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Pulsed power devices depend on the ability to deliver high voltages and

currents to a variety of complex loads with minimal transmission losses. The Z

Machine at Sandia National Laboratories can deliver up to 26MA within a few

10's of nanoseconds to multiple z-pinch type loads. An effort is underway to

measure plasma parameters such as temperatures and densities within the

power flow regions on the Z Machine. A proper physics understanding of

efficient high current delivery is necessary to ensure that higher current devices

such as Z-Next will perform as designed. In the power flow regions, plasmas

form on the electrode surfaces and propagate into the vacuum gap, providing a

current loss mechanism. These plasmas are measured spectroscopically using

a 1 m Czerny-Turner spectrometer with a fast (nanosecond) streak camera

output. Data is analyzed using detailed, time-dependent, collisional-radiative

(CR) and radiation transport modeling. Recent results will be presented.



Motivation

• Obtain measurements of plasmas in the power flow regions on Z.

• Detailed plasma measurements have been made on other pulsed-
power machinest2. Want to extend these measurements to the
Z-Machine.

• Plasma measurements in the Z convolute region were made by Matt
Gomez et. al.3 Want to expand these measurements to other power
flow regions.

• Gain a physics understanding of plasma formation on Z.

• Input experimental data into particle in cell (PIC) codes to better
predict plasmas and fields in high power devices.

• Use this information to improve present pulsed power designs and
as a predictive capability for future, next generation capabilities
(Z-Next)4.

[1] M.D. Johnston, et al., in submission.
[2] S.G. Patel, M.D. Johnston, et al., Review of Sci. lnstr., 89, p. 10D123 (2018).

[3] M.R. Gomez, et al., Physical Rev. Accel. and Beams, 20, p. 010401-1-21 (2017).
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[4] W.A. Stygar et al., Phys. Rev. STAB, 18, 110401 (2015).



Current Losses on Z Reduce Power Delivery to the Loads
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• Up to 5MA current loss is sustained for
-50ns on some loads.

• Surface contaminants, outgassing of
electrode materials, and non-ideal
geometries affect current delivery to
the load.
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• Approximately 70% of the total electrical
power delivered to the load occurs after peak
current, when losses are at their highest.

• Current and voltage near stagnation are
more important than the peak current and
these are dictated by convolute loss.
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Current losses on the Z machine are attributed to plasma
formation in the convolute and final current feed5
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currents, but experimental measurements
are needed to verify the physics are correct.
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[5] D.v. Rose, et al., Physical Rev. Special Topics-Accel. and Beams, 18, p. 030402-1-10 (2015).



Z Hardware Configuration6

Wire-Array Z-Pinch Load

Anode
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Plasma Measurements
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• B-dot measurements are made at 6 cm from the axis

• Vacuum gap decreases to 3 mm in the MagLIF hardware

• Plasma velocity > 10 cmhis measured in the convolute
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[6] D.H. McDaniel, et al., Proc. 5th lnternational Conf. on Dense Z Pinches, AIP, Melville, NY p. 23 (2002).



Particle in Cell Modeling of Cathode and Anode Plasma in
Quicksilver7/8
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[7] J.P. Quintenz, et al., Laser Part. Beams 12, p. 283 (1994).
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[8] T.D. Pointon, 52nd Annual Meeting of the APS Division of Plasma Physics, Nov. 8-12, 2010.



Dedicated Experiments for Power Flow Physics are now

Being Conducted on Z.
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Power Flow Hardware

• Experiments are designed to look for plasmas off the surface of a non-imploding load.

• Coatings are applied to the load to measure specific neutral and ion lines.

• Experiments are designed to look in the final feed gap without a backlighting wall.



Chordal Line of Sight on Power Flow Shots in the Final Feed Sandia
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Mg l triplet 3p - 4s (5167Å, 5173Å, 5184Å)
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• MgF2 coated optics
• Mg I and Mg II broadened line emission observed
• Two distinct plasma regions present in spectrum
• Colder, more dilute Mg I plasma next to optics
• Hotter, denser plasma, further off the surface
• Light from the hotter, denser plasma is absorbed in

the cooler plasma.
• Density of emitting plasma: -1x1 019 cm-3
• Density of absorbing plasma: - 1x1 018 cm-3
• Plasma temperatures: 1-5eV
• Mg I lines are red-shifted by 5.9A
• Opacity (T) = -0.4
• 1x1 019 cm-3 continua fits experimental data
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Metastable level in Mg I (steady state, without opacity)

3s3p 3P - metastable level
3s3p 3P —> 2p6 3s2 1S — spin-forbidden transition

3s4s 1S —> 3s3p 113; k = 11,828 A (NIST)
3s4s 3S —> 3s3p 3P; X. = 5,183 A (NIST)
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Te (eV) Level Ne (cm-3) POP* A i,j ***

1 3s4s 1S 1019 1.62.10-3

3s4s 1S
1p

3s3p 2.85.10+7—>

3s3p 1P

1S

2p6 3s2
1.39.10-2 5.05.10+8

—>

1 3s4s 3S 1019 6.47.10-3

3s4s 35 3s3p 3P
1.23.10+8

—>

3s3p 3P

1S

2p6 3s2 2.13.10-1 5.01.10+1—>

1 gs
** - 2p6 3s2

1S

1019 3.57.10-1

* - population, ** - ground states, *** - Einstein coefficient



Zeeman Splitting Diagnostics

• Time and space resolved Zeeman

measurements were taken on the SMP diode

on RITS-6 as a proof of principle for Z.

• Calculations of Zeeman lineshapes have been

done for Al III and C IV  covering a wide variety of

Z relevant temperature and density regimes.

• Previous work by Gomez et. al. measured Na I

splitting in the load region on Z.9

Experiment ---- Theory
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-[9] M.R. Gomez, et al., Rev. Sci. lnstr., 85, p. 11E609-1-11 (2014). [10] S. Biswas, M.D. Johnston et al., POP, to appear.



Zeeman Splitting Measurements on Z
Requirements:
• Slotted return current can

• Multifiber array

• Detectors (Streaked spectra, gated

spectra, photodiodes)

• Dopants (Na, Li, Al, C, others)
Load • Compare with VISAR measurements at

the load

• Compare with B-dot monitors at r=6cm

Three Potential Views at the Load

v. v. v.

1

Considerations:

• Polarizations (u and TE)
• Lines of sight vs. B-field

orientation

• Weak field/Strong field

• Specific Lines (low Stark)

• Plasma density and

temperatures

• Doppler broadening

B-field versus Radius
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Proposed Zeeman Splitting Measurements Inside the MagLIF Gra Rtidnil

Return Current Can B e Return
Be Iliine

• Dopants will be applied to
the inside of the return
current can, around the
holes.

• A horizontal array of fibers
will be used to allow for
measurements at different
distances.

• Various dopants will cover
both neutral and ion species.

26mm

Be Return Current Can

Suppor cture 304

less Steel

CUrrent Can

4mm diameter holes

po !led 45° apart

5mm dia., 7.5mm flAchromat focused
at 60.1mm

0.75mm focal spot, total distance
6.25mm

AC050-008-A-ML (f# 1.5, NA 0.32, 18.4° half angle)



Ride-along Experiments are Fielded on Multiple Z Platforms

Angled LOS

Wire Array Experiment
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Spectra from Nested Wire Array Experiments

Fused Silica Window-no dopants

Grating: 150g/mm

Center Wavelength: 595nm

Sweep: 50Ons

Combs: 35MHz (28ns)
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MgF2 coated optics

Lithium and Sodium Dopants

• Dopants observed from both the anode and
cathode, as well as from the optics.

• Highly broadened lithium neutral lines along the
anode.



Hardware for MagLIF Liner Experiments with Slotted Return Ca
Re u n c rre t
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MagLIF Liner Experiments Show Sodium Line Broadening

SVS1

Collimated beam, 1mm Aperture

7.5mm fl lens (uncoated)

Max counts: —2000
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Experimental AR: 9

Uncoated Be Liner OD: 5.23mm
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Electric Field Measurements on Pulsed-Power Diodesil
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Lithium line emission
measured on Z shot

- Large electric fields
- (MV/cm) cause a shift of
the line-center towards

- shorter wavelengths.
- Since these spectra are
integrated across multiple

- field lines, the result is an
asymmetric line profile
skewed towards the blue.
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[11] S. Biswas, M.D. Johnston et al., Physical Review E, submitted. ■



Summary and Conclusions

• Spectroscopic measurements of plasmas in the power flow regions on Z are ongoing.

• B-fields can be measured using the Zeeman effect, even when Stark and Doppler
broadening is present, and for arbitrary B-field orientations, using techniques
developed at the Weizmann Institute12.

• Measurements of the magnetic field provide information regarding local current
distributions, including current loss mechanisms.

• Techniques are being developed at the Weizmann Institute to analyze spectral data,
taking into account opacities, impurities, signal to noise, and continua.

• Spectral measurements are needed to increase the fundamental physical
understanding of plasmas and fields in high power machines.

• Present and future understanding and design of high power diodes relies heavily on
kinetic PIC and hybrid (PIC/fluid) simulation models (ex. LSP and EMPHASIS).
Experimental measurements are necessary to validate these models, and for
accurate prediction of the performance of the next generation pulsed-power
machines, such as Z-Next.
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[12] R. Doron, et al., High Energy Density Phys., 10, p. 56-60 (2014).



Future Work Sandia
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• Continue to develop advanced techniques of spectral analyses, which include
effects due to opacities, impurities, signal to noise, line emission, absorption,
continua, and shielding.

• Determine plasma parameters such as species, ionization states, densities,
and temperatures.

• Measure magnetic fields and currents in the A-K gap on Z. This will require
greater signal to noise and/or plasma injection scheme (active dopants)13.

• Implement a gated spectroscopy system at high resolution to record the
spatial distribution of plasma on a single shot.

• Explore Stark shifts to measure E-fields as a function of time and space.

• Extend spectroscopic methods to other power flow regions.

[13] S. Patel, et al., LDRD Funded Project.


