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This focus issue is motivated by the growing demand for rigorous uncertainty quantification (UQ)

in materials modeling, which is driven by the need to use these tools, in conjunction with

experiments, to support decision making in materials design, development, and deployment.

Traditionally, predictive materials modeling has focused on gaining qualitative insight into the

range of mechanisms that control material behavior and how those mechanisms interact to

govern material properties and processes. In that context, quantitative evaluation of modeling

uncertainty was not a priority. As materials modeling advances, there is increased impetus to

employ it in the context of materials design and qualification. This trend is manifested in the

establishment of Integrated Computational Materials Engineering (ICME) as a growing sub-

discipline, as well as by initiatives such as the Materials Genome (MGI) in the USA and similar

efforts around the globe. Current practice and future needs are described in several recent

reports including NASA's Vision 2040: A Roadmap for Integrated, Multiscale Modeling and

Simulation of Materials and Systems. Invariably, these studies point out the need for the field to

embrace the challenge of UQ.

The selected articles for this MSMSE Focus Issue summarize the current state of this field and

identify important opportunities and needs. They also highlight unique challenges facing the

materials community with respect to UQ, including the use of approximate physics, model form

uncertainty, and uncertainty across scales. The goal of this collection of articles is to stimulate

research in this area, serve as useful reference to the community, and to promote a cultural

change so that treatment of uncertainty becomes a routine aspect of materials modeling. We

next summarize these articles by logical groupings.

Digital datasets for materials are becoming increasingly available to the materials community and

present unique challenges. Jha et al. address the important challenge of dealing with

uncertainties in large materials datasets and specifically managing them when developing

surrogate models using machine learning techniques.

Two contributions focus on UQ in the context of additive manufacturing driven by the need of

quality control. Nath et al. discuss uncertainties in grain morphology in laser direct metal

deposition, a description that requires a multiscale approach. The authors use a combination of

finite element modeling to describe the melt pool and cellular autonoma techniques for

crystallization; they introduce surrogate models to replace computationally intensive

simulations, thereby adding complexity to the UQ analysis. Gosh et al. focus on microsegregation
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and also using a multiscale approach quantify the role of several variables on their quantities of

interest. This information can be used to refine processes and in materials selection. In a related

contribution, Tran et al. address solidification in Al-Cu alloys. Using a surrogate model based on

phase field simulations to quantify how processing and thermodynamic parameters affect

several quantities of interest, including dendrite geometry.

Two contributions address challenges in atomistic simulations that originate from the selection

of interatomic potentials. Ragasa et al. describe an approach to deal with the challenge of multi-

objective optimization in the development of interatomic potentials. They use machine learning

techniques to identify an ensemble of interatomic potentials that lie of the Pareto front of error

space. Each member of the ensemble is optimal in that the error in any of the training properties

cannot be improved without increasing the error on a different target. Reeve et al. focus on the

related problem of quantifying uncertainties in atomistic simulations originating from the

interatomic potential used, importantly addressing the effect of the actual function as opposed

to model parameters. This contribution extends functional uncertainty quantification (FunUQ) to

new quantities of interest and simulation conditions, demonstrating that predictions for a new

interatomic potential can be made without re-running the simulations under certain conditions.

Calibration of model parameters for models addressing a given length scale of interest is

complicated when some information is obtained by lower scale simulations (e.g., atomistic

modeling) and higher scale experiments, both routes having errors and associated uncertainty.

Tallman et al. address a novel combined top-down and bottom-up strategy to consider a

constrained maximum likelihood scheme to estimate model parameters for crystal plasticity of

bcc Fe that reconcile both pathways. This is accomplished by adding a model discrepancy layer

that involves activation of Frank-Read dislocation sources at the mesoscale. Another paper by

Honarmandi et al. considers UQ in calibrating parameters of models for the behavior of shape

memory alloys that undergo thermally induced phase transformation. They carry out Bayesian

Markov Chain Monte Carlo analyses and propagate uncertainties in the calibrated model

parameters using a relevant sampling technique to predict confidence intervals for predicted

responses.

To address uncertainty in alloy design owing to variation of composition, Mailer et al. discuss a

fast model that mitigates variability of composition by seeking compositions that are robust

against such variation. This is accomplished by employing a regression-based model for

calculating the sensitivity that only requires one-time calculation of the regression coefficients.

The model is then successfully applied to the computational alloys-by-design workflow to

facilitate alloy selection using the sensitivity of a composition owing to the inaccuracies in the

manufacturing process as an additional minimization goal.

We trust that the readers of this Focus Issue on Uncertainty Quantification in Materials Modeling

will benefit from the range of UQ techniques and applications presented, and will gain new

appreciation of the both the challenges and opportunities facing this important emerging field.
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