
LLNL-PROC-788145

UMap: Enabling Application-driven
Optimizations for Memory Mapping
Persistent Store

I. B. Peng, M. McFadden, E. Green, K. Iwabuchi, K.
Wu, D. Li, R. Pearce, M. Gokhale

August 27, 2019

MCHPC'19: Workshop on Memory Centric High Performance
Computing held in conjunction with SC19
Denver, CO, United States
November 18, 2019 through November 18, 2019



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



UMap : Enabling Application-driven Optimizations
for Page Management

Ivy B. Peng∗, Marty McFadden∗, Eric Green∗, Keita Iwabuchi∗

Kai Wu†,Dong Li†,Roger Pearce∗, Maya B. Gokhale∗
∗Lawrence Livermore National Laboratory, Livermore, CA, USA

†University of California, Merced, CA, USA
∗{peng8, mcfadden8, green77, iwabuchi1, pearce7, gokhale2}@llnl.gov, †{kwu42, dli35}@ucmerced.edu

Abstract—Leadership supercomputers feature a diversity of
storage, from node-local persistent memory and NVMe SSDs
to network-interconnected flash memory and HDD. Memory
mapping files on different tiers of storage provides a uniform in-
terface in applications. However, system-wide services like mmap
are optimized for generality and lack flexibility for enabling
application-specific optimizations. In this work, we present UMap
to enable user-space page management that can be easily adapted
to access patterns in applications and storage characteristics.
UMap uses the userfaultfd mechanism to handle page faults in
multi-threaded applications efficiently. By providing a data object
abstraction layer, UMap is extensible to support various backing
stores. The design of UMap supports dynamic load balancing
and I/O decoupling for scalable performance. UMap also uses
application hints to improve the selection of caching, prefetching,
and eviction policies. We evaluate UMap in five benchmarks and
real applications on two systems. Our results show that leveraging
application knowledge for page management could substantially
improve performance. On average, UMap achieved 1.25 to 2.5
times improvement using the adapted configurations compared
to the system service.

Index Terms—memory mapping, memmap, page fault, user-
space paging, userfaultfd, page management

I. INTRODUCTION

Recently, leadership supercomputers provide enormous stor-
age resources to cope with expanding data sets in applications.
The storage resources come in a hybrid format for balanced
cost and performance [9], [11], [12]. Fast and small storage,
which is implemented using advanced technologies like persis-
tent memory and NVMe SSDs, often co-locate with computing
units inside compute node. Storage with massive capacity, on
the other hand, uses cost-effective technologies like HDD and
is interconnected to compute nodes through the network. In
between, burst buffers use fast memory technologies and are
accessible through the network. Memory mapping provides a
uniform interface to access files on different types of storage as
if to dynamically allocated memory. For instance, out-of-core
data analytic workloads often need to process large datasets
that exceed the memory capacity of a compute node [17].
Using memory mapping to access these datasets shift the
burden of paging, prefetching, and caching data between
storage and memory to the operating systems.

Currently, operating systems provide the mmap system call
to map files or devices into memory. This system service per-
forms well in loading dynamic libraries and could also support

out-of-core execution. However, as a system-level service, it
has to be tuned for performance reliability and consistency
over a broad range of workloads. Therefore, it may reduce
opportunities in optimizing performance based on application
characteristics. Moreover, backing stores on different storage
exhibit distinctive performance characteristics. Consequently,
configurations tuned for one type of storage will need to be
adjusted when mapping on another type of storage. In this
work, we provide UMap to enable application-specific opti-
mizations for page management in memory mapping various
backing stores. UMap is highly configurable to adapt user-
space paging to suit application needs. It facilitates application
control on caching, prefetching, and eviction policies with
minimal porting efforts from the programmer. As a user-level
solution, UMap confines changes within an application without
impacting other applications sharing the platform, which is
unachievable in system-level approaches.

We prioritize four design choices for UMap based on
surveying realistic use cases. First, we choose to implement
UMap as a user-level library so that it can maintain compat-
ibility with the fast-moving Linux kernel without the need to
track and modify for frequent kernel updates. Also, we employ
the recent userfaultfd [7] mechanism, other than the signal
handling + callback function approach to reduce overhead and
performance variance in multi-threaded applications. Third, we
target an adaptive solution that sustains performance even at
high concurrency for data-intensive applications, which often
employ a large number of threads for hiding data access
latency. Our design pays particular consideration on load
imbalance among service threads to improve the utilization of
shared resources even when data accesses to pages are skewed.
UMap dynamically balances workloads among all service
threads to eliminate bottleneck on serving hot pages. Finally,
for flexible and portable tuning on different computing sys-
tems, UMap provides both API and environmental controls to
enable configurable page sizes, eviction strategy, application-
specific prefetching, and detailed diagnosis information to the
programmer.

We evaluate the effectiveness of UMap in five use cases,
including two data-intensive benchmarks, i.e., a synthetic sort
benchmark and a breadth-first search (BFS) kernel, and three
real applications, i.e., Lrzip [8], N-Store database [2], and
an asteroid detection application that processes massive data



sets from telescopes. We conduct out-of-core experiments on
two systems with node-local SSD and network-interconnected
HDD storage. Our results show that UMap can enable flexible
user-space page management in data-intensive applications.
On the AMD testbed with local NVMe SSD, applications
achieved 1.25 to 2.5 times improvement compared to the
standard system service. On the Intel testbed with network-
interconnected HDD, UMap brings the performance of the
asteroid detection application close to that uses local SSD for
500 GB data sets. In summary, our main contributions are as
follows:

• We propose an open-source library1, called UMap that
leverages lightweight userfaultfd mechanism to enable
application-driven page management.

• We describe the design of UMap for achieving scal-
able performance in multi-threaded data-intensive appli-
cations.

• We demonstrate five use cases of UMap and show that en-
abling configurable page size is essential for performance
tuning in data-intensive applications.

• UMap improves the performance of tested applications by
1.25 to 2.5 times compared to the standard mmap system
service.

II. BACKGROUND AND MOTIVATION

In this section, we introduce memory mapping, prospective
benefits from user-space page management, and the enabling
mechanism userfaultfd.

A. Memory Mapping

Memory mapping links images and files in persistent storage
to the virtual address space of a process. The operating system
employs demand paging to bring only accessed virtual pages
into physical memory because virtual memory can be much
larger than physical memory. An access to memory-mapped
regions triggers a page fault if no page table entry (PTE) is
present for the accessed page. When such a page fault is raised,
the operating system resolves it by copying in the physical data
page from storage to the in-memory page cache.

Common strategies for optimizing memory mapping in
the operating systems include page cache, read-ahead, and
madvise hints. The page cache is used to keep frequently
used pages in memory while less important pages may need
to be evicted from memory to make room for newly requested
pages. Least Recently Used (LRU) policy is commonly used
for selecting pages to be evicted. The operating system may
proactively flush dirty pages, i.e., modified pages in the page
cache, into storage when the ratio of dirty page exceeds a
threshold value [19]. Read-ahead preloads pages into physical
memory to avoid the overhead associated with page fault
handling, TLB misses and user-to-kernel mode transition.
Finally, the madvise interface takes hints to allow the operating
system to make informed decisions for managing pages.

1UMAP v2.0.0 https://github.com/LLNL/umap.

Store	
Object	

Store	
Object	

Physical	pages	
Application	

Filler	0	

SSD	
Backend	
Storage	 PM	

Network-attached	
HDD	

				Network-
attached	SSD	

...	

UMap	

Store	
Object	

Filler	1	 Filler	2	 Filler	3	

Internal	Buffer	

Page	faults	

Evictor0	 Evictor1	

Virtual	Address	Space	

Prefetching	
Policies	

Eviction	
Policies	

Fig. 1: The UMap architecture.

B. User-space Page Management

User-space page management uses application threads to
resolve page faults and manage virtual memory in the back-
ground as defined by the application. The userfaultfd is a
lightweight mechanism to enable user-space paging compared
to the traditional SIGSEGV signal and callback function [7].
Applications register address ranges to be manged in user-
space, and specify the type of events, e.g., page faults and
events in un-cooperative mode, to be tracked. Page faults in
the address ranges are delivered asynchronously so that the
faulting process is blocked instead of idling, allowing other
processes to be scheduled to proceed.

The fault-handling thread in the application can atomically
resolve page faults with the UFFDIO COPY ioctl, which
ensures the faulting process is (optionally) waken up only after
the requested page has been fully copied into physical mem-
ory [7]. The fault-handling threads may utilize application-
specific knowledge to optimize this procedure, providing the
flexibility that is unachievable in kernel mode. For instance,
the application could select arbitrary page sizes, read-ahead
window size, or provides specific pages for prefetching or
evicting. All these optimizations remain inside one application
and will not impact other applications sharing the same
system. User-space paging is not only limited to backing store
on file systems. In contrast to kernel mode, the fault-handling
thread has the liberty to fetch data from a variety of backing
stores, such a memory server, databases, and even another
process.

III. DESIGN

In this section, we describe the design of UMap . We first
provide an overview of the architecture and then focus on four
optimizations for achieving high performance in user-space.

A. Overview

UMap provides an interface for applications to register
multiple virtual address ranges, called UMap regions that



bypass the kernel service and instead, be managed in user-
space. Figure 1 presents the UMap architecture. Dark blue
regions in the virtual address space are UMap regions. Each
region has a backing store, where the data is physically
located. UMap provides an abstraction layer in the store object
(yellow circles) for accessing different types of storage. When
an application accesses a UMap region, if the accessed page is
not present in the physical memory, page faults are triggered.
These page faults queue up in a FIFO buffer and multiple
UMap fillers cooperatively resolve these faults. If the requested
pages are not fetched in yet, UMap fillers will invoke the
access functions defined in the store object to read data from
the underlying storage. If the buffer is fully occupied, some
pages need to be evicted following a user-defined strategy. In
the background, a group of UMap evictors keep monitoring
the ratio of dirty pages in the buffer. Once the ratio of dirty
pages reaches a (configurable) high watermark, UMap evictors
will coordinately write data to the storage.

B. I/O Decoupling

Our design decouples the I/O operation from the fault-
handing threads to achieve high concurrency in long latency
tasks. I/O operations that move data between storage and
memory have a much longer latency than memory accesses.
For instance, latency to the state-of-art persistent memory
(PM) is about 100 - 500 ns [13], latency to NVMe-based SSD
is in the range of ≈ 20 µs [3] while accesses to HDD would
require several milliseconds. In contrast, memory accesses
typically takes 20-100 ns. To improve the I/O performance,
UMap employ a configurable number of threads for moving
data between storage and memory to exploit the bandwidth
supported by the hardware.

The dedicated two groups of I/O threads is referred to as
fillers and evictors, as illustrated in the orange and blue boxes
in Figure 1. Fillers split the workload of copying pages to
memory while evictors concurrently write data to storage. A
separate group of manager threads, typically with low concur-
rency, keeps polling for notification of tracked events from the
operating system. By decoupling the tasks into three groups
of workers, UMap has the flexibility to adapt the concurrency
in each group to reflect their different workload. In contrast,
a coupled design results in a long blocking operation that has
limited flexibility to optimize.

C. Dynamic Load Balancing

UMap employs a dynamic load balancing strategy to im-
prove resource utilization. We find that memory-mapped re-
gions could have hot and cold segments. Hot segments require
a higher level of concurrency for frequent data movement and
more physical memory for buffering data than cold segments.
For instance, social networks are considered as a type of
scale-free network whose degree distribution follows a power
law. Memory segment that stores high-degree vertices would
naturally result in more accesses than the regions that store
low-degree vertices. We design UMap to avoid load imbalance
even in such skewed data access patterns by dynamically

distributing workloads from all memory regions among UMap
fillers.

UMap employs a dynamic scheduling strategy similar to
“work stealing” approach in task-based programming mod-
els [15]. UMap uses a single UMap buffer object to manage
the metadata of in-memory pages for all regions. When
UMap receives the notification of a fault event from the
operating system, it appends the workload for resolving this
fault into a dynamically growing queue. A group of workers
split the pending workload to load pages from the backing
store collectively. Consequently, when hot memory segments
generate more workloads than others, they will be assigned
with more working threads. Orthogonal to the data fetching
task is the data flushing task that writes dirty pages back to
the persistent stores. When the number of dirty pages reaches
a high watermark, the workload is appended to a separate
queue and then split by a different group of workers. Figure 1
illustrates the shared (internal) buffer and the work distribution
among workers. The dynamic load balancing design prepare
UMap to cope with applications with diverse access patterns.

D. Extensible Back Store
UMap provides a data object abstraction layer to support

different types of backing stores. Currently, applications run-
ning on leadership supercomputers have multiple choices of
storage, including local SSD, network-interconnected SSD,
and HDD. In the future, architectures that provide disaggre-
gated memory and storage resources are likely to emerge.
Based on this observation, our design ensures that UMap is
extensible for current and future architectures.

UMap facilitates applications to associate their own backing
store for each memory region. The application has specific
control over which storage layer to access to resolve a page
fault. In this way, an application is presented with a uniform
interface as the virtual memory address space while UMap in
the backend handles data movement to/from various types of
storage.

E. User-controlled Page Flushing
We design UMap to enable user-space control on page flush-

ing to a persistent store. There are two motivations. First, the
system service may write dirty pages to storage whenever the
operating system deems appropriate. Unpredictable behavior
may occur if a memory range requires strong consistency such
as atomicity among multiple pages. Second, frequent page
flushing is known to cause increased performance variation
and degradation. For instance, RHEL trigger page flushing
when more than 10% pages are dirty [19]. With user control,
the application could avoid aggressive page flushing by setting
a high threshold or even postponed page flushing to a later
stage. UMap monitors the ratio of dirty pages to compare with
a user-defined high watermark to trigger page flushing as well
as a low watermark that suspends page flushing.

F. Application-Specific Optimization
UMap maintains a set of parameters for programmers with

application knowledge to configure page management. One



of the most performance-critical parameters is the internal
page size of a memory region, denoted as UMap page. UMap
supports an arbitrary page size for each memory region while
the system service only supports fixed page sizes. UMap
page defines the finest granularity in data movement between
memory and backing store. For the same memory region,
choosing a large UMap page could reduce the overhead of
metadata, but may also move more than accessed data into
memory. By tuning the page size, an application could identify
an optimal configuration that balances the overhead and data
usage. Also, an application can control the page buffer size,
which can alleviate OOM situations in unconstrained mmap.

UMap also supports a flexible prefetching policy that can
fetch pages even in irregular patterns. The operating systems
usually recognize page accesses as either sequential or ran-
dom, to increase or decrease the readahead window size,
respectively. Real-world applications, however, exhibit com-
plex access patterns, and the general prefetching mechanism
becomes insufficient. In contrast, UMap could prefetch a set of
arbitrary pages into memory, as informed by the application.
Moreover, an application can control the start of prefetching to
avoid premature data migration that interferences with pages in
use. This flexibility, together with knowledge from application
algorithm or offline profiling, eases application performance
tuning.

IV. IMPLEMENTATION

UMap is implemented in C + + and uses the userfaultfd
system call [1]. UMap enables application controls on page
management through both API and environmental variables.
The fault-handling thread resolves the page fault by calling
the application-supplied function (if provided), or performing
direct I/O to the backing store by invoking the defined access
functions. UMap uses the UFFDIO_COPY ioctl [7] to ensure
atomic copy to the allocated memory page before waking up
the blocked process.

A. API

UMap provides similar interfaces as mmap to ease porting
existing applications. An application can register/unregister
multiple memory regions to be managed by UMap through
the umap and uunmap interface. One additional flexibility
provided by UMap is the multi-file backed region. Given a
set of files, each with individual offsets and size, UMap maps
them into a contiguous memory region. While applications
can rely on UMap runtime for managing pages, UMap also
provides a plugin architecture that allows application to reg-
ister callback functions. A set of configuration interfaces with
naming convention umapcfg_set_xx, allow the application
to control paging explicitly: (1) the maximum size of physical
memory used for buffering pages; (2) the level of concurrency
for processing I/O operations in each group of workers; (3) the
threshold value for starting or suspending writing dirty pages
to back stores. Listing 1 illustrates a simple application that
uses paging and prefetching services in UMap .

Listing 1: UMap API

1
2 int fd = open(fname, O_RDWR);
3 void* base_addr = umap(NULL, totalbytes,

PROT_READ|PROT_WRITE, UMAP_PRIVATE, fd, 0);
4
5 //Select two non-contiguous pages to prefetch
6 std::vector<umap_prefetch_item> pfi;
7 umap_prefetch_item p0 = { .page_base_addr = &base[5 *

psize] };
8 pfi.push_back(p0);
9 umap_prefetch_item p1 = { .page_base_addr = &base[15 *

psize] };
10 pfi.push_back(p1);
11 umap_prefetch(num_prefetch_pages, &pfi[0]);
12
13 computation();
14
15 //release resources
16 uunmap(base_addr, totalbytes);

B. Environmental Controls

UMap uses a set of environment variables to control: the
number of fillers and evictors; the buffer size; the buffer
draining policy; and the read-ahead window size. We highlight
the key environment variables that UMap tracks to dictate its
runtime behavior:
• UMAP PAGESIZE sets the internal page size for memory
regions
• UMAP PAGE FILLERS sets the number of workers to
perform read operations from the backing store. Default: the
number of hardware threads.
• UMAP PAGE EVICTORS sets the number of evictors that
will perform evictions of pages. Eviction includes writing
to the backing store if the page is dirty and informing the
operating system that the page is no longer needed. Default:
the number of hardware threads.
• UMAP EVICT HIGH WATER THRESHOLD sets the
threshold in UMap buffer to trigger the evicting procedure.
Default: 90%
• UMAP EVICT LOW WATER THRESHOLD sets the
threshold in UMap buffer to suspend evicting procedure.
Default: 70%
• UMAP BUFSIZE sets the size of physical memory to be
used for buffering UMap pages. Default: (80% of available
memory)
• UMAP READ AHEAD sets the number of pages to read-
ahead when resolving a demand paging. Default: 0
• UMAP MAX FAULT EVENTS: sets the maximum num-
ber of page fault events that will be read from the kernel in a
single call. Default: the number of hardware threads.

C. Limitations

The current implementation uses the write protection sup-
port from the kernel to track dirty pages in the physical
memory. For pages in write-protected memory ranges, a writes
will trigger a fault that sends a UFFD message to handling
threads. Currently, the write protection support in userfaultfd
is only available in the experimental Linux kernel 2.

2Linux Patch https://git.kernel.org/pub/scm/linux/kernel/git/andrea/aa.git.



TABLE I: The AMD Testbed Specifications
Platform Penguin R© Altus R© XE2112 (Base Board: MZ91-FS0-ZB)

Processor AMD EPYC 7401

CPU 24 cores (48 hardware threads) × 2 sockets

Speed 1.2 GHz

Caches 64KB 8-way L1d and 32KB 4-way L1i, 512KB 8-way private L2, 8MB
8-way shared L3 per three cores

Memory 16 GB DDR4 RDIMM × 8 channels (2400 MT/s) × 2 sockets

Storage ≈ 3 TB NVMe (type: HGST SN200)

TABLE II: The Intel Testbed Specifications
Platform S2600WTTR (Base Board: S2600WTTR)

Processor Intel Xeon E5-2670 v3 (Haswell)

CPU 12 cores (24 hardware threads) × 2 sockets

Speed 2.3 GHz (Turbo 3.1 GHz)

Caches 32KB 8-way L1d and 32KB 8-way L1i, 256KB 8-way private L2, 30MB
20-way shared L3

Memory 2 16 GB DDR4 RDIMM × 4 channels (1866 MT/s) × 2 sockets

Storage ≈ 1.5 TB NVMe SSD(type: HGST SN200)

V. EXPERIMENTAL SETUP

In this section, we describe the experimental setup for the
evaluation. We summarize the configuration parameters of two
testbeds in Table I and II. The AMD testbed includes three
identical machines (Altus, Bertha, Pmemio) that feature two
AMD EPYC 7401 (24 cores /48 hardware threads) processors.
The testbed has a total of 256 GB DDR4 DRAM and 16
memory channels that operate at 2400 MT/s. Each machine
has a total of 4.65 TiB disk capacity, including 1.8 GB SATA
Micron 5200 Series SATA SSD. The platform runs Fedora 29
with Linux kernel 5.1.0-rc4-uffd-wp-207866-gcc66ef4-dirty
(experimental version) . We compiled all applications using
GCC 8.3.1 compiler with support for OpenMP. We use the
local SSD on the AMD testbed to evaluate the impact of
UMap page sizes in all applications. The second testbed, the
Intel testbed is on a cluster called flash. Its storage includes a
remote HDD through Lustre parallel distributed file system. It
also features 1.5 TB local SSD. We test the asteroid detection
application on this testbed to compare the performance of the
backing store on Lustre with the local SSD. The platform runs
the Red Hat Enterprise Linux 7.6 kernel. We compiled all
applications using GCC 8.1.0 compiler.

VI. EVALUATION

In this section, we evaluate the performance of UMap in
data-intensive benchmarks and applications. In particular, we
study the performance benefit of enabling flexible page sizes
at application level.

A. Out-of-core Sort

Our first evaluation uses an in-house sorting benchmark,
called umapsort. Umapsort is a multi-threaded program that
performs quicksort on values stored in a file. Thus, umap-
sort is a read-write workload. For the evaluation, we use
a single 500GiB data set of a sequence of ascending 64-
bit words. We configured the benchmark to memory map
data sets either using the mmap system call or UMap API.
Then, the program sorts the values in the memory region into
descending order. The application was configured to run with

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

0E+00	

5E+03	

1E+04	

2E+04	

2E+04	

3E+04	

3E+04	

4E+04	

4E+04	

5E+04	

5E+04	

4K	 64K	 128K	 256K	 512K	 1M	 2M	 4M	 8M	 16M	 32M	

Sp
ee
du

p	

Ti
m
e	
(s
ec
on

d)
	

Page	Size	

mmap	
UMap	
Reference	
Speedup	

Fig. 2: The performance of UMap for sorting 500 GiB data
on NVMe-SSD on the AMD testbed, as normalized to that of
mmap. UMap starts outperforming mmap when the page size
is larger than 64KB. At the page size of 8 MB, UMap achievs
2.5 times improvement compared to mmap.

96 OpenMP threads on the AMD testbed with 256GiB of
physical memory. The data set is stored on the local NVMe-
SSD device configured with its default boot-time values. We
report the experimental results in Figure 2.

We used different numbers of fillers and evictors to identify
the optimal concurrency for this benchmark. In most tested
cases, using 48 fillers and 24 evictors brings the best perfor-
mance. We then fixed the number of fillers and evictors to
test the impact of different page sizes. For the mmap tests, we
use its default setting and the standard 4KiB page size. For
UMap tests, we change the page size to identify the optimal
configuration. At the smallest page size, UMap shows much
higher overhead than mmap. We find that increasing page sizes
in UMap steadily improves the performance. At 64KiB page,
UMap starts outperforming mmap. By adjusting UMap page
size to 8MiB, the UMap version achieves 2.5 times speedup
compared to the mmap version. One reason for the improved
performance at larger page sizes is that the reduction in page
faults, which reduces the time spent in servicing page faults
and also aggregate smaller data transfers into bulky transfers to
exploit bandwidth. As the change is localized to the application
process, there is no need to modify any OS page size or file
system prefetch settings.

B. Graph Application

We implemented a conventional level-synchronous BFS
algorithm. Our BFS program takes a graph with compressed
sparse row (CSR) data format and stores only the CSR graph in
the storage device. We used a separated program to generate
a CSR graph to make a read-only benchmark and dropped
page cache before running the benchmark to achieve consistent
results. As for dataset, we used an R-MAT graph generator
with the edge falling probabilities used in the Graph500.

Figure 3 shows Umap’s BFS performance normalizing to
mmap’s best performance case where readahed is off. We
varied Umap page size from 4 KB to 4 MB and used the
default values for its other environmental variables. Umap



0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

0E+00	

1E+03	

2E+03	

3E+03	

4E+03	

5E+03	

6E+03	

7E+03	

4K	 16K	 64K	 128K	256K	512K	 1M	 2M	 4M	 8M	 16M	32M	64M	

Sp
ee
du

p	

Ti
m
e	
(s
ec
on

d)
	

Page	Size	

mmap	
UMap	
Reference	
Speedup	

Fig. 3: The relative performance of UMap as compared to that
of mmap in BFS on an R-MAT scale 31 CSR graph (529 GB)
data on NVMe on the AMD testbed.

showed its best performance and overperformed mmap by
1.8X with 512 KB page size whereas mmap slowed down
as increased the page size. We clearly confirmed the benefit
of Umap’s variable page size feature in terms of not only
providing user level control but also better performance.

C. File Compression

Long Range ZIP (lrzip) is a program that implements a
full-file compression algorithm [8]. Compression algorithms
detect redundancies in input files to reduce size. Lrzip uses a
modified RZIP algorithm to achieve an effectively unlimited
compression window size. The original mmap version of lrzip
uses a large buffer, e.g., one-third of system memory, to mmap
a window that ’slides’ through the input file. When matches
are found, lrzip may use a secondary 64k mmap region to page
in any matching regions outside the main window. The UMap
version removes these sliding buffers and replaces them with
a single UMap region spanning the entire input file. UMap
runtime automatically manages the amount of file data paged
in memory during execution.

Our experiments run lrzip in pre-processing mode to com-
pare the performance of mmap with UMap in RZIP algorithm.
We constrain the available memory to the program to ensure
out-of-core execution, i.e., 16 GB memory and a 64 GB
input data. The UMap version sets the environmental variable
to limit UMap buffer for caching pages in memory. The
mmap version requires a command-line option to override
the system memory on the testbed. In Figure 4 , lrzip shows
low sensitivity to the change in page size. This insensitivity
is likely due to the mostly sequential access pattern in lrzip,
which only has occasional data reuse of earlier portions of
the input file, i.e., when duplicated hash values are found.
Once the page size exceeds 1MB, the UMap version stabilizes
performance at about 1.25 times that of the mmap system call.

D. Asteroid Detection Application

In this case study, we use UMap for an on-going study that
searches for transient objects, such as asteroids, in intermittent
time-series telescope data. We uses UMap to create a 3D cube

0.0	

0.5	

1.0	

1.5	

2.0	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4K	 16K	 64K	 256K	 1M	 2M	 4M	 8M	

Sp
ee
du

p	

Ti
m
e	
(s
ec
on

d)
	

Page	Size	

mmap	
UMap	
Reference	
Speedup	

Fig. 4: The relative performance of UMap as compared to that
of mmap version for LRZIP 64 GB random data on NVMe
on the AMD testbed.

of virtual address space, where each page is directly mapped to
pixel data in a series of image files. UMap has the extensibility
to integrate an application-specific FITS handler for resolving
page fault to a particular file, which would require extensive
porting efforts to achieve in mmap.

The application creates millions or even billions of vectors
and then virtually ‘traces’ them through the image cube
to calculate the median pixel value along each vector. The
starting point of each vector has a uniform random distribution
in the data and their slope follows a given linear function.
The backing store contains thousands of FITS format image
files. Page faults are resolved to the FITS files containing the
requested data, where the pixel data is subsequently read and
decoded before copied into the faulting page. Note that a page
fault may require access data in multiple files.

The evaluation uses a synthetic data set derived from 537
random images taken from an astronomical survey performed
on 12/232018 by the Dark Energy camera in Chile. These files
were resized via bicubic resampling to four times their original
dimension in each axis in order to emulate the characteristics
of real-world datasets. Each file is approximately 977MB with
dimensions of 16,000 by 16,000 pixels after this operation. The
entire dataset is approximately 512GB. For the Lustre tests,
transparent Lustre compression and de-duplication reduces this
size to 223GB.

The experiments process a single pass of 32 million vectors
with a UMap buffer size of 64GB. We demonstrate two
types of backing stores in this application. The first uses the
local SSD on the AMD testbed. The second uses a backing
store mapped to remote disks through a Lustre parallel file
system on the Intel testbed. Figure 5 and 6 present the results.
Our results show that the application has low sensitivity to
page sizes because data reuse among the vectors. A slight
performance degradation at large page sizes because larger
pages bring more unused data. The execution time initially
decreases to the optimal minimum at 1MiB page and then,
slightly increases as larger amounts of unused data begins to
contend for buffer space.



0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

64KB	 256KB	 1M	 4M	 16M	 64M	

Ti
m
e	
(s
ec
on

d)
	

Page	Size	

Asteroid	Detection	Application	

Fig. 5: Execution time of the asteroid application on local SSD
at various UMap page sizes at 256GB input.

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

4KB	 16KB	 64KB	 256KB	 1M	 4M	 16M	 64M	

Ti
m
e	
(s
ec
on

d)
	

Page	Size	

SSD	

Lustre	

Fig. 6: Compare performance of the asteroid application on
local SSD and Lustre using 512GB input.

E. Database Workload

This use case demonstrates that UMap can be easily plugged
into existing database applications to improve user-space con-
trol over memory mapping. We ported N-Store [2], an efficient
NVM database, to use UMap API by changing approximately
ten lines of code. N-Store uses persistent memory like SSD as
the memory pool for data. Our experiments use a 384 GB
persistent memory pool on the local NVMe-SSD on the
AMD testbed. N-Store supports multiple executors to execute
transactions to the database concurrently. In our evaluation,
we sweep 4-32 executors to understand the scalability of
UMap on variable concurrency. Our workload uses the popular
YCSB [4] benchmark with eight million transactions and five
million keys. The measurement is repeated ten times, and we
report throughput from N-Store as the metric for performance.

We tested different numbers of fillers and evictors to select
the concurrency to be 48 fillers and 24 evictors for this
benchmark. Then, with a fixed number of fillers and evictors,
we test the impact of different page sizes. Figure 7 reports the
throughput of UMap version at different page sizes and the
original mmap version at the default 4KiB page. We find that
increasing page sizes in UMap does show a trend of increased
performance as other applications. The highest throughput is
achieved at 32KiB page size, which is about 34% improvement
of the mmap version. This page size is smaller than the optimal

0.0	

0.5	

1.0	

1.5	

0.0E+00	

2.0E+05	

4.0E+05	

6.0E+05	

8.0E+05	

1.0E+06	

1.2E+06	

4K	 16K	 32K	 64K	 128K	 256K	 512K	

Im
pr
ov
em

en
t	(
x)
	

Pe
rf
or
m
an

ce
	(o

ps
/s
)	

Page	Size	

mmap	
UMap	
Speedup	

Fig. 7: Compare database throughput using mmap and UMap
. UMap achieves up to 34% improvement at 32KB page.

0	

0.3	

0.6	

0.9	

1.2	

1.5	

1.8	

0.0E+00	

5.0E+05	

1.0E+06	

1.5E+06	

2.0E+06	

2.5E+06	

3.0E+06	

3.5E+06	

4.0E+06	

4	executors	 8	executors	 16	executors	 32	executors	

Sp
ee
du

p	
(x
)	

Th
ro
ug
hp

ut
	(o

ps
/s
)	

Application	Concurrency	

mmap	
umap	
Speedup	

Fig. 8: A scaling test in N-Store using increased number of ex-
ecutors in the database shows that UMap sustains performance
scaling at increased application concurrency.

page sizes in other applications because the access pattern in
the benchmark has low locality and mostly random.

Figure 8 report the throughput of the database at an in-
creased application concurrency, i.e., the number of executors
increases. The scaling test results demonstrate the advantage
of UMap in addressing application requirements that change
dynamically. When the number of executors increases from
four to 32, the gap between the UMap version and the mmap
version increases (in the gray bars). In particular, the speedup
by UMap increases from 1.3x to 1.6x steadily (the red line).
This result highlights the importance of a scalable design in
UMap for handling various application workloads.

VII. DISCUSSION

There are several future directions for UMap to support
emerging architectures.
Multi-tiered Storage has tiered access latency and bandwidth.
Currently, UMap is extensible for new layers by defining
new data objects. In the future work, we will automate
data migration between data objects and adapt to application
characteristics to improve storage utilization.
Disaggregated Memory architecture has large-capacity mem-
ory servers connected to compute node through high-
performance network to provide memory on demand. UMap
can be used to port applications on such architecture by



providing a backing store that defines access functions likely
using RDMA for moving to/from memory server.
Byte-addressable NVM requires strong consistency for sys-
tem software like file systems and DAX-aware mmap lacks
such support [20]. The UMap buffer could provide applications
with explicit control on when to persist changes cached in
volatile memory.

VIII. RELATED WORKS

Previous works have identified limitations in system ser-
vices for data-intensive applications that perform out-of-core
execution for large data sets [5], [18]. [16] analyzes the
overhead in the path through Linux virtual memory subsystem
for handling memory-mapped I/O. They conclude that kernel-
based paging will prevent applications to exploit fast storage.
Our approach aims to provide flexibility to adapt memory
mapping to application characteristics and back store features.

DI-MMAP [17] provides a loadable kernel module that
combines with a runtime to optimize page eviction and TLB
performance. This approach requires updates to remain com-
patible with the fast-moving kernel. CO-PAGER [10] also
provides a user-space paging service by combining a kernel
module with a user-space component. CO-PAGER bypasses
complex I/O subsystem in the kernel to reduce the overhead of
accessing NVM. Our approach stays in user-space completely,
and require no modification in the kernel or updates due to
kernel updates. Moreover, our design can support a variety of
back stores. For instance, remote memory paging that fetches
data from a memory server or compute node [6], [14] could be
easily integrated into UMap by providing a new store object.

IX. CONCLUSIONS

In this work, we provide a user-space page management
library, called UMap , to flexibly adapt memory mapping to
application characteristics and storage features. UMap em-
ploys the lightweight userfaultfd mechanism to enable appli-
cations to control critical parameters that impact the perfor-
mance of memory mapping large data sets while confining
the customizations within the application without impacting
other applications on the same system. We evaluate UMap in
five applications using large data sets on both local SSD and
remote HDD. By adapting the page size in each application,
UMap achieved 1.25 to 2.5 times improvement compared to
the system service mmap. In summary, UMap can be easily
plugged into data-intensive applications to enable application-
specific optimization.

ACKNOWLEDGMENT
This work was performed under the auspices of the U.S. Department of Energy by

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-
PROC-788145). This research was also supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration. This document was prepared as an
account of work sponsored by an agency of the United States government. Neither the
United States government nor Lawrence Livermore National Security, LLC, nor any
of their employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States

government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

REFERENCES

[1] Andrea Arcangeli. Userland page faults and beyond. https://schd.ws/
hosted files/lcccna2016/c4/userfaultfd.pdf, 2019.

[2] Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. Let’s talk about
storage & recovery methods for non-volatile memory database systems.
In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 707–722. ACM, 2015.

[3] Danny Cobb and Amber Huffman. NVMe overview. In Intel Developer
Forum. Intel, 2012.

[4] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM symposium on Cloud computing, pages
143–154. ACM, 2010.

[5] Michael Cox and David Ellsworth. Application-controlled demand
paging for out-of-core visualization. In Proceedings. Visualization’97
(Cat. No. 97CB36155), pages 235–244. IEEE, 1997.

[6] Sandhya Dwarkadas, Nikolaos Hardavellas, Leonidas Kontothanassis,
Rishiyur Nikhil, and Robert Stets. Cashmere-vlm: Remote memory
paging for software distributed shared memory. In Proceedings 13th
International Parallel Processing Symposium and 10th Symposium on
Parallel and Distributed Processing. IPPS/SPDP 1999, pages 153–159.
IEEE, 1999.

[7] Linux kernel. Userfaultfd. https://www.kernel.org/doc/Documentation/-
vm/userfaultfd.txt, 2019.

[8] Con Kolivas. Lrzip – long range zip. https://github.com/ckolivas/lrzip,
2019.

[9] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. Hermes: a
heterogeneous-aware multi-tiered distributed I/O buffering system. In
Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing, pages 219–230. ACM, 2018.

[10] Feng Li, Daniel G Waddington, and Fengguang Song. Userland co-
pager: boosting data-intensive applications with non-volatile memory,
userspace paging. In Proceedings of the 3rd International Conference
on High Performance Compilation, Computing and Communications,
pages 78–83. ACM, 2019.

[11] Sai Narasimhamurthy, Nikita Danilov, Sining Wu, Ganesan Umanesan,
Stefano Markidis, Sergio Rivas-Gomez, Ivy Bo Peng, Erwin Laure, Dirk
Pleiter, and Shaun De Witt. Sage: percipient storage for exascale data
centric computing. Parallel Computing, 83:22–33, 2019.

[12] I. B. Peng and J. S. Vetter. Siena: Exploring the design space of
heterogeneous memory systems. In SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
427–440, Nov 2018.

[13] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. System evaluation
of the Intel Optane byte-addressable NVM. In Proceedings of the
International Symposium on Memory Systems. ACM, 2019.

[14] Sergio Rivas-Gomez, Roberto Gioiosa, Ivy Bo Peng, Gokcen Kestor, Sai
Narasimhamurthy, Erwin Laure, and Stefano Markidis. MPI windows
on storage for HPC applications. Parallel Computing, 77:38–56, 2018.

[15] Arch Robison, Michael Voss, and Alexey Kukanov. Optimization
via reflection on work stealing in tbb. In 2008 IEEE International
Symposium on Parallel and Distributed Processing, pages 1–8. IEEE,
2008.

[16] Nae Young Song, Yongseok Son, Hyuck Han, and Heon Young Yeom.
Efficient memory-mapped I/O on fast storage device. ACM Transactions
on Storage (TOS), 12(4):19, 2016.

[17] Brian Van Essen, Henry Hsieh, Sasha Ames, Roger Pearce, and Maya
Gokhale. DI-MMAP–a scalable memory-map runtime for out-of-core
data-intensive applications. Cluster Computing, 2013.

[18] Brian Van Essen, Roger Pearce, Sasha Ames, and Maya Gokhale.
On the role of nvram in data-intensive architectures: an evaluation.
In 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, pages 703–714. IEEE, 2012.

[19] Rik van Riel and Peter W. Morreale. Sysctl in kernel version 2.6.29.
https://www.kernel.org/doc/Documentation/sysctl/vm.txt, 2008.

[20] Jian Xu and Steven Swanson. NOVA: A log-structured file system for
hybrid volatile/non-volatile main memories. In 14th USENIX Conference
on File and Storage Technologies (FAST 16), pages 323–338, 2016.


