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Background
The Richtmyer-Meshkov instability (RMI) occurs when a shock wave passes through an
interface separating two fluids, imparting a non-uniform velocity and amplifying
perturbations on the boundary.

RMI and the closely related Rayleigh-Taylor instability (RTI) play important roles in the
development of stellar explosions and inertial confinement fusion (ICF) implosions.

In ICF, RMI can provide a seed to the more deleterious RTI, both of which lead to shape
deformation, residual kinetic energy at stagnation, and pusher-fuel mix, ultimately limiting the
attainable fuel pressure and burn duration at stagnation.

According to linear theory2, small amplitude perturbations will grow as

111110 = 1 + AtkAvt + Avt1Ro

111110 = 1 + AtkAR + ARM()

At = Atwood number, k= instability wavenumber,

Av = change in interface velocity, AR = radial displacement of rod

Experimental Description
The Z Machine at Sandia National Laboratories implodes a liquid-deuterium-filled liner,
driving a converging shock that strikes an on-axis beryllium rod. Calculations show the
magnetic field is excluded from the interior of the liner during this process.

Single or multi-mode perturbations machined in the rod grow in amplitude due to the
Richtmyer-Meshkov instability.

The shock reflects off axis and re-shocks the rod, initiating a complex reverberation phase.

7.2 keV penetrating radiography yields 2 frames per shot.
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Single Shocl< Data
The first passage of the shock initiates RMI at the rod-deuterium interface, causing
perturbations to grow linearly in time at the seeded wavelength (0.3 mm).
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Abel inverting optical density images allows contour tracking through the dense magneto-
Rayleigh-Taylor (MRT) spikes in the liner.

The shock converges in the rod and reflects off axis.The final frame shows instability
development just before the interface is shocked for a second time.

Axially averaged density lineouts show shock propagation and enable estimation of the
Atwood number:
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Instability data show a linear increase in amplitude, showing general agreement with linear
theory2 using the estimated experimental Atwood number.

T

At = 0.39 + 0.12

Linear theory
(kA < 1)

• Long Pulse
o High Current Long Pulse
o Short Pulse
 Planar Theory
 Cylindrical Theory
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Reverberation Phase
The shock reflects off axis and re-strikes the rod-deuterium interface. A secondary shock is
reflected from the interface back towards the rod axis, initiating a complex reverberation
phase.

The instability amplitude is initially reduced in what appears to be a phase inversion.
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New Platform (short pulse) Original Platform (long pulse)

A new platform was successfully developed to investigate this stage by reducing MRT
instability growth in the liner and increasing the standoff between the liner and rod.

Multi-mode perturbations (single shock)
The beryllium rod was seeded with multiple modes generated using random
(50 pm to 300 pm), phases, and amplitudes.

The instability development is highly non-linear, exhibiting mushroom-shaped
appear to fold over and begin to merge.
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Fourier spectra show development at (almost)
all seeded modes.

I . New modes appear! The 72 pm mode is
the second harmonic of the seeded 144 pm
mode.

2. The seeded I 5 9 pm mode appears to
initially disappear.

3. The 203 pm mode appears to be a
combination of the seeded 176, 218, and 219
pm modes.
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