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Abstract—DataRaceBench is an OpenMP benchmark suite
designed to systematically and quantitatively evaluate data race
detection tools. It has been used by several research and de-
velopment groups to measure the quality of their tools. In this
paper we explore how to evaluate the regression of data race
detection tools in the presence of observed tool errors. We define
how to generating consistent, reproducible, and comparable
evaluation results and a detailed evaluation process with a set of
configuration and execution rules. We also outline differences in
the evaluation of dynamic and static data race detection tools.
In addition to the evaluation results, we explore and suggest
different ways to process and present the data, with a focus
on tool errors. Using DataRaceBench we show an accuracy
regression for several popular data race detection tools in recent
release cycles.

Index Terms—Data race detection, Benchmark, OpenMP

I. INTRODUCTION

DataRaceBench [15] is a dedicated OpenMP benchmark
suite to evaluate data race detection tools. The goal of this
benchmark suite is two-fold: (1) to capture requirements
for data race detection in OpenMP programs, and (2) to
assess the status of current data race detection tools. The
initial release (v.1.0.1) of DataRaceBench contained 72 mi-
crobenchmarks written in C99. The latest release (v1.2.0)
has improved of the OpenMP 4.5 specification with a total
of 116 microbenchmarks [16]. 59 of these microbenchmarks,
also called race-yes programs, have known data races. Each
microbenchmark contains exactly one pair of read/write or
write/write code locations that cause a data race. The other
57 race-no microbenchmarks are data race free. A subset of
the microbenchmarks support variable length arrays to allow
configurable input data sizes.

Since its release, DataRaceBench has been used by several
research groups to evaluate data race detection tools [3], [9],
[20]. However, DataRaceBench does not contain sufficient
guidelines for users to generate consistent results. For example,
it is not clear how to calculate a tool’s precision, recall, and
accuracy when there are random results and compile-time or
runtime errors. In addition, users have modified some of the
tests, cherry-picked a subset, or interpreted results in different
ways.

In this paper, we explore how to consistently evaluate
different data race detection tools and generate reproducible,
comparable results. The contributions of this paper include:

o Systematically studying the key factors impacting a con-
sistent evaluation of data race detection tools;

o Proposing solutions to improve the consistency and re-
producibility of tool evaluation;

o Suggesting different ways to process and present the
resulting data;

o Evaluating the regression of several data race detection
tools in the presence of observed tool errors. A regression
happens when a change to a piece of software causes
new faults and/or re-emergence of old faults. If applied
consistently, DataRaceBench can be used as a regression
test suite to identify such problems.

o Releasing improved evaluation results which are automat-
ically generated by our new evaluation process.

II. OVERVIEW OF CONSISTENT EVALUATION

To improve consistency in tool evaluation, all steps in
an evaluation process should be consistent other than the
variable being tested. In the context of data race detection
tool evaluation, we identify several key factors, as shown in
Table I.

TABLE I
FACTORS IMPACTING CONSISTENT EVALUATION OF TOOLS
Factor Description Solution
Benchmarks | Test programs and inputs used | DataRaceBench
Platforms Hardware, OS and software Standard VMs
Tools Tool versions, configuration | Docker Images
and installation
Process The steps and settings used Automated scripts
Results Processing and interpreting re- | Standard metrics
sults
Randomness | Random results reported Reporting ranges
Errors Compile or runtime errors Adding error rate metrics

We elaborate on the factors in the following list:

« Benchmarks. We should use a commonly defined, com-
plete set of benchmark programs to conduct the evalua-
tion experiments. DataRaceBench is an example for this
purpose.

o Platforms. The machines used for evaluation play an im-
portant role of getting consistent results. Ideally, identical
platforms with the same hardware and software configu-
rations should be used for experiments. However, often
only platforms with similar configurations can be found.
With the increasing popularity of cloud machines, the
community can leverage commonly used virtual machine
instances to improve platform consistency.



e Tools. Tools can be installed and configured in many
different ways. A tool often depends on several other
software packages. We should clearly define the versions,
installation and execution configurations for all related
software packages. In addition, containers such as Docker
may be used to package various software components
when applicable.

o Evaluation process. We use scripts to automate the
evaluation process as much as possible, including both
experiments and processing of data. This helps eliminate
ambiguity and reduce human errors.

o Processing and interpretation of results. Tools may use
terms differently and or generate results in different
formats. We should define key terms clearly and unify
the presentation of results.

o Randomness. Multi-threaded programs often have non-
deterministic behaviors depending on the number of
threads, the compiler, and hardware platforms. We report
the range of metrics instead of a single value to capture
the variation among different program executions.

e Errors. It is common to encounter errors during the
evaluation process. The errors may come from the tools,
supportive compilers, or runtime libraries. It must be clear
how these errors are represented in the evaluation results.

III. TERMINOLOGY AND METRICS

The traditional definition of a data race is as follows [24]:

“ A data race can occur when two concurrent threads access
a shared variable and when at least one access is a write, and
the threads use no explicit mechanism to prevent the accesses
from being simultaneous. ”

Tool regression testing is the repeated testing of an already
tested tool, after modification, to discover any defects intro-
duced or uncovered as a result of the changes/updates to the
tool. In our use case we evaluate different versions of released
data race detection tools with DataRaceBench and compare
the results to detect a regression, i.e. that one of the computed
scores and/or metrics is lower than for a previous tool version.

Similar to our evaluation in [15] we compute the usual
test metrics for data races as follows. When a data race is
detected it is considered a ’positive’ test outcome, if no data
race is detected a ’negative’ outcome. If the outcome is as
expected (known for all the benchmarks) then it is reported
as a ’true’ case, otherwise a ’false’ case. The combination
gives four possible cases, based on which different metrics
are defined.

Let T'P be the set of True Positives, F'P the set of False
Positives, T'N be set of True Negatives, and F'N be the set of
False Negatives, then we can define the following four metrics:

.. TP
e Precision P = TTPUFP|

— TP
e Recall R = m

_ |TPUTN|
o Accuracy A = [TPUTNUFPUFN]

The precision metric (also called positive predictive value)
measures the ratio of true positives to the sum of true positives
and false positives. It reflects the confidence that a reported

positive by a tool is a real one. Recall (also known as
sensitivity) is a measure of a tool’s ability to find true positives
out of the sum of true positives and false negatives. Accuracy
gives the chance of having correct reports out of all positive
and false reports generated by a tool. For all the three metrics,
higher values are better.

A tool error can be considered to be different than a
reported wrong result or treated in a similar way. This impacts
how results about the tool are reported, in particular it may
change the metrics values and consequently the selection of
the respective tool. In our evaluation we exclude tool errors
(e.g. seg-faults and reported unsupported features) from the
computation of metrics, and also report a success-rate. Thus,
we consider a ratio of successful tests and failing tests in
addition to the usual metrics.

Alternatively one could add the failing test cases to the
false positive/negative cases, giving less favorable results for a
tool, but this can be misleading, because the tool did actually
not report the existence or absence of a data race. Since we
also consider that multiple tools can be combined and used
together, preference is given to metrics for non-failing tool
executions. Therefore we exclude tool failures from the metrics
computation, but do include them in the success-rate in the
evaluation report.

IV. EXPERIMENTS
A. Tools Selected

We selected four dynamic data race detection tools and one
static data race detection tool for evaluation and regression
testing. All the selected tools, dynamic and static, support data
race detection for OpenMP programs.

ThreadSanitizer is a runtime data race detector developed
by Google. ThreadSanitizer is now part of the LLVM and
GCC compilers to enable data race detection for C++ and Go
code. ThreadSanitizer was not developed for OpenMP parallel
programs. However, we have found that ThreadSanitizer can
effectively support data race detection for OpenMP codes
when using the LLVM OpenMP runtime configured with the
LIBOMP_TSAN_SUPPORT turned on.

Archer [2] is an OpenMP data race detector that exploits
ThreadSanitizer [8] to achieve scalable happens-before track-
ing. It uses static analysis to reduce false positives generated
by the dynamic analysis performed by ThreadSanitizer. Archer
has to use the LLVM/Clang compiler which ThreadSanitizer
is based on to compile the benchmarks. In our experiments,
Archer uses the LLVM OpenMP Runtime with OMPT support
provided. Two available versions of Archer, built on Thread-
Sanitizer version 3.9.1 and 6.0.0 respectively, are used in the
experiments.

Intel Inspector [11] is a dynamic analysis tool that detects
threading and memory errors in C, C++ and Fortran codes.
It can work with compilers other than Intel’s. However, it is
recommended to use Intel’s OpenMP runtime with Inspector to
avoid incorrect threading error analysis. We use the 2018 and
2919 versions of Intel Inspector, combined with four different
Intel compiler versions, 17.0.2, 18.0.2, 19.0.0, and 19.0.4,



in our experiments. Intel Inspector provides different levels
of analysis with the various configurations. We configure
the maximum level for the analysis in our evaluation using
the command line: inspxe-cl -collect ti3 -knob
scope=extreme -knob stack-depth=16 -knob
use-maximum-resources=true. We use the default
OpenMP runtime provided with the Intel compiler in this
experiment.

ROMP! is a recently released dynamic data race detection
tool for OpenMP programs [9]. Using a hybrid algorithm
combining happens-before analysis and lock set analysis,
ROMP focuses on logical concurrency instead of runtime
thread concurrency to reduce false negatives for tests which are
sensitive to the number of threads. ROMP requires OpenMP
runtime support be provided by LLVM.

DRACO is a static data race detection tool based on
polyhedral data dependence analysis [30] and can prove that
a program is data race free. Therefore the results have to be
interpreted differently than dynamic analysis results. The tool
also reports when it cannot verify the data race freedom of
a program because of unsupported OpenMP features or code
patterns, in which case it reports “unknown”. When unknown
is reported the program may have or may not have a data race.
OpenMP runtime support is not needed for DRACO because
its static analysis based data race detection does not execute
the test program.

B. Hardware Platform

Our evaluation platform is the Quartz cluster hosted at the
Livermore Computing Center [18]. Each computation node of
the cluster has two Intel 18-core Xeon E5-2695 v4 processors
with hyper threading enabled.

C. Evaluation Reports

We used Archer (2 versions), Intel Inspector (2 versions
with 4 different compilers), ThreadSanitizer (4 versions),
ROMP, and DRACO for the evaluation. To evaluate the
dynamic tools we used the all 36 available hardware threads
on the evaluation platform, and two data set sizes, 32 and
256, for the benchmarks allowing variable data sizes. We ran
each test 3 times using the test harness script provided in
DataRaceBench to catch mixed results produced by dynamic
tools. A ten minutes limit is set for each test. The static
tool is evaluated using only the default data set size, 64, for
benchmarks allowing variable data size. Since static analysis is
performed at the compile time, the analysis is only performed
once for each benchmark.

During the evaluation we collect the test result, memory
consumption and execution time. Since this paper focuses on
the regression of data race detection tools, we do not analyze
memory consumption and only report basic runtime data.

Table II shows the statistics of the evaluation for all dynamic
tools. Each dynamic tool should perform a total number of
396=3*(100+16%*2) tests, with 3 runs for 100 benchmarks each

Thttps://github.com/zygyz/romp, commit # 6a0ad6d

using fixed length arrays, and 16 benchmarks using variable
length arrays with 2 data sizes each. Any lower number
of reported successful tests is due to a missing executable,
caused by compile time segmentation fault or an unsupported
compiler feature. The static tool, DRACO, performs a total
of 116 analysis runs, one for each benchmark. The counts
of four possible test result sets, TP, FN, TN and FP, are
reported and the three metrics are calculated according to the
formula defined in section III. We collect two types of testing
errors and two types of runtime testing errors in the statistics.
The compile time errors include compile-time segmentation
faults (CSF) and unsupported OpenMP features reported by
compilers (CUN). There will be no executable generated with
these two errors, therefore no test can be performed. Two
types of runtime errors are collected in the statistics: execution
crash at runtime (RSF) and execution exceeding timeout limit
(RTO). Total testing time for the entire suite is reported in
Table II for all the tests including those with runtime timeout
and runtime execution crash.

In Table III we show the three evaluation metrics for
precision, recall, and accuracy for all 116 micro-benchmarks
of DataRaceBench. In this table only the error-free evaluation
runs are included. Evaluation runs that crashed or had a time-
out are excluded. The metrics are computed following the
metrics reported in [15]. All test results (from all repeated
runs with all the thread numbers and data set sizes used
in the evaluation) associated with a benchmark are grouped
together to determine the test result for the same benchmark.
For example, we label a tool reporting TP for a benchmark
only when all the associated test runs tested by the tool report
TP. A mixed result (TP mixed with FN or TN mixed with FP)
is labeled if different results are reported by all associated
test runs. Treating a mixed result to be a true or false result
introduces different metrics values. The min and max values
reported in Table IIT shows the impact of the mixed results in
the evaluation. In the best case scenario where a tool always
reports consistent results and no mixed results are reported,
the min and max values for a metric should be identical.

D. Dynamic Tools’ Regression Results

In Table II, we show our regression evaluation for Archer,
Intel Inspector, and ThreadSanitizer. > No regression results
are available yet for ROMP since there is only one version
of ROMP available. The results count each test run indi-
vidually. In Table III and Table V the results count each
micro-benchmark individually. We can see that over time
the success-rate for Archer and Intel Inspector increases, but
ThreadSanitizer’s success rate decreased with its most recent
release. In contrast, the metrics show a very different picture,
with some metrics decreasing for every tool with more than
one released version. (e.g. Intellnspector2018-Intel9.0.4 to
Intellnspector2019-Intel9.0.4 (Recall); Tsan6.0.1 to Tsan7.1.0
to Tsan8.0.1 (Accuracy).

2The Archer group suggests setting environment variable TSAN_OPTIONS
to “ignore_noninstrumented_modules=1" for Archer 2.0 to avoid many false
positive reported in OpenMP runtime.



TABLE II
EVALUATION STATISTICS: COUNTS ARE BASED ON ALL TEST INSTANCES
(SF: SEGMENTATION FAULT; UN: COMPILER UNSUPPORTED; TO: EXCEEDED TIMEOUT)

Tool-Compiler Successful Test Results Metrics Testing Error Test Time
Tests (HH:MM:SS)|
TP TFN [ TN | FP | Precision | Recall | Accuracy || CSF [ CUN [ RSF [ RTO
Archer1.0-Clang3.9.1 376 187 24| 145 0 1.00| 0.89 0.93 5 5 10 0 00:06:11
Archer2.0-Clang6.0.0 386 202 | 20| 156 3 0.99| 091 0.94 0 5 0 0 00:06:17
Inspector2008-Intel17.0.2 392 195 | 30| 156 9 0.96| 0.87 0.90 2 0 0 0 01:32:50
Inspector2008-Intel18.0.2 396 198 | 27| 160 8 0.96| 0.88 0.91 0 0 0 3 02:04:34
Inspector2018-Intel19.0.0 396 213 | 12| 60 | 108 0.66 | 0.95 0.69 0 0 0 3 03:41:17
Inspector2018-Intel19.0.4 396 198 | 27160 | 11 0.95| 0.88 0.90 0 0 0 0 01:33:54
Inspector2019-Intel17.0.2 392 195] 30| 159 6 0.97| 0.87 0.91 2 0 0 0 01:37:08
Inspector2019-Intel18.0.2 396 195| 30| 162 6 0.97| 0.87 0.91 0 0 0 3 02:04:49
Inspector2019-Intel19.0.0 396 214| 11| 611107 0.67| 0.95 0.70 0 0 0 3 03:32:55
Inspector2019-Intel19.0.4 396 195| 30| 164 7 0.97| 0.87 0.91 0 0 0 0 01:37:27
ROMP-Clang8.0.0 384 198 18| 144 6 0.97] 0.92 0.93 0 6 9 3 00:59:20
Tsan5.0.2-Clang5.0.2 386 192 30| 153 3 0.98| 0.86 0.91 0 5 0 3 00:36:28
Tsan6.0.1-Clang6.0.1 386 195| 27| 156 3 0.98| 0.88 0.92 0 5 0 0 00:07:34
Tsan7.1.0-Clang7.1.0 386 193 | 29| 154 5 0.97| 0.87 0.91 0 5 0 0 00:07:19
Tsan8.0.1-Clang8.0.1 384 184 | 38| 152 4 0.98| 0.83 0.89 0 6 0 0 00:07:03
TABLE III combination of tools and compilers. The ID column shows

METRICS FOR THE TOOLS: COUNTS ARE BASED ON THE NUMBER OF
BENCHMARKS (MULTIPLE INSTANCES OF THE SAME BENCHMARK ARE
COUNTED AS ONE)

Tool Correctness| Precision | Recall Accuracy

Success Range Range Range

Rate

Archerl.0-Clang3.9.1 0.80 | 1.00-1.00 | 0.85-0.89 | 0.92-0.94
Archer2.0-Clang6.0.0 0.90 | 0.98-0.98 | 0.90-0.91 | 0.94-0.95
Inspector2018-Intel17.0.2 0.8710.93-0.96 | 0.85-0.88 | 0.89-0.92
Inspector2018-Intel18.0.2 0.90 | 0.94-0.96 | 0.86-0.90 | 0.90-0.93
Inspector2018-Intel19.0.0 0.66 | 0.61-0.61 | 0.95-0.95 | 0.66-0.66
Inspector2018-Intel19.0.4 0.90]0.93-0.95 | 0.86-0.92 | 0.90-0.93
Inspector2019-Intel17.0.2 0.90 | 0.96-0.96 | 0.86-0.86 | 0.91-0.91
Inspector2019-Intel18.0.2 0.91]0.96-0.96 | 0.86-0.86 | 0.91-0.91
Inspector2019-Intel19.0.0 0.66 | 0.61-0.62 | 0.95-0.97 | 0.66-0.68
Inspector2019-Intel19.0.4 0.91]0.94-0.96 | 0.86-0.86 | 0.91-0.91
ROMP-Clang8.0.0 0.8510.96-0.96 | 0.91-0.91 | 0.93-0.93
Tsan5.0.2-Clang5.0.2 0.8410.98-0.98 | 0.79-0.91 | 0.88-0.95
Tsan6.0.1-Clang6.0.1 0.86 | 0.98-0.98 | 0.83-0.91 | 0.90-0.95
Tsan7.1.0-Clang7.1.0 0.8410.96-0.98 | 0.79-0.91 | 0.87-0.95
Tsan8.0.1-Clang8.0.1 0.81]0.96-0.98 | 0.76-0.86 | 0.85-0.92
DRACO 0.40 | 0.58-0.58 | 0.55-0.55 | 0.59-0.59

For dynamic tools, the number of threads and the number
of runs influences the probability to detect a data race. With
36 threads we get always at least two expected results out of
three runs for all benchmarks except two. In contrast, with
just two threads, this is not the case, even with three runs a
data race can be missed. However, there is no guarantee that a
run creates a thread schedule revealing a data race. Therefore,
the more runs the more likely it is to detected a data race.
Essentially we want to create a high probability of different
thread schedules. Not surprisingly, the maximum number of
hardware threads is the most important factor, but for a few
benchmarks we also notice that 2-3 repeated runs are (at least)
necessary (with dynamic tools) until an existing data race is
detected. This is true for those benchmarks where not every
thread schedule causes a data race.

Table IV lists benchmarks that have compiler error, runtime
error, or false data race detection reported by any selected

the micro-benchmark ID given in the DataRaceBench Suite
and the R column presents whether a program contains a data
race. The abbreviated label in each column shows the tool and
compiler combination with the version information: Arch. =
Archer; Ins. = Inspector; Tsan = ThreadSanitizer; CI. = Clang;
In. = Intel compiler. The labels, CSF, CUN, RSF, and RTO,
categorize the reported errors. The vand Xsymbols represent
if the tool together with the selected compiler correctly reports
data races.

Several reasons of failed data race detection for the first
72 micro-benchmarks were reported in [15]. Those include
the case that a data race exists only when a specific number
of OpenMP threads are used (in micro-benchmarks #6, #7
and #8) and when a data race exists in the SIMD programs
(in micro-benchmarks #24 and #25). This evaluation report
focuses on the regression of data race detection tools and the
micro-benchmarks added into after DataRaceBench version
1.0.1.

Table IV shows the compilers failing with a segmentation-
fault or an unsupported OpenMP feature of a given micro-
benchmark. We find compile time segmentation faults only
with the earliest version of Clang/LLVM (3.9.1) and the ear-
liest version of Intel compiler (17.0.2). The trend of compiler
development improving OpenMP support can be seen in the
table.

From the report we find various versions of the
Clang/LLVM compiler reporting unsupported OpenMP fea-
tures for the same benchmarks. In contrast, the latest Thread-
Sanitizer with Clang/LLVM 8.0.x, reports one additional com-
pile time error when compared to all previous versions (see
Table V). In Table IV we can see that Clang/LLVM 8.0.x (used
by ROMP and ThreadSanitizer 8.0.1) failed compiling micro-
benchmark #97, DRB097-target-teams-distribute-orig-no.c.

Table IV also shows benchmarks that have mixed results,
TP mixed with FN, or FN mixed with TN, and the respective
tools and compilers. Mixed results indicate that multiple runs
are necessary to get the expected answer.



TABLE IV
BENCHMARKS WITH COMPILER/TOOL REGRESSION
COLUMN ID: NUMBER OF BENCHMARK; COLUMN R: WHETHER A PROGRAM CONTAINS A DATA RACE
( V' CORRECT; XINCORRECT; CSF: COMPILER SEGMENTATION FAULT; CUN : COMPILER UNSUPPORTED

RSF: RUNTIME SEGMENTATION FAULT; RTO : RUNTIME TIMEOUT)
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TABLE V
REGRESSION SUMMARY: COUNTS BASED ON BENCHMARKS

Tool-compiler Benchmarks with Race Benchmarks without Race Compiler Error | Runtime Error
TP TP/FN FN TN TN/FP FP

Archerl.0-Clang3.9.1 [46 [39.66%| 2 | 1.72%| 6 | 5.17%| 47 | 40.52%| 0 | 0.00%| 0| 0.00%| 10 8.62%| 5 4.31%|
Archer2.0-Clang6.0.0 | 52| 44.83%| 1 | 0.86%]| 5 | 4.31%| 52 | 44.83%| 0 | 0.00%| 1| 0.86%| 5 4.31%| 0 0.00%)
Inspector2018-Intel17.0.2 | 50 | 43.10%]| 2 | 1.72%| 7 | 6.03%| 51 | 43.97%| 2 | 1.72%| 2| 1.72%| 2 1.72%| 0 0.00%)
Inspector2018-Intel18.0.2 | 51 | 43.97%| 2 | 1.72%| 6 | 5.17%| 53 | 45.69%| 1 | 0.86%| 2| 1.72%| O 0.00%] 1 0.86%)
Inspector2018-Intel19.0.0 | 56 | 48.28%]| 0 | 0.00%]| 3 | 2.59%| 20 | 17.24%]| 0 | 0.00%| 36 | 31.03%| O 0.00%| 1 0.86%)
Inspector2018-Intel19.0.4 | 51 | 43.97%| 3 | 2.59%| 5 | 4.31%| 53 | 45.69%| 1 | 0.86%| 3| 2.59%| O 0.00%]| 0 0.00%)
Inspector2019-Intel17.0.2 | 51 | 43.97%| 0 | 0.00%]| 8 | 6.90%| 53 | 45.69%| 0 | 0.00%| 2| 1.72%| 2 1.72%| 0 0.00%)
Inspector2019-Intel18.0.2 | 51 | 43.97%| 0 | 0.00%]| 8 | 6.90%| 54 | 46.55%| 0 | 0.00%| 2| 1.72%| O 0.00%| 1 0.86%)
Inspector2019-Intel19.0.0 | 56 | 48.28%| 1 | 0.86%| 2 | 1.72%| 20 | 17.24%| 1 | 0.86%| 35 | 30.17%| 0O 0.00%| 1 0.86%)
Inspector2019-Intel19.0.4 | 51 | 43.97%| 0 | 0.00%]| 8 | 6.90%| 54 | 46.55%| 1 | 0.86%| 2| 1.72%| O 0.00%| 0 0.00%)
ROMP-Clang8.0.0 51[43.97%| 0] 0.00%]| 5| 4.31%| 48 | 41.38%| 0| 0.00%| 2| 1.72%| 6 5.17%| 4 3.45%
Tsan5.0.2-Clang5.0.2 |46 | 39.66%]| 7 | 6.03%| 5 | 4.31%| 51 | 43.97%| 0 | 0.00%| 1| 0.86%| 5 4.31%| 1 0.86%)
Tsan6.0.1-Clang6.0.1 48 [41.38%| 5 | 4.31%| 5 | 4.31%| 52 | 44.83%| 0 | 0.00%| 1| 0.86%| 5 4.31%| 0 0.00%)
Tsan7.1.0-Clang7.1.0 |46 | 39.66%]| 7 | 6.03%]| 5 | 4.31%| 51 | 43.97%| 1 | 0.86%| 1| 0.86%| b5 4.31%| 0 0.00%)
Tsan8.0.1-Clang8.0.1 44 1 37.93%| 6 | 5.17%| 8 | 6.90%]| 50 | 43.10%| 1 | 0.86%| 1| 0.86%| 6 5.17%| 0 0.00%)

E. Static

Verification Tool Evaluation

consider therefore the *True Unknown’ (TU) as false positives

DRACO was chosen as the data race verification to use in
our evaluation [30]. DRACO can verify that a given polyhedral
OpenMP for-loop is data race free. Verification tools usually
report a 3-valued result: the specification or property could
be verified, falsified, or it could not be determined either of
the two cases. Reasons for definitive answer include, the tool
ran out of resources or certain language constructs are not
supported. Static analysis tools usually perform a may or must
analysis and report a 2-valued result, where one of the results
is either an over-approximation (may) or under-approximation
(must). In this paper we only consider static verification tools
with 3-valued results.

TABLE VI
DRACO EVALUATION RESULT WITH 3-VALUED RESULTS INCLUDING TRUE
UNKNOWN (TU) AND FALSE UNKNOWN (FU).

Verification Time
00:14:17

Total | TP | TN | FP | FN | TU | FU | Error
116 |26 (20 {0 [0 |28 |33 |9

DRACO is a static verification tool that reports three kinds
of results: it has detected a data race that definitely exists, it
has determined that there is definitely no data race in a given
polyhedral parallel loop, or ’unknown’. It reports *unknown’
if any unsupported OpenMP directives are detected or the
for-loop nest is not a polyhedral loop nest (i.e. it contains
non-affine index accesses to array elements). The results for
the 116 micro-benchmarks are shown in Table VI. For each
of the two groups of micro-benchmarks with and without
data races, there are two root-causes of reported 'unknown’:
(i) the tool determines that it cannot analyze the respective
parallel loop (i.e. it is not an affine loop nest), (ii) it detected
an unsupported OpenMP construct somewhere in the code.
DRACO does not report false positives or false negatives, but
it does report "unknown’ in all cases where it cannot determine
a definitive answer. From a user perspective this is helpful,
because it is not necessary to hunt down false-positives, but it
would not be a fair comparison to compute the metrics with
zero false positives/negatives. With regard to the metrics, we

and the ’False Unknown’ (FU) as false negatives. This gives
scores as shown in Table III and allows to compare the static
verification tool with other testing tools (otherwise the metrics
would all be 1.0). However, the advantage in comparison to
testing tools of proving data race freedom for 20 benchmarks
is not represented in the metrics.

V. RELATED WORK
A. Dynamic data race detection tools

All the dynamic tools evaluated in this paper run the
target program after instrumentation and analyze the execution
trace [32]. Many dynamic analyses use a happens-before
approach. Reads and writes to shared memory are modeled
by a partial order over events within the system [14]. This
technique is heavily dependent on the application scheduler,
and may miss many latent races. Advances made in this
area include using specialized concepts rather than traditional
vector clocks in order to reduce overhead [5], [6], expanding
it to single-threaded event-driven programs [19], and defining
additional relations such as casually-precedes [27].

Lockset analyses such as Eraser [25] present an alternative
to happens-before techniques; they infer the set of mutually-
exclusive locks that protect each shared location. If a variable’s
lockset is empty then accesses to that location may trigger
races. These analyses can find races that happens-before
techniques cannot, but they incur steep performance costs.

Hybrid approaches combining both methods have also been
developed [10], [21], [22], [26], [32]. These methods leverage
information about local control flow, recent access, and com-
mon race patterns in order to dynamically adjust the analysis.
This leads to greater flexibility when balancing accuracy and
performance, as well as enabling long-term [32] and large-
scale [26] analyses that might not be possible with other
techniques.

B. Static data race detection tools

Static data race detection techniques do not require program
execution to identify data-races. Static tools do not rely on



instrumented schedulers, and therefore may find races that
dynamic tools could not. Locksmith [23] is one such tool
that seeks to correlate locks with the shared memory locations
they guard. It over-approximates the set of data races, possibly
returning some false positives. Another analysis seeks to
improve the detection of shared variables [12] by performing
pointer analysis in order to find global variables that are locally
aliased. The RELAY analysis [29] modularizes each source of
unsoundness in its analysis so that more accurate methods can
be substituted when they are developed. OmpVerify [4] is a
static race detector that targets OpenMP exclusively. It uses
a polyhedral model to determine data dependencies in shared
data.

An analysis of Intel Thread Checker was performed in
2008 [13], evaluating its performance in detecting races during
loop parallel and section parallel codes. The benchmark suite
used for the evaluation was not released along with the paper.

Similar multi-tool analyses have been performed with other
languages. Two targeting the Java language [l], [31] ana-
lyzed several data race detection tools and compared the
accuracy and performance of each. The first [1] compared
RaceFuzzer, RacerAJ, JCHORD, Race Condition Checker, and
Java RaceFinder. The authors compared the compilation time,
accuracy, precision, along with several other metrics. Java
RaceFinder performed the best on their tests, although it only
reported the first race found even if there were others in the
program.

The second [31] focused on detection methods rather than
tools, and compared five different algorithms: FastTrack,
Acculock, Multilock-HB, SimpleLock+, and casually pre-
cedes (CP) detection. The report used FastTrack as a base-
line to compare detection accuracy and performance against.
Multilock-HB reported the most races without any false-
positives, but generated significant overhead; SimpleLock+
was had the lowest overhead, but missed at least one race
that MultiLock found.

C. Evaluation of data race detection tools

More recently, DataRaceBench [15] was created to system-
atically and quantitatively evaluate data race detection tools
for OpenMP programs. The selected four tools being evaluated
demonstrated different strengths and limitations for precision,
recall and accuracy. Later, DataRaceBench was extended to
cover more OpenMP 4.5 features. The enhanced version
exposed more compiler and tool limitations related to OpenMP
tasking and other newer OpenMP features [16]. Lin et. al. [17]
also conducted runtime and memory evaluation of data race
detection tools. DataRaceBench can be incorporated into any
existing regression testing frameworks (e.g. Jenkins [28]) as
concrete test cases.

JBench [7] is a collection of 48 JAVA programs and 985 data
races. The details of data races are provided and the data races
are classified into four categories: variable type, code structure,
method span and cause. Three JAVA data race detectors were
evaluated with JBench and over than 40% of false negative rate
and more than 200x overhead were reported. DataRaceBench

and JBench both have a known number of data races and
the data race information in the source codes. They can be
effectively used to evaluate OpenMP and JAVA data race
detection tools respectively.

VI. CONCLUSION

Our evaluation of multiple versions of four dynamic data
race detection tools and one static data race detection tool
identified regressions in the most recent releases of popu-
lar industry tools ThreadSanitizer and Intel Inspector. The
research tool Archer also shows a regression. Although the
success rate of passing micro-benchmarks is increasing for
most tools’ version transitions, more detailed metrics show
significant changes. For example the recent Intel Inspector
2019 release shows a degradation in recall from 0.95 to 0.87
(see Table II).

The other two evaluated tools, ROMP a promising new
dynamic data race detection tool, and DRACO a static ver-
ification tool under development, were presented recently and
have not had a version transition yet, but are interesting to
discuss in the context of comparative tool evaluations.

With multiple runs different results were reported for about
6% of the micro-benchmarks for ThreadSanitizer, and up to
3.5% for Intel Inspector. The most recent versions of Archer
and ROMP do not show any difference in results with multiple
runs.

In the future, we will add Fortran tests, support OpenMP 5.0
features, and group the micro-benchmarks based on OpenMP
features and code characteristics for which we can see a corre-
lation to regression results. We will also further investigate the
combination of tools, in particular the combination of static
and dynamic tools appear promising in cases where they only
one tool can determine a definitive answer.
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