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Why microkinetic models?

* Microkinetic models are a collection of elementary reactions
describing a complex chemical phenomena

* Traditional kinetic models simplify the chemistry by making
assumptions

* Microkinetic models do not make a priori assumptions to simplify the
chemistry
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Our strategy: use computers to build the
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We have RMG-Cat!
Our code is based upon RMG: r\ m
Reaction Mechanism Generator

developed for combustion (H, C, O)

* open source, Python based

mature (~50+ graduate-student years of development)
* recently expanded to include (N, S, Si)

* some solvent/solution effects

http://reactionmechanismgenerator.github.io/RMG-Py/




How do you teach a computer to think like a
chemist!?

* recognize when 2 or more species are the same
* predict the thermo-kinetic parameters

* find all possible elementary reactions

* determine which reactions are important

* be flexible for new reactants on novel materials

»accomplish all of the above in a bug-free manner
quicker than a grad student could!




RMG represents specie
using graph theory
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we have added new features for adsorbates

e.g. “single metal bond” "D

\, can | find this structure
in my thermo database?”

v'recognize when 2 or more species are
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RMG-Cat estimates adsorbate thermochemistry
using simple rules of thumb

gas-phase species from
. database or group additivity
estimate
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\_ estimated from
statistical thermodynamics

v predict the thermodynamic parameters 6



We can now estimate binding energies via
linear scaling relations
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Abild-Pedersen et al., Phys. Rev. Lett. (2007)
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On many metals,
simple rules can
predict the binding
energy



We can now estimate binding energies via
inear scaling relations
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Change in binding energy scales with
normalized bond order

v'reactants on any material



We can now estimate thermochemistry of
any adsorbate

Worked with Felix Studt at
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RMG-Cat uses reaction families
to propose new reactions

Each species is decomposed into functional groups, and the functional
groups are reacted according to templates

RMG has over 40 reaction families:
e H-abstraction
* disproportionation

e [-scission
 Diels-Alder

Korcek

NO, / ONO conversion
cycloaddition

etc.

RMG-Cat has some more...



l. Adsorption

|. dissociative adsorption:

CH,(g) + 2* = CHy* + H*

2. non-dissociative adsorption:
* single bond: CH;(g) + * = CH;*
* double bond: CO(g) + * = CO*
* di-sigma bond: CH,O(g) +2* = H,C*O*
* vdW bond: H,0O(g) + * & H,O%*




ll. Dissociation

CH,* + * = CH,* + H*

l1l. Abstraction

CH,* + O* = CH,* + OH*
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As with thermo, RMG-Cat first looks for rate
coefficients in a database:

o) + Q)+ () = "" \/

“can | find this reaction in
my kinetics database?”

If not, then estimate it.
RMG-Cat uses bond-specific BEP relations,

: : E =E_+aAH
but other options are available a— o &

v'predict the kinetic parameters 5



To illustrate how RMG-Cat grows a mechanism,
start with CH,(g), O,(g) and vacant site *
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Add CH,*, H*, and O*
to the core and start over
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Add CH,O0*, OH*, CH,*, and H,(g)
to the core and start over

Rehar = \/ E R? species i € core
, ;

Redge > eRchar




Continue to select species with high fluxes,
and leave slow species on the edge

 Rehar = \/ E R? species i € core
;

Redge > 6Rchar

v'determine which reaétions are 19
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Catalytic Partial
Oxidation (CPOX)

* Reaction of O, with
hydrocarbons to produce
a hydrogen-rich synthesis
gas

* a mixture of hydrogen and
carbon monoxide

CH, +0, = CO +H,

* Extremely important in
industry
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CH,+ O, ww CO + H, +... simulated on
many alternative surfaces
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How can we tell what is sensitive!

e Ran simulations on 81 different metal surfaces
v'Overall rate: time to reach 95% completion
v"Which metals will be best for this reaction

* For each surface simulation, we changed the rate of each reaction in
the simulation by |%, one at a time
v'New overall rate: new time to reach 95% completion
v"Which reactions are most rate limiting (sensitive) on certain metals



Volcano plot for the overal
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Volcano plots for the sensitivity a reaction
as a function of atomic binding energies
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RMG-Cat works, but we have a lot of work
to do
' —
better better
code - numbers

* Systematic coverage dependence ¢ Add more reaction families

 Uncertainty quantification * Bi-dentate

+ Kinetic Monte Carlo simulations * Kinetics calculations

25



Questions!

* Emily Mazeau: mazeau.e@husky.neu.edu

 Katrin Blondal: katrin_blondal@brown.edu

* Franklin Goldsmith: franklin_goldsmith@brown.edu

* Richard West: rwest@northeastern.edu

Collaborators VWelcome!
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