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Project introduction

• Collaborative discussions with Ford Motor
Company, UW-Madison

• Goal: develop set of well-controlled experimental
conditions to study the ignition, combustion, and
pollutant formation mechanisms of post injections

• Sandia's small-bore diesel will be used for initial
thermal and optical catalyst heating studies

• New MD-Diesel research platform: planned
operation of thermal configuration in 2019
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Engine operation

• Constant engine speed 1500 rpm

• Coolant temperature set point: 30°C

• 20°C is not possible

• Intake mass flow rate is held constant

• EGR is simulated with a fixed concentration of N2

and CO2

• 18.7% 02 corresponds to 30% EGR with an 11 mg

total fuel quantity

• Intake temperature adjusted with EGR rate to
maintain estimated motored TDC temperature

• Skip-fired operation (skip 4 fire 1)

• No hot residuals

• No exhaust temperature measurement

• Emissions measurements corrected for dilution

• Measured data

• Cylinder pressure: 50 cycles

• Emissions: NOx, HC, CO, FSN
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Load / injection quantity approach

• Option 1: maintain target BMEP

• Adjusting main injection duration changes load

• On-the-fly load adjustments are time consuming with a skip-fired optical engine

• ln-cylinder thermodynamic state is not well controlled for the post injection

• Option 2: maintain fueling

• Fueling rate is held constant for a given post timing sweep

• Load changes with post injection timing

• ln-cylinder state no longer depends on a changing main injection quantity for a given sweep

• Initial study: maintain fueling (option 2)

• Focus on operation with one pilot, one main, and either one or two post injections

• Fixed pilot quantity and timing, fixed main timing for three main quantities, variable post
injection quantity and timing



Injection strategy/calibrations

• Pilot-main-post(s) strategy

• Pilot quantity and timing fixed

• Main timing fixed

• Three main quantities

• Three post quantities

• Variations of main-post dwell

• Injection quantities depend
on other injection quantities
and dwells

• Each calibration has been
determined with a hydraulic flow
bench at a fixed initial backpressure
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Thermodynamic calculations

• Heat release analysis

• First law, ideal gas law

• Specific heat ratio depends on mass fraction burned and bulk gas temperature; fuel vapor
and unburned products are neglected

• Woschni heat transfer model

• Bulk gas temperature is computed as part of the heat release analysis

• Likely inaccurate, but at least consistent

• Temperature at EVO is used as a surrogate for exhaust temperature

• For a constant air mass flow rate and total fueling rate, changes in exhaust temperature
correspond to changes in exhaust enthalpy flow

• Temperature at SOlpost is another useful metric

• Other temperature-based metrics are being evaluated



Variations for upcoming testing

• EGR / no EGR

• Cetane number

• DPRF58 vs DPRF66: CN 50.7 vs. CN 43.9

• Fuel distillation properties

• Cert diesel: CN 43.9

Testing completed

• Intake temperature

• Bypassing the EGR cooler in production engines increases intake temperature

• Second post injection

• Bio-fuel components (CoOptima task)

• Alcohols: expected negative impact on ignition

• OME: expected positive impact on ignition

• Fueling for equal quantity vs. equal fuel energy
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Initial results: cylinder pressure

• Naming convention
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Initial results: T at EVO (no EGR)

• Bulk gas temperature at EVO is used to
represent exhaust temperature

. TEVO is plotted as a function of post timing

for each injection calibration

• TEVO depends most strongly on the total
amount of fuel delivered

• The post/main quantity ratio also
impacts TEvo

• Higher post quantities tend to increase
exhaust temperatures for post injection
timings near 22 and 26 CAD ATDC

• TEVO (and likely exhaust enthaipy) often
peaks at a post injection timing of 22
CAD ATDC
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Initial results: heat release rate (no EGR)

• Pilot heat release: distinct double-peak

• Believed to be low- and high-temperature
heat release; high-temperature heat
release is likely suppressed by the main
injection
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Initial results: CO and HC (no EGR)

• EIHC and EICO are plotted against the computed

bulk gas temperature at the start of the post
injection, TSOlpost
• The results collapse fairly well

• Exception: earliest post injection timing —
interaction between post and main?

• Bulk gas temperature has a strong impact on HC

and CO emissions

• In this study, the main fuel quantity controls TS01 post
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Summary

• An experimental approach to studying catalyst heating operation has been developed
for Sandia's small-bore optical diesel engine

• Experimental objective: build fundamental understanding of mixture formation,
ignition, combustion, and pollutant formation for catalyst heating operation

• Experiments are performed for discrete fueling levels with a fixed intake charge flow
rate

• Experiments and analysis are ongoing
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Thank you for your attention

Questions?

sbusch@sandia.gov


