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The Richtmyer—l"!eshkov ins.tabiolity (R["II) occurs V\(hen a shoc!< wave passes jchrough an The first passage of the shock initiates RMI at the rod-deuterium interface, causing The shock reflects pff axis and re-strikes the rod-deu.teljiqm i.nterface. A secondary sh.ock is
interface separating two fluids, imparting a non-uniform velocity and amplifying perturbations to grow linearly in time at the seeded wavelength (0.3 mm). reflected from the interface back towards the rod axis, initiating a complex reverberation
perturbations on the boundary. phase.
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RMI and the closely related Rayleigh-Taylor instability (RTI) Flay important roles in the | '- The instability amplitude is initially reduced in what appears to be a phase inversion.
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Av = change in interface velocity, AR = radial displacement of rod Z o 02§ £ >
£ T : A new platform was successfully developed to investigate this stage by reducing MRT
ol W instability growth in the liner and increasing the standoff between the liner and rod.
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ° -2 -1.5 -1 -0.5 . 0 0.5 . .5 2
Radius [mm)] Radius [mm]

1
—_

o ° o 0.4 30
Experimental Description ;
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The Z Machine at Sandia National Laboratories implodes a liquid-deuterium-filled liner, s T1g % The beryllium rod was seeded with multiple modes generated using random wavelengths
driving a converging shock that strikes an on-axis beryllium rod. Calculations show the os o gy 3 : (50 um to 300 pm), phases, and amplitudes.
magnetic field is excluded from the interior of the liner during this process. 75 : e T E : : - L : e :
& 8 P R 1 S e e The instability development is highly non-linear, exhibiting mushroom-shaped spikes that
: : : : : : : appear to fold over and begin to merge.
Single or multi-mode perturbations machined in the rod grow in amplitude due to the
Richtmyer-Meshkov instability. Abel inverting optical density images allows contour tracking through the dense magneto- y | | °
Rayleigh-Taylor (MRT) spikes in the liner. - S o
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The shock reflects off axis and re-shocks the rod, initiating a complex reverberation phase. = - . 2f 2 -
The shock converges in the rod and reflects off axis. The final frame shows instability . °‘ w -
7.2 keV penetrating radiography yields 2 frames per shot. development just before the interface is shocked for a second time. =~ . >0 L 0
Radius [mm] Radius [mm]
Axially averaged density lineouts show shock propagation and enable estimation of the L o | ' .
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