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Why microkinetic models?

• Microkinetic models are a collection of elementary reactions
describing a complex chemical phenomena

• Traditional kinetic models simplify the chemistry by making
assumptions

• Microkinetic models do not make a priori assumptions to simplify the
chemistry
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We have RMG-Cat!
Our code is based upon RMG:

Reaction Mechanism Generator

• developed for combustion (H, C, O)

• open source, Python based

• mature (-50+ graduate-student years of development)

• recently expanded to include (N, S, Si)

• some solvent/solution effects

http://reactionmechanismgenerator.github.io/RMG-Py/



How do you teach a computer to think like a
chemist?
• recognize when 2 or more species are the same

• predict the thermo-kinetic parameters

• find all possible elementary reactions

• determine which reactions are important

• be flexible for new reactants on novel materials

➢accomplish all of the above in a bug-free manner
quicker than a grad student could!
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RMG represents specie
using graph theory
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we have added new features for adsorbates
ag "single metal bond" 4--waitak
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RMG-Cat estimates adsorbate thermochemistry
using simple rules of thumb
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We can now estimate binding energies via
linear scaling relations
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We can now estimate binding energies via
linear scaling relations
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Change in binding energy scales with
normalized bond order
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We can now estimate thermochemistry of
any adsorbate
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RMG-Cat uses reaction families
to propose new reactions
Each species is decomposed into functional groups, and the functional
groups are reacted according to templates

RMG has over 40 reaction families:

• H-abstraction
• disproportionation
• Ps-scission
• Diels-Alder

RMG-Cat has some more...

• Korcek
• NO2 / ONO conversion
• cycloaddition
• etc.



!Adsorption
Ri R2

I . dissociative adsorption:

CH4(g) + 2* # CH3* + H*

2. non-dissociative adsorption:
• single bond: CH3(g) + * # CH3*

• double bond: CO(g) + * # CO*

• di-sigma bond: CH2O(g) + 2* # H2C*O*

• vdW bond: H20(g) + * # H20*

Ri



11. Dissociation

CH3* + * # CH2* + H*

III.Abstraction

CH3* + O* # CH2* + OH*

R2 R2

II
R1 R3



As with thermo, RMG-Cat first looks for rate
coefficients in a database:

If not, then estimate it.

RMG-Cat uses bond-specific BEP relations,

but other options are available

"can I find this reaction in
my kinetics database?"

Ea = Eo + aAH

s(predict the kinetic parameters



To illustrate how RMG-Cat grows a mechanism,
start with CH4(g), 02(g) and vacant site *
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Add CH3*, H*, and 0*
to the core and start over
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Add CH30*, OH*, CH2*, and H2(g)
to the core and start over
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Continue to select species with high fluxes,
and leave slow species on the edge
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Catalytic Partial
Oxidation (CPDX

• Reaction of 02 with
hydrocarbons to produce
a hydrogen-rich synthesis
gas
• a mixture of hydrogen and
carbon monoxide

CH4 + 02 # CO + H2

• Extremely important in
industry
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CH4 + 02 "Amt-> CO + H2 +... simulated on
many alternative surfaces
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How can we tell what is sensitive?

• Ran simulations on 81 different metal surfaces
✓Overall rate: time to reach 95% completion
✓Which metals will be best for this reaction

• For each surface simulation, we changed the rate of each reaction in
the simulation by 1%, one at a time
✓New overall rate: new time to reach 95% completion
✓Which reactions are most rate limiting (sensitive) on certain metals



Volcano plot for the overall "rate" for time to
reach 95% completion as a function of atomic
binding energies
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Volcano plots for the sensitivity a reaction
as a function of atomic binding ener ies
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RMG-Cat works, but we have a lot of work
to do

better
code

g••••••°'

better
numbers

• Systematic coverage dependence • Add more reaction families

• Uncertainty quantification • Bi-dentate

• Kinetics calculations• Kinetic Monte Carlo simulations



Questions?
• Emily Mazeau: mazeau.e@husky.neu.edu 

• Katrin Blondal: katrin_blondal@brown.edu 

• Franklin Goldsmith: franklin_goldsmith@brown.edu 

• Richard West: r.west@northeastern.edu 

Collaborators Welcome!
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