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3 My Perspective

• Background in compressible fluid mechanics and computational fluid dynamics (CFD)

• Conducted research in model reduction for turbulent flows and data-driven turbulence
modeling

• I am an engineer, I sometimes feel like a scientist, but alas, I am not a mathematician.

• This talk is biased towards aerospace applications.
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4 Introduction

Backdrop:

• The intersection of computational modeling of physical systems with data science has become a
very active research area.

• Progress in developing models for fluid turbulence has been slow for -two decades.

• Naturally, turbulence researchers are turning to the new (old) field of data science.

Purpose of this talk:

To give commentary on the developing field of data-driven turbulence modeling, with the intent of
motivating others, who may have something to contribute, to do so.

Disclaimer: This talk is not in any way comprehensive or authoritative. It consists of the musings
of one (part-time) researcher in the field.



5 Turbulence

Navier-Stokes equation (Conservation of Momentum)

1
u • vu.= --vp+ vv'u

1-o(10-6)m

Trinity Open Science simulation, with Stefan Domino.

L-0(10) m

Photo from: SAND2014-174660 (UUR)



6 1 Turbulence Modeling: Reynolds-Averaged Navier-Stokes Equations

Reynolds Decomposition of the velocity field

ui = Ui(xk) + u,;(x.k, t)
time fluctuation

average

t't' (7. 1 OP 0 OU.

't ax,c p

RANS models provide a closure model for this
stress term, in terms of things we know, such
as (Iti, . How bad could that be?

ay,



7 Menter Shear Stress Transport RANS Model

2 PDE's, one derived from 1" principles, one "postulated" (made up)

aka(pk) a(iott,ik) = p p*pi j + az,

lat aZy 
a + 0-oit) az

3

aka(pw) a▪ (pupD) _ .13.-0 + [Cri + guilt) n +2 (1 ) PC1-12
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Magic blending of model constants:
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11
2w

P = Tu.

Constitutive Equation for Turbulent Stress
2 auk s  2 1,s

= Jui 25.1.1 3 ark 3

pai k

= mai ( adui OF2 )

Constants:
2

.32 Crt,J2 IS 
2

Yl 

31 erb_aIS
= =)3* )3* -0/7

crk1 = 0.86 191.21 =0.6 .131 = 0.075

k 2 = 1.0 = 0.866 = 0.0828

= 0.0 = 0.41 ai = 0.31

•



8 RANS Models?

Image from www.digitaltrends.com



9 RANS Models: Commentary

• When I hired into Sandia in 2003, the Menter SST model on the previous slide was
one of the best choices for use in external aerodynamics applications.

• This model is, in concept if not in execution, very similar to the first two equation
RANS models developed in the late 1960's/early 1970's (I was born in 1974, the
year of publication of the Launder-Sharma k-epsilon model).

• Today, in 2018, if I were asked for a RANS analysis of an external aerodynamic
problem, I would probably use the Menter SST model.



RANS Model Predictive Accuracy

"Good"

14

12

10

8

6
>-

4

2

o

-2

-4

Back Step
Mr,=0.128. ReH=36,000 (I-1=step height), T,F537R

start of wall at
- x=-110

adiabatic
_ symmetry ; solid wall

- free-
stream
inflow

symmetry unit step height (H)

z/I

P specified in
order to achieve
M approx 0.128
near x,1-1=-4;
other quantities
from interior

start of wall at
x=-110 adiabatic

solid wall
" 

-150 -50 0 50 100
X (not drawn to scale)

0.004

0_003

0.002

0.001

-0.001

-0.002

SST reattachment near VH=5.50

  CFUD, SST

— — FUN3D, SST
o exp

10 20 30
x/H

"Bad"

25

2 0

15

5

X/DJE2LO

— I ape

— SST
- KVAu
— KNOrt
- VV1 Ilse

- - Kw,*

r

Ot--- . 
0.2 0 4

160

N/A

150 -

140 -

!t; 130

-cs
120 -

a.

110-

100-

90

— Simulation

— Experiment

z/W = -0.08

102
Frequency (Hz)

o 4

https://turbmodels.larc.nasa.gov/backstep_val.html Arunajatesan, AIAA 2012-1199, 2012.



I11 Large Eddy Simulation
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12 I Near-wall Turbulence Modeling in Large Eddy Simulation
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13 I Topics in Turbulence Research over the Years

Coherent Structures

Brown and Roshko, JFM (1974).

Large Eddy Simulation

Nonlinear Dynamical Systems
1.2

1.2

Aubry et al, JFM (1988).

Ham etal, CTR (2003)



14 I Enter Machine Learning: Signs of a New Research Frenzy

Excerpt from a recent call for white papers (2018).

7. Develop new turbulence models (or improve modeling capabilities of existing models) for RANS
and LES for fully-developed turbulent boundary layers for Mach 6 and above. The models should
be conducive to application within typical RANS/LES solution algorithms. These improvements
should be applied to geometries such as circular cones, elliptical cones, BOLT, double wedges, or
double cones. One possibility would be to use machine learning (or other similar approaches) to 
train hypersonic turbulence models using DNS (or perhaps using, experimental data).



1 5 I A Recent Call for Concepts

of innovative basic research concepts exploring radically new architectures and
approaches in Artificial intelligence (Al) that incorporate prior knowledge, such as known
physical laws, to augment sparse data and to ensure robust operation. The  Physics of Al 
(PAl) basic research Disruption Opportunity aims to develop novel Al architectures,
algorithms and approaches that "bake in" the physics, mathematics and prior knowledge 
relevant to an application domain in order to address the technical challenges in
application of Al in scientific discovery, human-Al collaboration, and a variety of defense
applications.



16 Reactions from the Turbulence/Fluid Mechanics Community

The leaders in the field of turbulence modeling and simulation: a mixture of
skepticism, enthusiasm, bewilderment, confusion, and "getting on board."

P. Spalart, NASA Ames Advanced Modeling Et Simulation Seminar, July 18, 2018:

"The prospects for this new breed of research in RANS are still unclear"
"Most studies still have corrections of the type beta(x,y,z) in each flow...not a model"



17 I Machine Learning in Turbulence

• Supervised vs. Unsupervised Learning: examples of both, but most work is in supervised learning.

• Classification vs Regression:

• Classification example : is my turbulence model valid at this location, or not?

• Regression example : provide a prediction of a turbulent stress, given a local flow state vector

• Machine Learning algorithms: neural networks, random forests, Gaussian processes, ...

• Training data: Direct Numerical Simulation, "well-resolved" Large Eddy Simulation, experimental data

Decision Tree/Random Forest

Xz < 0.4

X(2)< 0.2

Y = 0.5 X(1)< o.s

Y = 1.2

kik 0.2

Y = 2.1

Y = -0.2

Y =0 .3

Neural Network, or Multi-Layer
Perceptron (MLP)

•

Input Layer

•
•
•

• • •

— Output Layer
Hidden Layers



18 Sources of Training Data

• Direct Numerical Simulation (DNS)
• "Well-resolved" Large Eddy Simulation (LES)
• Experimental Data (for example, PIV)

Compressible Boundary Layer
(Mach=0.6, 2.0, 2.5, 3.0, 3.5)

0.0 05 1.0 1.5 2.0

Mach = 0.6 Backward-Facing Step Mach = 0.6 Compressible Cavity Flow

DNS studies
performed by J.
Fike



g(n) (Al A5)T(n)

Example:Tensor-basis Neural Networks for RANS
19 Ling, Kurzawski, & Templeton, J. Fluid Mech. 807:155-166, 2016.

Term requiring closure modeling:
Normalized Reynolds stress anisotropy tensor

bu u;u:i/2k — 1/36,i

Mean Strain Rate (symmetric)

oui 
+
au;

sij 2 axj axi)

Linear eddy viscosity model (Boussinesq)

Sij
Of

k

Mean Rotation Rate (anti-symmetric)

(aui au;
Rij axj axi)

Pope (1975) developed a general eddy viscosity model based on tensor invariance analysis

T") = S T(6) = R2 S SR2 — I • Tr(SR2)

T(2) = SR — RS Tc) = RSR2 — R2 SR

T(3) = S2 — I • Tr(S2) r8) = SRS2 — S2 RS

T(4) = R2 — • Tr(R2) T(9) = R2 S2 + S2 R2 — 41 • Tr(S2 R2)n=
T" = RS2 — S2 R 1()) = RS2 R2 — R2 S2 R

10

= Tr(S2), = Ti( R2 ), = Tr ( S3 ), ,14 = Tr( R2 5), = 7.1( R2 S2 )



Example:Tensor-basis Neural Networks for RANS
20  Ling, Kurzawski, & Templeton, J. Fluid Mech. 807:155-166, 2016.

Inputs: strain rate and rotation rate tensors: S, R
Outputs: anisotropy tensor b

lo
b = goi)

11=1

Training: DNS and well-resolved LES of various
canonical flowfields (3 of 6 shown).
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• Generalized eddy viscosity form for the Reynolds
stress anisotropy tensor b

• Rotational Invariance : the model does not depend
on the orientation of the coordinate system.



Example:Tensor-basis Neural Networks for RANS Ling, Kurzawski, &
21  Templeton, J. Fluid Mech. 807:155-166, 2016.

A priori Test: Modeled Stress Components
for a wavy wall flow.
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0 FIGURE 4. Plot of secondary flows in duct flow case. Reference arrows of length Ub/10
shown at the top of each plot.
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FIGURE 5. Contours of streamwise velocity normalized by bulk velocity in the wavy wall
test case, zoomed into the near-wall region. Separated regions outlined in grey.



Example:Wall Shear Stress Models for LES using Neural Networks
22 (with Warren Davis, Nathan Miller, Jeffrey Fike, Kenny Chowdhary)

Highlighted Result: Instantaneous Wall Shear Stress Model for Turbulent Channel Flow

Development of a machine-learned near wall turbulence model for channel flow that was predictive
across Reynolds number parameter (No. features = 38).

• Utilizing near-wall scaling of variables, this model was trained for Reynolds No = 1000 and successfully
tested on a different data set for Reynolds No. = 5000.

Turbulent Channel Flow DNS Database
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23 Example:Wall Shear Stress Models for LES using Neural Networks

Highlighted Result: Generalized Near Wall Model and Application to Backward Facing Step

• Created a method for generating a near-wall turbulence model that obeys the required coordinate frame invariance
property by construction.

Frame-invariant approach for separated flow

• Shear stress as a function of near-wall flow state.

ri(xlinl=o) = f(U(x +77),S(x +4S-4x+ fi)),

• Vector polynomial of form-invariants (qty. 8).
8

TZ 
= E GNI-11n)

n=1

• Scalar coefficients defined by unknown functions of scalar-

invariants based on transverse-isotropy (qty. 20).

G(n) = (Al A2) A37 •••1 À20)

A1 = {§}, A3 = {62}, A5 = {§(22}, Ath = n • U, A18 = n • (U x ŠU)

• Novel Siamese-MLP used to determine coefficients for vector

polynomial for stresses on all walls
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Law of the Wall 1.14e-6 4.69 1.49e-6 4.47



Incorporation of NN near-wall models into an LES Code
24 (with Stefan Domino)

• Run Nalu low-Mach code on turbulent channel flow, Re_tau = 2000
• Output wall shear stress and local velocity vector as training data
• Train a 3-layer neural network to reproduce the Nalu near-wall model
• Implement neural network model in Nalu using matrix-vector products, *neglect wall-

model Jacobian in implicit solve
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25 I Other Contributions in Machine-Learned Turbulence Models

Karthik Durasaimy (U. of Michigan), and inverse
modeling:

• Insert discrepancy terms into a RANS model
• Solve an inverse problem for the discrepancy field

that corrects the solution relative to the qty's of
interest.

• Use ML to map the local flow state to the local
discrepancy.

Heng Xiao (Virginia Tech) Reynolds stress eigenvalue
approach:

• Use ML to represent discrepancies between DNS/LES and
RANS Reynolds stress in terms of stress tensor eigenvalues
and eigenfunctions

• Incorporates frame-independence and smoothness
requirements on the ML-model

From: Singh et al, AIAA J. 55:2215-27, 2017.
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From: Wang et al, Phys. Rev. Fluids 2:034603, 2017.
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26 Opportunity:Turbulence Modeling Renaissance?

Traditional Method 
1. Development of a (sometimes elaborate and beautiful) mathematical/theoretical basis.
2. Simplifications and approximations due to lack of knowledge.

• Model form uncertainty
• Model parameter uncertainty

A model with a sensible overall structure but with deficiencies due to step 2.

Possible New Approach 

1. Re-visit and dust off some of the existing theoretical work on turbulence.
2. Make fewer approximations and simplifications - insert data-driven modeling here.

111
\.,/

A model that is more true to the foundational theory.

• New life for second-moment closures, structure-based turbulence models, PDF models, ... ?
• Can the additional model complexity be absorbed by machine learning approaches while

maintaining robustness and generality?



27 Challenge: Credibility & Incompleteness of Data-Driven Approaches

Bob MacCormack
Peter Lax

Lax Equivalence Theorem for the finite difference solution of linear PDE's.

Consistency + stability convergence

Credibility and "Credibility"

How does one verify a machine-learned turbulence model?

How does one select training data?



28 Challenge: Numerical Solutions to PDE's using Data-driven Models

Example: "Model conditioning" - the sensitivity of the solved quantities to the modeled terms.

• Studies have shown that small errors in Reynolds stresses can be amplified and result in large
errors in predictions of mean velocities (Poroseva (2016), Thompson et al (2016).

Frictional Reynolds number (Rer)

Error in turbulent shear stresses

volume averaged

maximum

Errors in mean velocities

volume averaged

maximum

180 550 1000 2000 5200

0.17% 0.21% 0.03% 0.15% 0.31%

0.43% 0.38% 0.07% 0.23% 0.41%

0.25% 1.61% 0.17% 2.85% 21.6%

0.36% 2.70% 0.25% 5.48% 35.1%

-

.0
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(
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p axi ex OX

Use DNS data for the Reynolds stress



29 I Challenge: Numerical Solutions to PDE's using Data-driven Models

• Wu et al., "RANS equations with Reynolds stress closure can be ill-conditioned",
arXiv:1803.05581 (2018), provide a local model conditioning metric and give an example
of how an implicit treatment of a data-driven model can improve accuracy.

vr = arg min 11TDNs 2vtsDNs
vt

(22)

i Compute optimal eddy viscosity vr from DNS Reynolds stresses based on

Eq. n
2 for each iteration step i = 1, 2, ..., N do

3 Compute Reynolds stress: r(i) = vr (VV,(0 + (V77t(i) )T) + MINIS

4 Solve the RANS equations: Ar (U(i)) = V • TO) to obtain u(i)

5 end

0.8
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0.4

0.2

DNS —e— Explicit treatment —X— Implicit treatment

0.5
U/Ub

(a) Mean velocity U (Re,- = 180)

0.8
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6.1

0.4
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0  
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U/Ub

(b) Mean velocity U (Re, = 5200)

Explicit treatment — —Implicit treatment

Other issues: differentiability of ML models; linear and non-linear stability
Do we need "Machine-Learning-Resilient Numerics"? (Domino)

or
Do we need "Numerically Robust Machine Learning Models"?

1.5



30 Challenge: Learning from Machine Learned Models

Fluid Dynamics
Theory Improve Domain

Knowledge

Inject Domain
Knowledge

Machine
Learning

"...Regrettably, these [machine learning] studies have not led to insights into
improving closure models."
P. Durbin, "Some recent developments in turbulence closure modeling", Annual Review
of Fluid Mechanics, 2018.



31 Takeaways

• There are signs that, whether you like it or not
"data-driven era" in turbulence modeling.

we are at the beginning of a

• It is worthwhile to view machine learning methods in different lights: both as
useful tools with which to investigate turbulence, as well as offering possible
modeling solutions.

• The following three data-driven turbulence modeling research challenges have
been identified, that should be germaine across different physics applications.

• Credibility of Data-driven Modeling Approaches

• Numerical Solution of PDE's with Data-driven Models

• Learning from Machine-Learned Models


