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My Perspective

Background in compressible fluid mechanics and computational fluid dynamics (CFD)

Conducted research in model reduction for turbulent flows and data-driven turbulence
modeling

| am an engineer, | sometimes feel like a scientist, but alas, | am not a mathematician.

This talk is biased towards aerospace applications.

160

— Simulation
— Experiment|

SPL (dB/Hz"?)

Experiment, windward
Experiment, leeward

Simulation

Experiment, lateral




4

Introduction

Backdrop:

» The intersection of computational modeling of physical systems with data science has become a
very active research area.

* Progress in developing models for fluid turbulence has been slow for ~two decades.
« Naturally, turbulence researchers are turning to the new (old) field of data science.

Purpose of this talk:

To give commentary on the developing field of data-driven turbulence modeling, with the intent of
motivating others, who may have something to contribute, to do so.

Disclaimer: This talk is not in any way comprehensive or authoritative. It consists of the musings
of one (part-time) researcher in the field.
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Turbulence

Navier-Stokes equation (Conservation of Momentum)
du
ot

1
+u-Vu= —EVﬁ—I— vVu

Trinity Open Science simulation, with Stefan Domino.

Photo from: SAND2014-174660 (UUR)




6 | Turbulence Modeling: Reynolds-Averaged Navier-Stokes Equations

Reynolds Decomposition of the velocity field
u; = Ui () + w (3, )

time fluctuation
average
oU. M %) (UJUF.)=— 1 OP ; %) 5U.
ot ij p Ox, axj |

RANS models provide a closure model for this
stress term, in terms of things we know, such
as %U; . How bad could that be?

~
ij



7 I Menter Shear Stress Transport RANS Model

2 PDE’s, one derived from 15t principles, one “postulated” (made up) 5y
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RANS Models?

Image from www.digitaltrends.com
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RANS Models: Commentary

 When | hired into Sandia in 2003, the Menter SST model on the previous slide was
one of the best choices for use in external aerodynamics applications.

» This model is, in concept if not in execution, very similar to the first two equation
RANS models developed in the late 1960’s/early 1970’s (I was born in 1974, the
year of publication of the Launder-Sharma k-epsilon model).

» Today, in 2018, if | were asked for a RANS analysis of an external aerodynamic
problem, | would probably use the Menter SST model.



10 I RANS Model Predictive Accuracy
“Good” “Bad” N/A
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11 | Large Eddy Simulation

Source: Pirozzoli, Reynolds.dma.uniromal.it/dnsm2/
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Near-wall Turbulence Modeling in Large Eddy Simulation

Mean Velocity

ﬂ Turbulence
— nC

Solid Surface
Notional Direct Numerical
Simulation (DNS) mesh Notional LES mesh
mms Resolved Eddies
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Wall-modeled LES offers computational savings decrease of ar least several
orders of magnitude over DNS for engineering systems of interest.



13 I Topics in Turbulence Research over the Years

Nonlinear Dynamical Systems

[ ’ Xa
=, /, S
.

Coherent Structures

Brown and Roshko, JFM (1974).

Aubry et al, JFM (1988).

Large Eddy Simulation

Ham etal, CTR (2003)
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Enter Machine Learning: Signs of a New Research Frenzy

7.

Excerpt from a recent call for white papers (2018).

Develop new turbulence models (or improve modeling capabilities of existing models) for RANS
and LES for fully-developed turbulent boundary layers for Mach 6 and above. The models should
be conducive to application within typical RANS/LES solution algorithms. These improvements
should be applied to geometries such as circular cones, elliptical cones, BOLT, double wedges, or
double cones. One possibility would be to use machine learning (or other similar approaches) to
train hypersonic turbulence models using DNS (or perhaps using experimental data).




15 I A Recent Call for Concepts

of innovative basic research concepts exploring radically new architectures and
approaches in Artificial Intelligence (Al) that incorporate prior knowledge, such as known
physical laws, to augment sparse data and to ensure robust operation. The Physics of Al
(PAI) basic research Disruption Opportunity aims to develop novel Al architectures,
algorithms and approaches that "bake in” the physics, mathematics and prior knowledge
relevant to an application domain in order to address the technical challenges in
application of Al in scientific discovery, human-Al collaboration, and a variety of defense
applications.




16 I Reactions from the Turbulence/Fluid Mechanics Community

The leaders in the field of turbulence modeling and simulation: a mixture of
skepticism, enthusiasm, bewilderment, confusion, and “getting on board.”

P. Spalart, NASA Ames Advanced Modeling & Simulation Seminar, July 18, 2018:

“The prospects for this new breed of research in RANS are still unclear”
“Most studies still have corrections of the type beta(x,y,z) in each flow...not a model”




17 I Machine Learning in Turbulence

« Supervised vs. Unsupervised Learning: examples of both, but most work is in supervised learning.
« C(Classification vs Regression:

» (lassification example : is my turbulence model valid at this location, or not?

» Regression example : provide a prediction of a turbulent stress, given a local flow state vector
» Machine Learning algorithms: neural networks, random forests, Gaussian processes, ...

« Training data: Direct Numerical Simulation, “well-resolved” Large Eddy Simulation, experimental data

Decision Tree/Random Forest Neural Network, or Multi-Layer
Perceptron (MLP)

X2 <0.4

Yi=1.2 Y=-0.2 Input Layer

Output Layer

Hidden Layers




18 I Sources of Training Data

» Direct Numerical Simulation (DNS)

« “Well-resolved” Large Eddy Simulation (LES)

« Experimental Data (for example, PIV)

Compressible Boundary Layer
(Mach=0.6, 2.0, 2.5, 3.0, 3.5)

™ ;ﬂ_{}fi‘:’ .r::/,j_ff_"

fmr/‘/,f)’;".,;’ W,

00 05 10 15 20
]

Mach = 0.6 Backward-Facing Step

Mach = 0.6 Compressible Cavity Flow

DNS studies

performed by J.

Fike



Example: Tensor-basis Neural Networks for RANS
19 | Ling, Kurzawski, & Templeton, |. Fluid Mech. 807:155-166, 2016.

Term requiring closure modeling:

Normalized Reynolds stress anisotropy tensor Linear eddy viscosity model (Boussinesq)

by = uu/2k — 1/38; by = —. rSij
Mean Strain Rate (symmetric) Mean Rotation Rate (anti-symmetric)
o _1(ou oy, o (Ui _ 2y,
U2\ox;  ox; 770 ox

Pope (1975) developed a general eddy viscosity model based on tensor invariance analysis

=35 TO=R’S+ SR’ —3I-Tr(SR*) )
10 T®=SR—- RS T =RSR’ — R’SR
p— Z g™ (A, ..., A5)T® T®=8"—11.Tr(S) T® =8RS*—S’RS %
5 TY=R—-1.-Tr(R*) TO=RS*+ SR —3I-Tr(S’R’)
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L, =Tr(8%, L=Tr(R»), A=Tr(S, A,=Tr(R*S), As=Tr(R*S%



Example: Tensor-basis Neural Networks for RANS
20 I Ling, Kurzawski, & Templeton, J. Fluid Mech. 807:155-166, 2016.

Inputs: strain rate and rotation rate tensors: S, R
Outputs: anisotropy tensor b

10

b=) g”(@,..., )T

n=1

Training: DNS and well-resolved LES of various
canonical flowfields (3 of 6 shown).

01 031 0B b7 DB 11

(d}Casze 4: Fully Developed Channel

{e)Case 5: Fully Developed
Square Duct Flow

(f)Case 6: Perpendicular Jot in Crossflow Flow

(a)

(b) Tensor input layer T
@
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Merge output
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Physical/Mathematical Constraints

» Generalized eddy viscosity form for the Reynolds
stress anisotropy tensor b

» Rotational Invariance : the model does not depend
on the orientation of the coordinate system.
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Example: Tensor-basis Neural Networks for RANS Ling, Kurzawski, &
Templeton, J. Fluid Mech. 807:155-166, 2016.

A priori Test: Modeled Stress Components
for a wavy wall flow.

by,

bss

by,

LEVM

QEVM

TBNN

MLP

DNS
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-0.7
0.7
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0.3

Test Cases: Predicted Velocity Fields

1. Square Duct

DNS-b

LEVM QEVM True DNS

FIGURE 4. Plot of secondary flows in duct flow case. Reference arrows of length U,/10
shown at the top of each plot.

2. Wavy Wall

True DNS

FIGURE 5. Contours of streamwise velocity normalized by bulk velocity in the wavy wall
test case, zoomed into the near-wall region. Separated regions outlined in grey.




Probability Density

Example: Wall Shear Stress Models for LES using Neural Networks

(with Warren Davis, Nathan Miller, Jeffrey Fike, Kenny Chowdhary)
Highlighted Result: Instantaneous Wall Shear Stress Model for Turbulent Channel Flow

Development of a machine-learned near wall turbulence model for channel flow that was predictive
across Reynolds number parameter (No. features = 38).

Utilizing near-wall scaling of variables, this model was trained for Reynolds No = 1000 and successfully
tested on a different data set for Reynolds No. = 5000.
Turbulent Channel Flow DNS Database

103 E

102 -

0.5

1

1.5 2 2.5
Wall Shear Stress, |7,|

3

NCELE Correlation | Mean shear | RMS shear
square Divergence Coefficient | stress error | stress error
Error (ideal = 0) (ideal = 1)

Neural 1.18e-7  0.039 0.73 5.3% 5.2%

Network
Model

Loglaw  1.51e-7  0.36 0.69 -12.7% -13.3%

Measures of Agreement: Traditional Near Wall Model vs. Neural Network |
Model I
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Example: Wall Shear Stress Models for LES using Neural Networks

Highlighted Result: Generalized Near Wall Model and Application to Backward Facing Step

Created a method for generating a near-wall turbulence model that obeys the required coordinate frame invariance

property by construction.

Frame-invariant approach for separated flow

Shear stress as a function of near-wall flow state.
Ti(x||n|:0) = f(U(X £ ﬁ)’ S(X + ﬁ)a Q(X + ﬁ))a

Vector polynomial of form-invariants (qty. 8).
8
Ty = Z G(")Hgn)
n=1

Scalar coefficients defined by unknown functions of scalar-

invariants based on transverse-isotropy (qty. 20).

G(n) — ./_"(/\1, /\2, )\3, veny /\20)

M={S}, A={Q?}, As={SQ?}, Ao=n-U, Ng=n-(UxSU)

Novel Siamese-MLP used to determine coefficients for vector

polynomial for stresses on all walls
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m_ﬂ H — S-MLP

0

I71/(pU?)

%10

Before Step Detached Region
MSE KLD MSE KLD

Invariant Siamese-MLP 1.07e-6 0.16 1.02e-6 0.86

Law of the Wall

1.14e-6 4.69 1.49e-6 4.47




Incorporation of NN near-wall models into an LES Code
24 I (with Stefan Domino)

* Run Nalu low-Mach code on turbulent channel flow, Re_tau = 2000

» Output wall shear stress and local velocity vector as training data

* Train a 3-layer neural network to reproduce the Nalu near-wall model

« Implement neural network model in Nalu using matrix-vector products, *neglect wall-
model Jacobian in implicit solve
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25 | Other Contributions in Machine-Learned Turbulence Models

Karthik Durasaimy (U. of Michigan), and inverse From: Singh et al, AIAA J. 55:2215-27, 2017.
modeling: - .

a ‘ o_s-b 1 +C

 Insert discrepancy terms into a RANS model _——— e ok
» Solve an inverse problem for the discrepancy field

;; osf 1 i
— Baseline model ’ . . . . .

. — ML-augmented model 0 05 1.0 0 0.5 1.0
Interest. xle

that corrects the solution relative to the qty’s of
« Use ML to map the local flow state to the local

discrepancy. From: Wang et al, Phys. Rev. Fluids 2:034603, 2017.

Heng Xiao (Virginia Tech) Reynolds stress eigenvalue
approach:

« Use ML to represent discrepancies between DNS/LES and
RANS Reynolds stress in terms of stress tensor eigenvalues
and eigenfunctions

* Incorporates frame-independence and smoothness
requirements on the ML-model




26 I Opportunity: Turbulence Modeling Renaissance!

Traditional Method
1. Development of a (sometimes elaborate and beautiful) mathematical/theoretical basis.
2. Simplifications and approximations due to lack of knowledge.

* Model form uncertainty

* Model parameter uncertainty

U

A model with a sensible overall structure but with deficiencies due to step 2.

Possible New Approach

1. Re-visit and dust off some of the existing theoretical work on turbulence.
2. Make fewer approximations and simplifications - insert data-driven modeling here.

4

A model that is more true to the foundational theory.

* New life for second-moment closures, structure-based turbulence models, PDF models, ... ?
« Can the additional model complexity be absorbed by machine learning approaches while
maintaining robustness and generality?



27 I Challenge: Credibility & Incompleteness of Data-Driven Approaches

Bob MacCormack

Peter Lax

Lax Equivalence Theorem for the finite difference solution of linear PDE’s.
Consistency + stability === convergence

Credibility and “Credibility”

How does one verify a machine-learned turbulence model?

How does one select training data?



28 I Challenge: Numerical Solutions to PDFE’s using Data-driven Models

Example: “Model conditioning” - the sensitivity of the solved quantities to the modeled terms.

« Studies have shown that small errors in Reynolds stresses can be amplified and result in large
errors in predictions of mean velocities (Poroseva (2016), Thompson et al (2016).

Frictional Reynolds number (Re;)

180

50

con
{05 |

1000

2000

5200

Error in turbulent shear stresses
volume averaged

Maximum

0.17%
0.43%

0.21%
0.38%

0.03%
0.07%

0.15%
0.23%

0.31%
0.41%

Errors in mean velocities
volume averaged

maxrimum

0.25%
0.36%

1.61%
2.70%

21.6%
35.1%

Use DNS data for the Reynolds stress :



29 I Challenge: Numerical Solutions to PDFE’s using Data-driven Models

 Wu et al., “RANS equations with Reynolds stress closure can be ill-conditioned”,
arXiv:1803.05581 (2018), provide a local model conditioning metric and give an example
of how an implicit treatment of a data-driven model can improve accuracy.

| === DNS -© EXxplicit treatment -X- Implicit treatment

y™ = arg min || 7PV — 21, 8PV (22) ; ! Ty 1
Vi ¥
] 08 4 08 -
1 Compute optimal eddy viscosity /" from DNS Reynolds stresses based on
06 4 06
1. (22
d. \|£< =
Eq. (22) 3
2 for each iteration step i =1,2,...,N do 04 {1 oaf
3 Compute Reynolds stress: 7 = " (Va® + (Va® )T) + TS -l | ol
4 Solve the RANS equations: N (@”) =V - 7@ to obtain u¥ o
e 1 15 0 05 i 15
5 end 2 : .y :
(a) Mean velocity U (Re, = 180) (b) Mean velocity U (Re, = 5200)

’ == Explicit treatment = =Implicit treatment ‘
Other issues: differentiability of ML models; linear and non-linear stability
Do we need “Machine-Learning-Resilient Numerics”? (Domino)
or
Do we need “Numerically Robust Machine Learning Models”?




30 I Challenge: Learning from Machine Learned Models

Fluid Dynamics Machine
Theory Learning

' ‘v-"'\. fﬁ-:-._t-lnv! ~
el

&)

“...Regrettably, these [machine learning] studies have not led to insights into
improving closure models.”

P. Durbin, “Some recent developments in turbulence closure modeling”, Annual Review
of Fluid Mechanics, 2018.




31 I Takeaways

» There are signs that, whether you like it or not ©, we are at the beginning of a
“data-driven era” in turbulence modeling.

It is worthwhile to view machine learning methods in different lights: both as
useful tools with which to investigate turbulence, as well as offering possible
modeling solutions.

» The following three data-driven turbulence modeling research challenges have
been identified, that should be germaine across different physics applications.

» Credibility of Data-driven Modeling Approaches
 Numerical Solution of PDE’s with Data-driven Models

* Learning from Machine-Learned Models



