− F̂T (p)]2dF̂P (p) =
1

NpN2
t

Np∑
i=1

(Nt∑
j=1

I {Pi ≤ Tj}
)2

sN
def
=

√
V̂ ar(π̂) ,

so that a 100(1− α)% confidence interval is given by

[˜π, π̃] = [π̂ + qnorm(α/2)sN , π̂ + qnorm(1− α/2)sN] . (19)

5 Conclusions

This report introduced three metrics which can be computed for each component of a multicom-
ponent system. The first metric, component failure probability, is the most obviously pertinent
quantity in that it can be plugged directly into inference problems of clear interest such as evalu-
ation of system reliability. The other two metrics are of interest for answering questions such as:
How must component margin be shifted if failure rate requirements change? Which components
are most susceptible to failure rate change under shifts to their margin distributions?

Nonparametric, asymptotic, and parametric methods were introduced for estimating the three
metrics when the margin variable is observed directly. Nonparametric point and interval estimates
were shown to be straightforward and easy to compute so long as the metrics were not derived from
tail events of the margin distribution (these situations required extreme value theory and had a
parametric flavor). We also provided point estimates of the three metrics when the failures depend
on the difference between two independent variables (M = P − T > 0). As for the uncertainties in
this case, we observed that using standard bootstrap resampling led to unsatisfactory results. An
asymptotically valid confidence interval was instead provided for the first metric; similar intervals
for the other two metrics will require future investigation.

The parametric estimation methods invoke the POT theorem to model the relevant tail of a
heavy-tailed margin distribution with a generalized Pareto or Pareto distribution. Samples from
the margin distribution are used to estimate the threshold at which the selected analytic distri-
bution describes its tail from a double bootstrap procedure. The parameter(s) of the selected
tail distribution are then estimated from the POT samples, and these estimates are plugged into
analytic expressions for the three metrics and their standard errors. Transformed versions of the
three metrics that facilitate asymptotic normal approximations were used to construct confidence
intervals for the unknown true values of the metrics.

It is observed from the examples of Sections 3.1.1 and 3.1.2 that all five failures of the confidence
intervals to cover the true values of the three metrics occurred for the third metric, MS. Nevertheless,
it is hoped the ordering of MS values for different components will be correct for clear distinctions

16

of magnitude, and this does hold true in these examples. A coverage study was conducted under
the simulation settings of Section 3.1.2 to test the performance of the recommended asymptotic
confidence intervals for the three metrics computed for margins M1, M2, and M3. Several important
observations resulted from this study:

• Uncertainties in the transformed metrics used to construct the asymptotic confidence intervals
are generally too optimistic.

• The GPD method produced asymptotic confidence intervals for the three metrics possessing
coverage closest to nominal. Pareto-I had the worst performance of the estimation methods.

• All estimation methods produced better-performing asymptotic confidence intervals for the
three metrics under heavier-tailed margin distributions.

• Asymptotic confidence intervals for MS using the Pareto-I and Pareto-II estimation methods
were rather poor for lighter-tailed margin distributions.

These results are based on 1000 tail observations extracted from the top 40% of margin sam-
ples. Actual coverages would be expected to improve with larger sample sets of tail observations,
due to the asymptotic nature of these intervals. The superior performance of the GPD estimation
method is intuitive from the standpoint that the GPD characterization of the POT theorem is an
asymptotic approximation, with the Pareto constituting an additional layer of asymptotic approxi-
mation. Again this discrepancy in performance would be expected to diminish as the number of tail
observations increases. Based on these results, we recommend use of the GPD estimation method to
compute asymptotic confidence intervals for the three metrics when the estimated tail index takes a
value of at least 1. The nonparametric methods are preferred for lighter-tailed margin distributions,
and in any application where margin samples exist to allow estimation of the three metrics (i.e.
when the failure probability π or target failure rate φ are not too extreme relative to the observed
margin samples).

The double bootstrap procedure should be provided with a sufficient amount of margin samples
to support a bootstrap sample size of at least 500, as the procedure was not tested with smaller
bootstrap sample sets. Additionally it is important to note that the double bootstrap procedure
may perform better if samples clearly irrelevant to tail estimation are removed, as observed with the
T distribution samples in Section 3.1.2. In the event the double bootstrap produces an estimate of
k̂ too small for the analytical tail approximation to hold for metric estimation, the nonparametric
methods must be relied upon to obtain the required estimates. Finally, we note that the parametric
estimation methods assume a sample of margin M values is passed to the double bootstrap. In the
event the margin must be constructed from independently generated P and T samples, the user
would form margin samples Mi = Pi − Ti from independently permuted samples of {P} and {T}.

17

References

[1] Balkema, A.A. and de Haan, L. (1974). Residual life time at great age. The Annals of Proba-
bility, 2 (5), 792–804.

[2] Beran, R. and Hall, P. (1993). Interpolated nonparametric prediction intervals and confidence
intervals. Journal of the Royal Statistical Society, Series B, 55 (3), 643–652.

[3] Buch-Larsen, T., Nielsen, J.P., Guillén, M., and Bolancé C. (2005). Kernel density estimation
for heavy-tailed distributions using the Champernowne transformation. Statistics, 39 (6), 503–
518.

[4] Danielsson, J., de Haan, L., Peng, L., and de Vries, C.G. (2001). Using a bootstrap method
to choose the sample fraction in tail index estimation. Journal of Multivariate Analysis, 76,
226–248.

[5] Davison, A.C. and Hinkley, D.V. (1997). Bootstrap Methods and Their Application. Cambridge
University Press: Cambridge.

[6] Ferguson, T.S. (1996). A Course in Large Sample Theory. Chapman & Hall.

[7] Gabaix, X. and Ibragimov, R. (2011). Rank − 1/2: A simple way to improve the OLS estima-
tion of tail exponents. Journal of Business & Economic Statistics, 29 (1), 24–39.

[8] Hall, P. (1992). Effect of bias estimation on coverage accuracy of bootstrap confidence intervals
for a probability density. Annals of Statistics, 20, 675–694.

[9] Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. The
Annals of Statistics, 3 (5), 1163–1174.

[10] Kotz, S., Lumelskii, Y., and Pensky, M. (2003). The Stress-Strength Model and its Generaliza-
tions: Theory and Applications. World Scientific: Singapore.

[11] Makarov, M. (2007). Applications of exact extreme value theorem. Journal of Operational Risk,
2 (1), 115–120.

[12] Meeker, W.Q., Hahn, G.J., and Escobar, L.A. (2017). Statistical Intervals: A Guide for Prac-
titioners and Researchers, Second Ed., John Wiley & Sons.

[13] Nyblom, J. (1992). Note on interpolated order statistics. Statistics & Probability Letters, 14,
129–131.

[14] Pickands, J. III (1975). Statistical inference using extreme order statistics. The Annals of
Statistics, 3 (1), 119–131.

[15] Qi, Y. (2008). Bootstrap and empirical likelihood methods in extremes. Extremes, 11, 81–97.

[16] Silverman, B.W. (1986). Density Estimation. Chapman and Hall: New York.

[17] Wand, M.P., Marron, J.S., and Ruppert, D. (1991). Transformations in density estimation.
Journal of the American Statistical Association, 86 (414), 343–353.

[18] Wand, M.P. and Jones, M.C. (1994). Kernel Smoothing. Chapman and Hall / CRC: Boca
Raton.

18

A R Code for Obtaining the Metrics

A.1 When the Margin Variable is Observed Directly

M_vec is a vector containing iid samples of the margin random variable M

a failure occurs when M > 0

phi is the desired failure probability

Metrics1 <- function(M_vec, phi=0.01){

M <- M_vec

NOTE: these evaluations really add up within a bootstrap !!!

#qs <- quantile(M, c(0.25,0.75, 1-phi))

qs <- quantile(M, c(0.25,0.75, 1-phi), type=9) # ’type’ can matter!

Metric 1: sample proportion of positive margins (i.e. failures)

m1 <- mean(M >= 0)

Metric 2: negative of the (1-phi)th sample quantile

m2 <- -qs[3]

Metric 3: kernel density estimate at zero

Gaussian kernels with bandwidth ’bw’ chosen by ’bw.nrd’

#bw <- bw.nrd(M)

h <- (qs[2] - qs[1])/1.34

bw <- 1.06 * min(sqrt(var(M)), h) * length(M)^(-1/5)

m3 <- mean(dnorm(M/bw)) / bw

return(c(m1,m2,m3))

}

CI.proportion <- function(x, conf.level=0.90, Jeffreys=TRUE) {

N <- length(x)

nF <- sum(x >= 0)

alpha <- 1 - conf.level

if(!Jeffreys) ans <- c(qbeta(alpha/2, nF, N-nF+1) , qbeta(1-alpha/2, nF+1, N-nF))

if(Jeffreys) ans <- c(qbeta(alpha/2, nF+0.5, N-nF+0.5) , qbeta(1-alpha/2, nF+0.5, N-nF+0.5))

return(ans)

}

For a description, see

http://staff.math.su.se/hoehle/blog/2016/10/23/quantileCI.html

#

Code taken (and slightly adapted) from

https://github.com/hoehleatsu/quantileCI/blob/master/R/quantile_confints.R

CI.quantile <- function(x, p, conf.level=0.95,

interpolate=TRUE, fix_interval=TRUE)

{

x <- sort(x)

n <- length(x)

alpha <- 1 - conf.level

l <- qbinom(alpha/2, size=n, prob=p)

l <- l + (isTRUE(all.equal(pbinom(l, prob=p, size=n),alpha/2)))

u <- qbinom(1-alpha/2, size=n, prob=p) + 1

Adjust (if necessary)

19

l <- max(l,1)

u <- min(u,n)

Stop here if traditional intervals are desired (no interpolation)

if (!interpolate) {

If too little coverage => increase length by one (if possible)

if (fix_interval & (p != 0) & (p != 1)) {

if ((pbinom(u, n, p) - pbinom(l - 1, n, p)) <= 1 - alpha) {

u <- min(n, u + 1)

}

}

return(x[c(l,u)])

}

Nyblom (1992) final eq. on pg. 131

lambda <- function(r, beta, p) {

pi_r <- pbinom(r-1, size=n, prob=p) # 1 - pbeta(p, r, N-r+1)

eq. C.19 in Meeker & Hahn

pi_rp1 <- pbinom(r, size=n, prob=p)

num <- r *(1-p)*(pi_rp1 - beta)

den <- (n-r)* p *(beta - pi_r)

1 / (1 + (num/den))

}

ci_limit <- function(r,beta) {

lambda <- lambda(r=r, beta=beta, p=p)

(1-lambda) * x[r] + lambda * x[pmin(r+1,n)] # can’t go beyond n

}

Nyblom (1992) first eq. on pg. 130

ans <- c(ci_limit(l, beta= alpha/2),

ci_limit(u-1, beta=1-alpha/2))

return(ans)

}

CI.kde0 <- function(x, conf.level=0.90, adjust = FALSE){

alpha <- 1 - conf.level

N <- length(x)

if(!adjust) h <- bw.nrd(x)

Sain (2003) Eq.6 adjustment

... this is a TERRIBLE idea using ’h’ above as pilot est.

if(adjust){

#h <- bw.SJ(x, nb = 1000, method = "dpi")

h <- bw.SJ(x, nb = 1000, method = "ste")

m3 <- sum(dnorm(x/h)) /(N*h)

h <- dnorm(0) / m3

#h <- h/2 # go the other direction (undersmooth) ...?

}

S1 <- sum(dnorm(x/h))

S2 <- sum(dnorm(x/h)^2)

m3 <- S1/(N*h)

tmp1 <- -(m3^2 / N)

tmp2 <- S2 / (N^2*h^2)

20

sd.hat <- sqrt(tmp1 + tmp2)

c(m3 + qnorm(alpha/2)*sd.hat , m3 + qnorm(1-alpha/2)*sd.hat)

}

Two examples

n = 1000

phi = 0.01

M_s ~ Norm(mu, sig)

set.seed(2001)

mu1 <- -2 ; sig1 <- 1.0

mu2 <- -3 ; sig2 <- 1.6

y1 <- rnorm(n, mu1, sig1)

y2 <- rnorm(n, mu2, sig2)

#

1 - pnorm(-mu1/sig1) # the true values

-qnorm(1-phi, mu1, sig1)

dnorm(0, mu1, sig1)

Metrics1(y1, phi)

CI.proportion(y1, conf.level = 0.95, Jeffreys = TRUE)

- CI.quantile(y1, 1-phi, conf.level = 0.95, interpolate = TRUE) # re-order

CI.kde0(y1, conf.level = 0.95, adjust = FALSE)

#

1 - pnorm(-mu2/sig2) # the true values

-qnorm(1-phi, mu2, sig2)

dnorm(0, mu2, sig2)

Metrics1(y2, phi)

CI.proportion(y2, conf.level = 0.95, Jeffreys = TRUE)

- CI.quantile(y2, 1-phi, conf.level = 0.95, interpolate = TRUE) # re-order

CI.kde0(y2, conf.level = 0.95, adjust = FALSE)

M_s ~ GPD(mu, sc, sh)

require(evd)

set.seed(2001)

mu1 = -10 ; sigma1 = 1 ; xi1 = 1

mu2 = -25 ; sigma2 = 0.5 ; xi2 = 1.5

y1 <- rgpd(n, loc=mu1, scale=sigma1, shape=xi1)

y2 <- rgpd(n, loc=mu2, scale=sigma2, shape=xi2)

#

1-pgpd(0, loc=mu1, scale=sigma1, shape=xi1) # the true values

-qgpd(1-phi, loc=mu1, scale=sigma1, shape=xi1)

dgpd(0, loc=mu1, scale=sigma1, shape=xi1)

Metrics1(y1, phi)

CI.proportion(y1, conf.level = 0.95, Jeffreys = TRUE)

- CI.quantile(y1, 1-phi, conf.level = 0.95, interpolate = TRUE) # re-order

CI.kde0(y1, conf.level = 0.95, adjust = FALSE)

21

#

1-pgpd(0, loc=mu2, scale=sigma2, shape=xi2) # the true values

-qgpd(1-phi, loc=mu2, scale=sigma2, shape=xi2)

dgpd(0, loc=mu2, scale=sigma2, shape=xi2)

Metrics1(y2, phi)

CI.proportion(y2, conf.level = 0.95, Jeffreys = TRUE)

- CI.quantile(y2, 1-phi, conf.level = 0.95, interpolate = TRUE) # re-order

CI.kde0(y2, conf.level = 0.95, adjust = FALSE)

Simulation Study

N <- 200

phi <- 0.02

M ~ Norm(mu, sig)

#mu <- -3

#sig <- 1.6

#

#m1 <- 1 - pnorm(-mu/sig) # the true values

#m2 <- -qnorm(1-phi, mu, sig)

#m3 <- dnorm(0, mu, sig)

M ~ GPD(mu, sc, sh)

mu <- -25

sc <- 0.5

sh <- 1.5

m1 <- 1-pgpd(0, loc=mu, scale=sc, shape=sh) # the true values

m2 <- -qgpd(1-phi, loc=mu, scale=sc, shape=sh)

m3 <- dgpd(0, loc=mu, scale=sc, shape=sh)

########## Get on with the study

N.it <- 10000

dat <- matrix(NA, N.it, 3) # est ; (coverage ; CI length)

DAT <- list(m1=dat, m2=dat, m3=dat)

set.seed(12345)

system.time(#####

for(ii in 1:N.it){

M ~ Norm(mu, sig)

#M <- rnorm(N, mu,sig)

M ~ GPD(mu, sc, sh)

M <- rgpd(N, loc=mu, scale=sc, shape=sh)

est <- Metrics1(M, phi)

###

DAT$m1[ii,1] <- est[1]

DAT$m2[ii,1] <- est[2]

DAT$m3[ii,1] <- est[3]

###

CI <- CI.proportion(M, conf.level = 0.95, Jeffreys = TRUE)

22

DAT$m1[ii,2] <- (CI[1] <= m1) & (m1 <= CI[2])

DAT$m1[ii,3] <- CI[2] - CI[1]

CI <- CI.quantile(M, 1-phi, conf.level = 0.95,

#interpolate = FALSE, fix_interval = TRUE)

interpolate = TRUE)

DAT$m2[ii,2] <- (CI[1] <= -m2) & (-m2 <= CI[2])

DAT$m2[ii,3] <- CI[2] - CI[1]

CI <- CI.kde0(M, conf.level = 0.95, adjust = FALSE)

DAT$m3[ii,2] <- (CI[1] <= m3) & (m3 <= CI[2])

DAT$m3[ii,3] <- CI[2] - CI[1]

}

) #####

colMeans(DAT$m1, na.rm = TRUE)[1] # est

colMeans(DAT$m1, na.rm = TRUE)[2] # coverages

colMeans(DAT$m1, na.rm = TRUE)[3] # CI lengths

colMeans(DAT$m2, na.rm = TRUE)[1] # est

colMeans(DAT$m2, na.rm = TRUE)[2] # coverages

colMeans(DAT$m2, na.rm = TRUE)[3] # CI lengths

colMeans(DAT$m3, na.rm = TRUE)[1] # est

colMeans(DAT$m3, na.rm = TRUE)[2] # coverages

colMeans(DAT$m3, na.rm = TRUE)[3] # CI lengths

23

A.2 When the Margin Depends Upon Performance and Threshold

P_vec is a vector containing iid samples of the performance random variable P

T_vec is a vector containing iid samples of the performance random variable T

a failure occurs when P > T

phi is the desired failure probability

Metrics2 <- function(P_vec, T_vec, phi=0.01){

P <- P_vec

T <- T_vec

M <- as.vector(outer(P,T,"-"))

Metric 1: sample proportion of positive margins (i.e. failures)

m1 <- mean(M >= 0)

Metric 2: negative of the (1-phi)th sample quantile

m2 <- -quantile(M, 1-phi, type=8)

Metric 3: kernel density estimate at zero

Gaussian kernels with bandwidths chosen by ’bw.nrd’

hp <- bw.nrd(P)

ht <- bw.nrd(T)

est1 <- mean(dnorm(M/hp)) / hp

est2 <- mean(dnorm(M/ht)) / ht

frac <- length(P) / (length(P) + length(T))

m3 <- (frac)*est1 + (1-frac)*est2

return(c(m1,m2,m3))

}

24

A.3 Generalized Pareto Margins

Set seed

set.seed(2001)

Source support functions

source("../func.R")

Simulation variables

n = 1000

eps = 0.1

B = 1000

phi = 0.01

Pareto

mu1 = -10; sigma1 = 1; xi1 = 1;

mu2 = -25; sigma2 = 0.5; xi2 = 1.5;

require(evd)

y1 = sort(rgpd(n,loc=mu1,scale=sigma1,shape=xi1))

c1 = -y1[1]+.01

y1 = y1 + c1

y2 = sort(rgpd(n,loc=mu2,scale=sigma2,shape=xi2))

c2 = -y2[1]+.01

y2 = y2 + c2

detach()

Double Bootstrap

require(foreach)

require(doParallel)

registerDoParallel(cores=2)

db1 = Q2(y1,eps,B)

var.db1 = db1$xihat^2/db1$khat

db2 = Q2(y2,eps,B)

var.db2 = db2$xihat^2/db2$khat

save.image()

#> db1

#$khat

#[1] 264

#

#$xihat

#[1] 1.162191

#> db2

#$khat

#[1] 344

#

#$xihat

#[1] 1.547189

25

GPD estimation

require(evd)

gpd1 = fpot(y1, y1[n-db1$khat], std.err=TRUE, corr=TRUE)

gpd2 = fpot(y2, y2[n-db2$khat], std.err=TRUE, corr=TRUE)

detach()

save.image()

#> gpd1$estimate

scale shape

#3.713690 1.071976

#> gpd2$estimate

scale shape

#2.235235 1.549708

Rank - 1/2 regression

econ1 = Q4(y1, db1$khat)

var.econ1 = 2*econ1$xihat^2/econ1$khat

econ2 = Q4(y2, db2$khat)

var.econ2 = 2*econ2$xihat^2/econ2$khat

save.image()

#> econ1

#$khat

#[1] 264

#

#$xihat

#[1] 1.127385

#> econ2

#$khat

#[1] 344

#

#$xihat

#[1] 1.494897

#

Calculate QMU Metrics

#

pi1 = 0.09090909; mtf1 = -89; ms1 = 0.008264463;

pi2 = 0.05573452; mtf2 = -308; ms2 = 0.001466698;

Double Bootstrap

phat = (n-db1$khat)/n; um = y1[n-db1$khat];

qmuDB1 = Q6(phat, phi, c1, um, db1$xihat, std.err=TRUE,

sigma=var.db1)

#> qmuDB1

#$qmu

#[1] 9.156786e-02 -1.212277e+02 7.873084e-03

26

#

#$t_qmu

#[1] -2.294640 4.854463 -4.844305

#

#$se_qmu

#[1] 5.967374e-03 3.072697e+01 2.852513e-05

#

#$se_t_qmu

#[1] 0.07173774 0.23947121 0.00362312

phat = (n-db2$khat)/n; um = y2[n-db2$khat];

qmuDB2 = Q6(phat, phi, c2, um, db2$xihat, std.err=TRUE,

sigma=var.db2)

#> qmuDB2

#$qmu

#[1] 5.456384e-02 -3.203137e+02 1.410159e-03

#

#$t_qmu

#[1] -2.852275 5.840276 -6.564053

#

#$se_qmu

#[1] 5.416805e-03 1.019187e+02 6.396235e-05

#

#$se_t_qmu

#[1] 0.10500407 0.29638377 0.04535826

confidence intervals

alpha = 0.025

z = qnorm(1-alpha)

tmp = c(qmuDB1$t_qmu[1] - z*qmuDB1$se_t_qmu[1],

qmuDB1$t_qmu[1] + z*qmuDB1$se_t_qmu[1])

ciDB1 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuDB1$t_qmu[2] + z*qmuDB1$se_t_qmu[2],

qmuDB1$t_qmu[2] - z*qmuDB1$se_t_qmu[2])

ciDB1 = rbind(ciDB1, c1 - y1[n-db1$khat] - exp(tmp))

tmp = c(qmuDB1$t_qmu[3] - z*qmuDB1$se_t_qmu[3],

qmuDB1$t_qmu[3] + z*qmuDB1$se_t_qmu[3])

ciDB1 = rbind(ciDB1, exp(tmp))

#> ciDB1

[,1] [,2]

#ciDB1 8.052441e-02 0.103954636

-1.980816e+02 -73.162803402

7.817374e-03 0.007929191 # does not contain ms1

tmp = c(qmuDB2$t_qmu[1] - z*qmuDB2$se_t_qmu[1],

qmuDB2$t_qmu[1] + z*qmuDB2$se_t_qmu[1])

ciDB2 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuDB2$t_qmu[2] + z*qmuDB2$se_t_qmu[2],

qmuDB2$t_qmu[2] - z*qmuDB2$se_t_qmu[2])

ciDB2 = rbind(ciDB2, c2 - y2[n-db2$khat] - exp(tmp))

tmp = c(qmuDB2$t_qmu[3] - z*qmuDB2$se_t_qmu[3],

qmuDB2$t_qmu[3] + z*qmuDB2$se_t_qmu[3])

27

ciDB2 = rbind(ciDB2, exp(tmp))

#> ciDB2

[,1] [,2]

#ciDB2 4.486995e-02 6.620686e-02

-5.911659e+02 -1.688006e+02

1.290206e-03 1.541264e-03

save.image()

GPD Estimation

phat = (n-db1$khat)/n; um = y1[n-db1$khat];

qmuGPD1 = Q5(phat, phi, c1, um, gpd1$estimate[1], gpd1$estimate[2],

std.err=TRUE, sigma=gpd1$var.cov)

#> qmuGPD1

#$qmu

#[1] 9.343410e-02 -1.052083e+02 8.262908e-03

#

#$t_qmu

#[1] -2.272407 4.721106 -4.795979

#

#$se_qmu

#[1] 6.468039e-03 3.067113e+01 4.902426e-04

#

#$se_t_qmu

#[1] 0.07636033 0.27313639 0.05933052

phat = (n-db2$khat)/n; um = y2[n-db2$khat];

qmuGPD2 = Q5(phat, phi, c2, um, gpd2$estimate[1], gpd2$estimate[2],

std.err=TRUE, sigma=gpd2$var.cov)

#> qmuGPD2

#$qmu

#[1] 5.458929e-02 -3.219661e+02 1.408862e-03

#

#$t_qmu

#[1] -2.851782 5.845070 -6.564973

#

#$se_qmu

#[1] 5.545168e-03 1.277121e+02 8.697170e-05

#

#$se_t_qmu

#[1] 0.10744514 0.36961597 0.06173189

confidence intervals

tmp = c(qmuGPD1$t_qmu[1] - z*qmuGPD1$se_t_qmu[1],

qmuGPD1$t_qmu[1] + z*qmuGPD1$se_t_qmu[1])

ciGPD1 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuGPD1$t_qmu[2] + z*qmuGPD1$se_t_qmu[2],

qmuGPD1$t_qmu[2] - z*qmuGPD1$se_t_qmu[2])

ciGPD1 = rbind(ciGPD1, c1 - y1[n-db1$khat] - exp(tmp))

tmp = c(qmuGPD1$t_qmu[3] - z*qmuGPD1$se_t_qmu[3],

qmuGPD1$t_qmu[3] + z*qmuGPD1$se_t_qmu[3])

ciGPD1 = rbind(ciGPD1, exp(tmp))

28

#> ciGPD1

[,1] [,2]

#ciGPD1 8.150510e-02 0.106905818

-1.847140e+02 -58.659907534

7.355813e-03 0.009281863

tmp = c(qmuGPD2$t_qmu[1] - z*qmuGPD2$se_t_qmu[1],

qmuGPD2$t_qmu[1] + z*qmuGPD2$se_t_qmu[1])

ciGPD2 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuGPD2$t_qmu[2] + z*qmuGPD2$se_t_qmu[2],

qmuGPD2$t_qmu[2] - z*qmuGPD2$se_t_qmu[2])

ciGPD2 = rbind(ciGPD2, c2 - y2[n-db2$khat] - exp(tmp))

tmp = c(qmuGPD2$t_qmu[3] - z*qmuGPD2$se_t_qmu[3],

qmuGPD2$t_qmu[3] + z*qmuGPD2$se_t_qmu[3])

ciGPD2 = rbind(ciGPD2, exp(tmp))

#> ciGPD2

[,1] [,2]

#ciGPD2 4.468640e-02 6.653389e-02

-6.894553e+02 -1.438813e+02

1.248309e-03 1.590064e-03

save.image()

Rank - 1/2 regression

phat = (n-econ1$khat)/n; um = y1[n-econ1$khat];

qmuRK1 = Q6(phat, phi, c1, um, econ1$xihat, std.err=TRUE,

sigma=var.econ1)

#> qmuRK1

#$qmu

#[1] 8.862281e-02 -1.070958e+02 7.855119e-03

#

#$t_qmu

#[1] -2.330568 4.737775 -4.846590

#

#$se_qmu

#[1] 8.419884e-03 3.761389e+01 6.259951e-05

#

#$se_t_qmu

#[1] 0.104246729 0.329426525 0.007969264

phat = (n-econ2$khat)/n; um = y2[n-econ2$khat];

qmuRK2 = Q6(phat, phi, c2, um, econ2$xihat, std.err=TRUE,

sigma=var.econ2)

#> qmuRK2

#$qmu

#[1] 5.116021e-02 -2.619859e+02 1.368446e-03

#

#$t_qmu

#[1] -2.920278 5.654404 -6.594079

#

#$se_qmu

#[1] 7.433921e-03 1.157406e+02 9.450138e-05

#

29

#$se_t_qmu

#[1] 0.15314146 0.40533023 0.06905742

#confidence intervals

tmp = c(qmuRK1$t_qmu[1] - z*qmuRK1$se_t_qmu[1],

qmuRK1$t_qmu[1] + z*qmuRK1$se_t_qmu[1])

ciRK1 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuRK1$t_qmu[2] + z*qmuRK1$se_t_qmu[2],

qmuRK1$t_qmu[2] - z*qmuRK1$se_t_qmu[2])

ciRK1 = rbind(ciRK1, c1 - y1[n-econ1$khat] - exp(tmp))

tmp = c(qmuRK1$t_qmu[3] - z*qmuRK1$se_t_qmu[3],

qmuRK1$t_qmu[3] + z*qmuRK1$se_t_qmu[3])

ciRK1 = rbind(ciRK1, exp(tmp))

#> ciRK1

[,1] [,2]

#ciRK1 7.344834e-02 0.106571729

-2.106859e+02 -52.782074959

7.733379e-03 0.007978775 # does not contain ms1

tmp = c(qmuRK2$t_qmu[1] - z*qmuRK2$se_t_qmu[1],

qmuRK2$t_qmu[1] + z*qmuRK2$se_t_qmu[1])

ciRK2 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuRK2$t_qmu[2] + z*qmuRK2$se_t_qmu[2],

qmuRK2$t_qmu[2] - z*qmuRK2$se_t_qmu[2])

ciRK2 = rbind(ciRK2, c2 - y2[n-econ2$khat] - exp(tmp))

tmp = c(qmuRK2$t_qmu[3] - z*qmuRK2$se_t_qmu[3],

qmuRK2$t_qmu[3] + z*qmuRK2$se_t_qmu[3])

ciRK2 = rbind(ciRK2, exp(tmp))

#> ciRK2

[,1] [,2]

#ciRK2 3.840411e-02 6.785431e-02

-6.084064e+02 -1.054601e+02

1.195215e-03 1.566786e-03

save.image()

30

A.4 Support functions func.R1

#

Hill estimator

#

xiHat = function(ux)

{

ux: sorted vector of upper (k+1) order

statistics

k: number of upper order statistics

used in estimation of tail index

return(mean(log(ux[-1])) - log(ux[1]))

}

#

Moment estimator

#

miHat = function(ux, i)

{

ux: sorted vector of upper (k+1) order

statistics

k: number of upper order statistics

used in estimation of tail index

i: moment

return(mean((log(ux[-1]) - log(ux[1]))^i))

}

#

DB metric

#

mHat = function(ux)

{

ux: sorted vector of upper (k+1) order

statistics

return(miHat(ux, 2) - 2*(xiHat(ux))^2)

}

#

Quantile estimator

#

q = function(ux, T, j, k, xik)

{

ux: sorted vector of upper (T+1) order

statistics (T >= j, T > k)

if(is.null(xik)){ xik = xiHat(ux[-(1:(T-k))]) }

lq = xik * (log(k) - log(j)) +

log(ux[T+2-k])

return(exp(lq))

}

#

KS distance

#

ks = function(ux, T, k, xik)

31

{

ux: sorted vector of upper (T+1) order

statistics (T >= j, T > k)

vks = NULL

for(j in 1:T){

vks = c(vks, abs(ux[T+1-j] - q(ux, T, j, k, xik)))

}

return(max(vks))

}

#

Q1 metric

#

Q1 = function(ux, T, xik=NULL)

{

ux: sorted vector of upper (T+1) order

statistics (T >= j, T > k)

mq = NULL

for(k in 1:(T-1)){

mq = c(mq, ks(ux, T, k, xik))

}

return(max(which(mq == min(mq))))

}

#

Double Bootstrap

#

#

Required R packages

#

#require(foreach)

#require(doParallel)

#registerDoParallel(cores=<integer>)

#

reference class

rc = setRefClass("rc", fields = list(x = "vector"))

bmHat = function(n, m, k, rc)

{

bs = sort(sample(n,m,replace=TRUE))

ux = rc$x[bs]

if(k < (m-1)){ ux = ux[-(1:(m-k-1))] }

return(mHat(ux)^2)

}

Q2 = function(x, eps, B)

{

x: ordered sample

eps: must choose in (0, 1/2)

B: number of bootstrap samples

n = length(x)

m1 = floor(n^(1-eps))

rc1 = rc(x = x)

em = numeric(m1-1)

for(k in 1:(m1-1)){

tmp = NULL

32

tmp = foreach(ii=1:B, .combine=’c’) %dopar%

bmHat(n, m1, k, rc1)

em[k] = mean(tmp)

}

r1 = max(which(em == min(em)))

m2 = floor(m1^2/n)

em = numeric(m2-1)

for(k in 1:(m2-1)){

tmp = NULL

tmp = foreach(ii=1:B, .combine=’c’) %dopar%

bmHat(n, m2, k, rc1)

em[k] = mean(tmp)

}

r2 = max(which(em == min(em)))

rhohat = log(r1)

rhohat = rhohat/(-2*log(m1) + 2*rhohat)

khat = floor(r1^2*(1-1/rhohat)^(1/(2*rhohat-1))/r2)

if (khat < (n-1)) { xihat = xiHat(x[-(1:(n-khat-1))]) }

else { khat = NA; xihat = NA; }

return(list(khat=khat, xihat=xihat))

}

#

MLE of GEV distribution

#

mlgev = function(y)

{

y: vector of observations

require(evd)

mlgev = fgev(y,std.err=FALSE)

detach()

return(mlgev$estimate)

}

#

Nemeth and Zempleni (2018) Regression Algorithm

#

xihat_ks = function(uy, T)

{

khat = Q1(uy, T)

uy = uy[-(1:(T-khat))]

return(xiHat(uy))

}

Q3 = function(x, eps, B, coef_mr, gev=FALSE, coef_rf=NULL)

{

x: ordered sample

eps: must choose in (1/2, 1)

B: number of bootstrap samples

coef_mr: regression coefficient vector for bootstrap mean

gev: use GEV location estimate?

coef_rf: regression coefficient vector for GEV location

estimate (must be specified if gev=TRUE)

n = length(x)

m = floor(n^eps)

Y = foreach(ii=1:B, .combine=’cbind’) %dopar%

x[sort(sample(n,m,replace=TRUE))]

33

T = floor(0.15 * m)

Yu = Y[-(1:(m-T-1)),]

xi = foreach(yu=iter(Yu, by=’column’), .combine=’c’) %dopar%

xihat_ks(yu, T)

xihat_mr=coef_mr[1]+coef_mr[2]*mean(xi)

if(gev){

xihat_rf=coef_rf[1]+coef_rf[2]*as.numeric(mlgev(xi)[1])

}

T = floor(0.15 * n)

x = x[-(1:(n-T-1))]

q3out = list()

q3out$khat_mr=Q1(x, T, xik=xihat_mr)

q3out$xihat_mr=xihat_mr

if(gev){

q3out$khat_rf=Q1(x, T, xik=xihat_rf)

q3out$xihat_rf=xihat_rf

}

return(q3out)

}

#

Gabaix and Ibragimov Rank - 1/2 regression

#

Q4 = function(x, k)

{

x: ordered sample

k: number of upper order statistics

used for fitting

n = length(x)

rank = seq(k,1,by=-1)

lm_rr = lm(log(rank - 1/2) ~ log(x[-(1:(n-k))]))

return(list(khat=k, xihat=-1/as.numeric(lm_rr$coef[2])))

}

#

QMU Metrics

#

GPD

Q5 = function(phat, phi, c, loc, scale, shape,

std.err=FALSE, sigma=NULL)

{

phat: estimate of margin CDF value at loc

phi: failure probability to compute second metric

c: additive constant to margin samples to

ensure loc > 0

loc: lower bound of GPD tail approximation (loc > 0)

scale: scale parameter of GPD distribution

shape: tail index parameter of GPD distribution

std.err: compute standard errors of metrics (if TRUE)

sigma: asymptotic covariance matrix of MLEs (provided

only if std.err=TRUE)

require(evd)

qmu = numeric(3)

if(loc <= c) {

qmu[1] = (1-phat) * (1-pgpd(c, loc, scale, shape))

qmu[3] = (1-phat) * dgpd(c, loc, scale, shape)

34

} else { qmu[1] = NA; qmu[3] = NA; }

if(phi > 0 && phat+phi <= 1){

qmu[2] = c - qgpd((1-phat-phi)/(1-phat), loc, scale, shape)

} else { qmu[2] = NA }

detach()

if (std.err){

t_qmu = numeric(3)

sqmu = t_sqmu = matrix(0,2,3)

se_qmu = se_t_qmu = numeric(3)

if(loc <= c) {

t_qmu[1] = log(qmu[1]) - log(1-qmu[1])

sqmu[1,1] = (c-loc)*qmu[3]/scale

sqmu[2,1] = -(qmu[1]*(log(qmu[1])-log(1-phat))+

(c-loc)*qmu[3])/shape

t_sqmu[,1] = sqmu[,1]/qmu[1]/(1-qmu[1])

t_qmu[3] = log(qmu[3])

t_sqmu[1,3] = (c-loc-scale)/(shape*(c-loc)+scale)/scale

t_sqmu[2,3] = -((shape+1)*(c-loc)/(shape*(c-loc)+scale)+

(log(qmu[3])+log(scale)-log(1-phat))/(shape+1))/shape

sqmu[,3] = t_sqmu[,3]*qmu[3]

se_qmu[1] = sqrt(t(sqmu[,1]) %*% sigma %*% sqmu[,1])

se_qmu[3] = sqrt(t(sqmu[,3]) %*% sigma %*% sqmu[,3])

se_t_qmu[1] = sqrt(t(t_sqmu[,1]) %*% sigma %*% t_sqmu[,1])

se_t_qmu[3] = sqrt(t(t_sqmu[,3]) %*% sigma %*% t_sqmu[,3])

} else {

t_qmu[1] = NA; t_qmu[3] = NA;

se_qmu[1] = NA; se_qmu[3] = NA;

se_t_qmu[1] = NA; se_t_qmu[3] = NA;

}

if(phi > 0 && phat+phi <= 1){

b = qmu[2]-c+loc

t_qmu[2] = log(-b)

t_sqmu[1,2] = 1/scale

t_sqmu[2,2] = ((shape-scale/b)*(log(1-phat)-log(phi))-1)/shape

sqmu[,2] = t_sqmu[,2]*b

se_qmu[2] = sqrt(t(sqmu[,2]) %*% sigma %*% sqmu[,2])

se_t_qmu[2] = sqrt(t(t_sqmu[,2]) %*% sigma %*% t_sqmu[,2])

} else {

t_qmu[2] = NA

se_qmu[2] = NA; se_t_qmu[2] = NA;

}

return(list(qmu=qmu, t_qmu=t_qmu,

se_qmu=se_qmu, se_t_qmu=se_t_qmu))

} else { return(qmu) }

}

Pareto

Q6 = function(phat, phi, c, loc, shape, std.err=FALSE, sigma=NULL)

{

phat: estimate of margin CDF value at loc

phi: failure probability to compute second metric

c: additive constant to margin samples to

ensure loc > 0

loc: lower bound of Pareto tail approximation (loc > 0)

shape: tail index parameter of Pareto distribution

std.err: compute standard errors of metrics (if TRUE)

sigma: asymptotic variance of tail index MLE (provided

only if std.err=TRUE)

35

scale=loc*shape

require(evd)

qmu = numeric(3)

if(loc <= c) {

qmu[1] = (1-phat) * (1-pgpd(c, loc, scale, shape))

qmu[3] = (1-phat) * dgpd(c, loc, scale, shape)

} else { qmu[1] = NA; qmu[3] = NA; }

if(phi > 0 && phat+phi <= 1){

qmu[2] = c - qgpd((1-phat-phi)/(1-phat), loc, scale, shape)

} else { qmu[2] = NA }

detach()

if (std.err){

t_qmu = numeric(3)

sqmu = t_sqmu = numeric(3)

se_qmu = se_t_qmu = numeric(3)

if(loc <= c) {

t_qmu[1] = log(qmu[1]) - log(1-qmu[1])

sqmu[1] = -qmu[1]*(log(qmu[1])-log(1-phat))/shape

t_sqmu[1] = sqmu[1]/qmu[1]/(1-qmu[1])

t_qmu[3] = log(qmu[3])

t_sqmu[3] = -(1+log(qmu[3])+log(shape)+log(c)-log(1-phat))/shape

sqmu[3] = t_sqmu[3]*qmu[3]

se_qmu[1] = sqrt(sqmu[1] * sigma * sqmu[1])

se_qmu[3] = sqrt(sqmu[3] * sigma * sqmu[3])

se_t_qmu[1] = sqrt(t_sqmu[1] * sigma * t_sqmu[1])

se_t_qmu[3] = sqrt(t_sqmu[3] * sigma * t_sqmu[3])

} else {

t_qmu[1] = NA; t_qmu[3] = NA;

se_qmu[1] = NA; se_qmu[3] = NA;

se_t_qmu[1] = NA; se_t_qmu[3] = NA;

}

if(phi > 0 && phat+phi <= 1){

b = qmu[2]-c+loc

t_qmu[2] = log(-b)

sqmu[2] = (qmu[2]-c)*(log(1-phat)-log(phi))

t_sqmu[2] = sqmu[2]/b

se_qmu[2] = sqrt(sqmu[2] * sigma * sqmu[2])

se_t_qmu[2] = sqrt(t_sqmu[2] * sigma * t_sqmu[2])

} else {

t_qmu[2] = NA

se_qmu[2] = NA; se_t_qmu[2] = NA;

}

return(list(qmu=qmu, t_qmu=t_qmu,

se_qmu=se_qmu, se_t_qmu=se_t_qmu))

} else { return(qmu) }

}

36

A.5 T Margins

Set seed

set.seed(2011)

Source support functions

source("../func.R")

Simulation variables

n = 2500

eps = 0.1

B = 1000

phi = 0.01

T

mu1 = -6; sigma1 = 1.5; xi1 = 1/3;

mu2 = -10; sigma2 = 1; xi2 = 1;

mu3 = -25; sigma3 = 0.5; xi3 = 1.5;

nn = floor(.6 * n)

y1 = sort(sigma1*rt(n,df=1/xi1)+mu1)

y1 = y1[-(1:nn)]

c1 = -y1[1]+.01

y1 = y1 + c1

y2 = sort(sigma2*rt(n,df=1/xi2)+mu2)

y2 = y2[-(1:nn)]

c2 = -y2[1]+.01

y2 = y2 + c2

y3 = sort(sigma3*rt(n,df=1/xi3)+mu3)

y3 = y3[-(1:nn)]

c3 = -y3[1]+.01

y3 = y3 + c3

nt = length(y1)

Double Bootstrap

require(foreach)

require(doParallel)

registerDoParallel(cores=2)

db1 = Q2(y1,eps,B)

var.db1 = db1$xihat^2/db1$khat

db2 = Q2(y2,eps,B)

var.db2 = db2$xihat^2/db2$khat

db3 = Q2(y3,eps,B)

var.db3 = db3$xihat^2/db3$khat

save.image()

#> db1

#$khat

#[1] 148

#

37

#$xihat

#[1] 0.5019466

#> db2

#$khat

#[1] 260

#

#$xihat

#[1] 1.094337

#> db3

#$khat

#[1] 415

#

#$xihat

#[1] 1.536607

GPD estimation

require(evd)

gpd1 = fpot(y1, y1[nt-db1$khat], std.err=TRUE, corr=TRUE)

gpd2 = fpot(y2, y2[nt-db2$khat], std.err=TRUE, corr=TRUE)

gpd3 = fpot(y3, y3[nt-db3$khat], std.err=TRUE, corr=TRUE)

detach()

save.image()

#> gpd1$estimate

scale shape

#1.4207299 0.5244539

#> gpd2$estimate

scale shape

#3.530140 1.000354

#> gpd3$estimate

scale shape

#1.923083 1.458025

Rank - 1/2 regression

econ1 = Q4(y1, db1$khat)

var.econ1 = 2*econ1$xihat^2/econ1$khat

econ2 = Q4(y2, db2$khat)

var.econ2 = 2*econ2$xihat^2/econ2$khat

econ3 = Q4(y3, db3$khat)

var.econ3 = 2*econ3$xihat^2/econ3$khat

save.image()

#> econ1

#$khat

#[1] 148

#

#$xihat

#[1] 0.5218309

38

#> econ2

#$khat

#[1] 260

#

#$xihat

#[1] 1.022881

#> econ3

#$khat

#[1] 415

#

#$xihat

#[1] 1.505291

#

Calculate QMU Metrics

#

pi1 = 0.01400423; mtf1 = -0.8110543; ms1 = 0.006108907;

pi2 = 0.03172552; mtf2 = -21.82052; ms2 = 0.003151583;

pi3 = 0.02295079; mtf3 = -61.93002; ms3 = 0.0006119192;

Double Bootstrap

phat = (n-db1$khat)/n; um = y1[nt-db1$khat];

qmuDB1 = Q6(phat, phi, c1, um, db1$xihat, std.err=TRUE,

sigma=var.db1)

#> qmuDB1

#$qmu

#[1] 0.016026349 -1.490150432 0.005723283

#

#$t_qmu

#[1] -4.117365 1.428779 -5.163213

#

#$se_qmu

#[1] 0.0017213747 0.5186668335 0.0001442814

#

#$se_t_qmu

#[1] 0.10915845 0.12427319 0.02520955

phat = (n-db2$khat)/n; um = y2[nt-db2$khat];

qmuDB2 = Q6(phat, phi, c2, um, db2$xihat, std.err=TRUE,

sigma=var.db2)

#> qmuDB2

#$qmu

#[1] 0.03490584 -28.42633759 0.00328488

#

#$t_qmu

#[1] -3.319571 3.560944 -5.718425

#

#$se_qmu

#[1] 2.363357e-03 6.061169e+00 1.868855e-05

#

#$se_t_qmu

#[1] 0.070155468 0.172209858 0.005689265

phat = (n-db3$khat)/n; um = y3[nt-db3$khat];

39

qmuDB3 = Q6(phat, phi, c3, um, db3$xihat, std.err=TRUE,

sigma=var.db3)

#> qmuDB3

#$qmu

#[1] 2.259609e-02 -6.198662e+01 5.929682e-04

#

#$t_qmu

#[1] -3.767123 4.450014 -7.430370

#

#$se_qmu

#[1] 2.211976e-03 1.839086e+01 2.893916e-05

#

#$se_t_qmu

#[1] 0.10015508 0.21477588 0.04880389

confidence intervals

alpha = 0.025

z = qnorm(1-alpha)

tmp = c(qmuDB1$t_qmu[1] - z*qmuDB1$se_t_qmu[1],

qmuDB1$t_qmu[1] + z*qmuDB1$se_t_qmu[1])

ciDB1 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuDB1$t_qmu[2] + z*qmuDB1$se_t_qmu[2],

qmuDB1$t_qmu[2] - z*qmuDB1$se_t_qmu[2])

ciDB1 = rbind(ciDB1, c1 - y1[nt-db1$khat] - exp(tmp))

tmp = c(qmuDB1$t_qmu[3] - z*qmuDB1$se_t_qmu[3],

qmuDB1$t_qmu[3] + z*qmuDB1$se_t_qmu[3])

ciDB1 = rbind(ciDB1, exp(tmp))

#> ciDB1

[,1] [,2]

#ciDB1 0.012979603 0.019773940

-2.641216784 -0.587917184

0.005447369 0.006013172 # does not contain ms1

tmp = c(qmuDB2$t_qmu[1] - z*qmuDB2$se_t_qmu[1],

qmuDB2$t_qmu[1] + z*qmuDB2$se_t_qmu[1])

ciDB2 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuDB2$t_qmu[2] + z*qmuDB2$se_t_qmu[2],

qmuDB2$t_qmu[2] - z*qmuDB2$se_t_qmu[2])

ciDB2 = rbind(ciDB2, c2 - y2[nt-db2$khat] - exp(tmp))

tmp = c(qmuDB2$t_qmu[3] - z*qmuDB2$se_t_qmu[3],

qmuDB2$t_qmu[3] + z*qmuDB2$se_t_qmu[3])

ciDB2 = rbind(ciDB2, exp(tmp))

#> ciDB2

[,1] [,2]

#ciDB2 0.030558608 0.039846094

-42.556810560 -18.343763968

0.003248454 0.003321714 # does not contain ms2

tmp = c(qmuDB3$t_qmu[1] - z*qmuDB3$se_t_qmu[1],

qmuDB3$t_qmu[1] + z*qmuDB3$se_t_qmu[1])

ciDB3 = exp(tmp)/(1+exp(tmp))

40

tmp = c(qmuDB3$t_qmu[2] + z*qmuDB3$se_t_qmu[2],

qmuDB3$t_qmu[2] - z*qmuDB3$se_t_qmu[2])

ciDB3 = rbind(ciDB3, c3 - y3[nt-db3$khat] - exp(tmp))

tmp = c(qmuDB3$t_qmu[3] - z*qmuDB3$se_t_qmu[3],

qmuDB3$t_qmu[3] + z*qmuDB3$se_t_qmu[3])

ciDB3 = rbind(ciDB3, exp(tmp))

#> ciDB3

[,1] [,2]

#ciDB3 1.864377e-02 2.736291e-02

-1.068055e+02 -3.256659e+01

5.388767e-04 6.524892e-04

save.image()

GPD Estimation

phat = (n-db1$khat)/n; um = y1[nt-db1$khat];

qmuGPD1 = Q5(phat, phi, c1, um, gpd1$estimate[1], gpd1$estimate[2],

std.err=TRUE, sigma=gpd1$var.cov)

#> qmuGPD1

#$qmu

#[1] 0.015931024 -1.491744320 0.005633166

#

#$t_qmu

#[1] -4.123428 1.429161 -5.179084

#

#$se_qmu

#[1] 0.0017840726 0.5279129266 0.0004864211

#

#$se_t_qmu

#[1] 0.1138003 0.1264403 0.0863495

phat = (n-db2$khat)/n; um = y2[nt-db2$khat];

qmuGPD2 = Q5(phat, phi, c2, um, gpd2$estimate[1], gpd2$estimate[2],

std.err=TRUE, sigma=gpd2$var.cov)

#> qmuGPD2

#$qmu

#[1] 0.035648608 -26.431942266 0.003460152

#

#$t_qmu

#[1] -3.297746 3.502611 -5.666443

#

#$se_qmu

#[1] 0.0025644787 5.7830678153 0.0002198572

#

#$se_t_qmu

#[1] 0.07459697 0.17417821 0.06353975

phat = (n-db3$khat)/n; um = y3[nt-db3$khat];

qmuGPD3 = Q5(phat, phi, c3, um, gpd3$estimate[1], gpd3$estimate[2],

std.err=TRUE, sigma=gpd3$var.cov)

#> qmuGPD3

#$qmu

41

#[1] 2.209287e-02 -5.432271e+01 6.070639e-04

#

#$t_qmu

#[1] -3.790160 4.356250 -7.406877

#

#$se_qmu

#[1] 2.276439e-03 1.833561e+01 3.554959e-05

#

#$se_t_qmu

#[1] 0.10536738 0.23517982 0.05855988

confidence intervals

tmp = c(qmuGPD1$t_qmu[1] - z*qmuGPD1$se_t_qmu[1],

qmuGPD1$t_qmu[1] + z*qmuGPD1$se_t_qmu[1])

ciGPD1 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuGPD1$t_qmu[2] + z*qmuGPD1$se_t_qmu[2],

qmuGPD1$t_qmu[2] - z*qmuGPD1$se_t_qmu[2])

ciGPD1 = rbind(ciGPD1, c1 - y1[nt-db1$khat] - exp(tmp))

tmp = c(qmuGPD1$t_qmu[3] - z*qmuGPD1$se_t_qmu[3],

qmuGPD1$t_qmu[3] + z*qmuGPD1$se_t_qmu[3])

ciGPD1 = rbind(ciGPD1, exp(tmp))

#> ciGPD1

[,1] [,2]

#ciGPD1 0.012786808 0.019832856

-2.665923084 -0.575295826

0.004756108 0.006671959

tmp = c(qmuGPD2$t_qmu[1] - z*qmuGPD2$se_t_qmu[1],

qmuGPD2$t_qmu[1] + z*qmuGPD2$se_t_qmu[1])

ciGPD2 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuGPD2$t_qmu[2] + z*qmuGPD2$se_t_qmu[2],

qmuGPD2$t_qmu[2] - z*qmuGPD2$se_t_qmu[2])

ciGPD2 = rbind(ciGPD2, c2 - y2[nt-db2$khat] - exp(tmp))

tmp = c(qmuGPD2$t_qmu[3] - z*qmuGPD2$se_t_qmu[3],

qmuGPD2$t_qmu[3] + z*qmuGPD2$se_t_qmu[3])

ciGPD2 = rbind(ciGPD2, exp(tmp))

#> ciGPD2

[,1] [,2]

#ciGPD2 0.030949706 0.041030709

-39.941577285 -16.829474540

0.003054992 0.003919046

tmp = c(qmuGPD3$t_qmu[1] - z*qmuGPD3$se_t_qmu[1],

qmuGPD3$t_qmu[1] + z*qmuGPD3$se_t_qmu[1])

ciGPD3 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuGPD3$t_qmu[2] + z*qmuGPD3$se_t_qmu[2],

qmuGPD3$t_qmu[2] - z*qmuGPD3$se_t_qmu[2])

ciGPD3 = rbind(ciGPD3, c3 - y3[nt-db3$khat] - exp(tmp))

tmp = c(qmuGPD3$t_qmu[3] - z*qmuGPD3$se_t_qmu[3],

qmuGPD3$t_qmu[3] + z*qmuGPD3$se_t_qmu[3])

ciGPD3 = rbind(ciGPD3, exp(tmp))

42

#> ciGPD3

[,1] [,2]

#ciGPD3 1.804502e-02 2.702375e-02

-9.997621e+01 -2.552959e+01

5.412378e-04 6.808958e-04

save.image()

Rank - 1/2 regression

phat = (n-econ1$khat)/n; um = y1[nt-econ1$khat];

qmuRK1 = Q6(phat, phi, c1, um, econ1$xihat, std.err=TRUE,

sigma=var.econ1)

#> qmuRK1

#$qmu

#[1] 0.016844520 -1.744583547 0.005786247

#

#$t_qmu

#[1] -4.066742 1.487956 -5.152271

#

#$se_qmu

#[1] 0.002461173 0.790010479 0.000172798

#

#$se_t_qmu

#[1] 0.14861455 0.17841107 0.02986357

phat = (n-econ2$khat)/n; um = y2[nt-econ2$khat];

qmuRK2 = Q6(phat, phi, c2, um, econ2$xihat, std.err=TRUE,

sigma=var.econ2)

#> qmuRK2

#$qmu

#[1] 0.032342691 -22.550074077 0.003256293

#

#$t_qmu

#[1] -3.398490 3.378275 -5.727166

#

#$se_qmu

#[1] 3.313205e-03 6.777541e+00 4.798091e-05

#

#$se_t_qmu

#[1] 0.10586457 0.23115643 0.01473482

phat = (n-econ3$khat)/n; um = y3[nt-econ3$khat];

qmuRK3 = Q6(phat, phi, c3, um, econ3$xihat, std.err=TRUE,

sigma=var.econ3)

#> qmuRK3

#$qmu

#[1] 2.167781e-02 -5.467742e+01 5.807054e-04

#

#$t_qmu

#[1] -3.809550 4.360789 -7.451267

#

#$se_qmu

#[1] 3.063513e-03 2.333271e+01 4.175229e-05

#

43

#$se_t_qmu

#[1] 0.14445167 0.29791915 0.07189926

#confidence intervals

tmp = c(qmuRK1$t_qmu[1] - z*qmuRK1$se_t_qmu[1],

qmuRK1$t_qmu[1] + z*qmuRK1$se_t_qmu[1])

ciRK1 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuRK1$t_qmu[2] + z*qmuRK1$se_t_qmu[2],

qmuRK1$t_qmu[2] - z*qmuRK1$se_t_qmu[2])

ciRK1 = rbind(ciRK1, c1 - y1[nt-econ1$khat] - exp(tmp))

tmp = c(qmuRK1$t_qmu[3] - z*qmuRK1$se_t_qmu[3],

qmuRK1$t_qmu[3] + z*qmuRK1$se_t_qmu[3])

ciRK1 = rbind(ciRK1, exp(tmp))

#> ciRK1

[,1] [,2]

#ciRK1 0.01264184 0.022412636

-3.59821433 -0.437933001

0.00545729 0.006135033

tmp = c(qmuRK2$t_qmu[1] - z*qmuRK2$se_t_qmu[1],

qmuRK2$t_qmu[1] + z*qmuRK2$se_t_qmu[1])

ciRK2 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuRK2$t_qmu[2] + z*qmuRK2$se_t_qmu[2],

qmuRK2$t_qmu[2] - z*qmuRK2$se_t_qmu[2])

ciRK2 = rbind(ciRK2, c2 - y2[nt-econ2$khat] - exp(tmp))

tmp = c(qmuRK2$t_qmu[3] - z*qmuRK2$se_t_qmu[3],

qmuRK2$t_qmu[3] + z*qmuRK2$se_t_qmu[3])

ciRK2 = rbind(ciRK2, exp(tmp))

#> ciRK2

[,1] [,2]

#ciRK2 0.026442593 0.039505847

-39.353916595 -11.868189270

0.003163597 0.003351705 # does not contain ms2

tmp = c(qmuRK3$t_qmu[1] - z*qmuRK3$se_t_qmu[1],

qmuRK3$t_qmu[1] + z*qmuRK3$se_t_qmu[1])

ciRK3 = exp(tmp)/(1+exp(tmp))

tmp = c(qmuRK3$t_qmu[2] + z*qmuRK3$se_t_qmu[2],

qmuRK3$t_qmu[2] - z*qmuRK3$se_t_qmu[2])

ciRK3 = rbind(ciRK3, c3 - y3[nt-econ3$khat] - exp(tmp))

tmp = c(qmuRK3$t_qmu[3] - z*qmuRK3$se_t_qmu[3],

qmuRK3$t_qmu[3] + z*qmuRK3$se_t_qmu[3])

ciRK3 = rbind(ciRK3, exp(tmp))

#> ciRK3

[,1] [,2]

#ciRK3 1.642046e-02 2.856950e-02

-1.167872e+02 -2.003797e+01

5.043768e-04 6.685849e-04

save.image()

44

