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= Neutrons?

Sir James Chadwick - 1932

Possihlc instence of a Neutron

It has been shown by Bothe and others that Target
beryllium when bombarded by a- partmle's of polonium Nucleus
emits a radiation of great p(uu.tmtmz power, which
has an absorption coefficient in lead of about 0-3 (em.)-1. %.
Recently Mme. Curne-Joliot and M. Joliot found, Incident
when measuring the ionisation produced by this NeutV ° \
berylliurn radiation in a vessel with a thin window,
that the ionisation increased when matter containi 12 ©
hydrogen was placed in front of the window. The
Ref.: J. Chadwick, Nature 132 (1932) 3252
Protons
« Atoms were thought to be composed Neutrons
only of protons and electrons. J -
—
« Chadwick explained the Curie-Joliot > |
experiment as caused by neutrons -_— — |
rather than photons. A .
/ \ lonization -
i Chamber
* First measurement of the neutron mass. Polonium  garvilium
(a source) Paraffin
. . (1) sania National Laboratores
Credit: Ralf Nolte, “Detection of Neutrons: Part 1”



e Neﬂiron Interactions - Elastic
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= Inelastic interactions
:-.:F';i | Prompt ® Beta
! ::—;:I ‘ Gamma ray / Particle
| _.....——-"i Target
| ":..:—4_{ Nucleus
=\ &
a Incident \
i Neutron .
X Product

Secondary ®o Nucleus
Neutrons Compound
Nucleus Gamma ray

@
Secondary
Charged Particles

* By 1934 Enrico Fermi used neutrons to induce
radioactivity in 22 different elements.

» He discovered that slowing (or moderating or
thermalizing) the neutrons increased the rate
of radioactivity.

Enrico Fermi and students

* In 1938, he received a Nobel Prize in Physics

for thi k. 3
or this wor (1) Sandia National Laboratories



“  Neutron properties

de Broglie wavelength: A=h/p

Visible atom nucleus neutron
light

1“1 107 108 10° 10° 10" 1012 10'3 104 10" meters
| H | | | | | | | |

10 -8 10 -4 10° 10+ 10*6 10* eV
«< > < >« > < ><¢ »

ultracold cold  thermal epithermal fast neutrons

_ | (1) Sandia National Laboratories
Credit: Ralf Nolte, “Detection of Neutrons: Part 1”
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~=« Slow Neutron Interactions/Detection

* High thermal cross section
* High Q-value

n+3He — 3H + 'H + 0.764 MeV

n+ 1B — 7Li + 4He + 2.31 MeV

n+%i—-3H+ao+4.78 MeV

Taken from ENDF database

() Sandia National Laboratores




Neutrons and fission

« 1938 — Lisa Meitner, Otto Hahn, and Fritz
Strassman bombarded uranium with
neutrons in Berlin.

* 1939 - Nuclear fission (term coined by
Otto Frisch), the neutron induced splitting
of nuclei into lighter elements releasing
100s of MeV of energy, was discovered.

» Hahn and Strassman predicted the

158 Meltnerand Utto-hianh liberation of additional neutrons during
fission. Joliot discovered the phenomenon
of chain reactions.

* Hahn received the 1944 Nobel Prize in
Chemistry for the discovery of the fission
of heavy atomic nuclei.

1] Sandia National Laboratories
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Reactor, bombs, and the Manhattan Project

1939 — Leo Szilard proposed the
possibility of sustainable and
exponentially increasing neutron driven
chain reactions.

1939 — Chadwick proposed an atomic
bomb utilizing tons of natural uranium.

1939 — Oppenheimer proposed a cube of
uranium detueride might “blow itself to
hell”

1942 — the “Chicago Pile” reactor
demonstrated sustained critical nuclear
chain-reactions.

1942 — the Manhattan Project began.

r1"| Sandia National Laboratories




What’s so special?

As defined by the IAEA:
Nuclear Material — metals uranium, plutonium, and thorium in any form.
Special Nuclear Material — U-233, U-235, Pu-239

Source Material — everything that is not special

11| Sandia National Laboratories
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What’s so special?

Induced Thermal | The Neutron Fission Cross Sections
Isotope | Fission Multiplicity m“_ P —
v “Pu(n,fi

232 3.13 /|

#4U 24 § 10 \

235 ) C 2 41 P ':5.

23EL| 0 ’E

238| ) 23 ‘g

237N 270 5 .

zsaFE %z § il _E
=Py | 288 > | £ |

240py, 28
24Py 28 "
242py 2.81 10" 10°
24Cm 3.46 Neutron Energy, MeV

S 406

1] Sandia National Laboratories
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What is so special about SNM?

Basic vocabulary and definitions

1st Generation , “
K Fission products:
@ * 2 -4 neutrons per fission (vy,)
2nd Generation o § « 7 -9 gammas per fission

Uy ;:’%\§

W@V’/\M p 1, Quantities of Interest:

LN ,f x‘
sl % /‘"’ “'\‘ B neutrons in one generation
@N@%*N \@@ @ "~ neutrons in preceeding generation
WV M/M/)
W W s
4th Generation |Tf ¢« ¢ ¢ ¢ Subcritical multiplication — total
; neutrons created per source
@ 29Pu, 2%U, 23U © neutron VWi gamma neutron:
http://www.atomicarchive.com/Fission/Fission2.shtml M i 1
1-k

1] Sandia National Labtk&Bbries
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" Where can | get some?

The Neutrun Flssmn Cross Sectlons

&

10" . . S S
: Ll | 5] o ] j
: i."'”‘“'” Natural Uranium - ~0.7% U-235
f.]
R I'n ”{” f ~99.3% U-238
e ‘ Natural Plutonium?
E 10° b i :
= : 5 0.4)
(=]
] 7
A .
8
B a8 l
h= :
10'2 ;, \h‘-..lh-"“’h i i ll il‘l _.J_L f bl wadil ) U j g
10" 10 10" 10* 10" 10°
Neutron Energy, MeV
(i) sandia National Laboratores

F iﬂure courtesi of David ChichesterI INL y



Uranium enrichment and Oak Ridge

« Ernest Lawrence invented the Calutron,
based on the Cyclotron, at UC Berkeley.

* 1943 - The Y-12 plant in Oak Ridge, TN was
stood up to enrich natural uranium.

« 1945 — Little Boy was ready.

Recovery of U-235 from a Calutron

Public Domain, https://commons.wikimedia.org/w/index.php?curid=2598841 fl'l Sandia National Laboratories
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Can | make it?

The Passive Neutron Signatures

Spontaneous Spontaneous Induced Thermal
Isotope Half Life Fission Yield | Fission Multiplicity | Fission Multiplicity
(n/s-kg) v v

232)) 71T yr 1,300 1.71 3.13

ziﬂ ;jgzgz: 232 There isn’t natural Plutonium to -

— : : be found, but ...

U 7.04 x 108 yr 0.299

236]) 2.34 x 108 yr 5.49 " -

238 K AAT x 10°yI> 13.6 o U

BINp | 214x10°yr 0.114 3e 2

238py 877 yr 259 x 10° T,,=235min (o U B*—~

239Py 2 47 X 104 yT 21.8 h =

240py ?55 ¥ 1[}? 1.02 x 108 T,. =2.35days 3?'&';'7 JBE?_"

241py 14.35yr 50 + A

2Py | 376x10°yr 1.72 x 108 T,,=2.44x10%yrs (5 Pu

24Cm 18.1yr 1.08 x 1010

22CF 2 65 yr 2.34 x 1013 — | —

Ref: “Panda Book™, values with * have significant uncertainty

11| Sandia National Laboratories
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First Nuclear Reactors

1943 - ORNL X-10 Graphite Reactor 1944 - Hanford B Reactor
graphite moderated, air cooled graphite moderated, water cooled
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Fat Man - 1945

Weapons Grade Plutonium (WGPu): >93% Pu-239

w Sandia National Laboratories
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Measurable Unique Signatures of Fissile Material

F——c1_

1. Radiography
Geometry
Gamma spectrum
- Isotopic content + surface area/shielding

Total neutron rate
- Assay of the contents of specific materials

Correlated counts

- Multiplicity analysis (singles, doubles, triples):
fission rate, multiplication, (a, n) component

Y
\
St (%)
F /
/

/

E f??iA

(¥

Plutonium Scrap Multiplicity
Counter, used for accurate
assays of plutonium metal,
oxide, mixed oxide, or scrap
(LANL PANDA Manual ).

nnnnnnnnnnnnn

I Relatlve multlpllcatlon: 0 ;mjoo fooo 15~oo 2000 2500
. Rossi-alpha distribution e i B R
+ Feynman variance technique & | ~._~ I R |
: - ST
) MHQ | \
patll ‘
Mﬂw"“w* I !
WIWAJM‘"W‘wa
Energy (keV) .

@ Sandia National Laboratories
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Current Methods
Drawbacks and Limitat(pns

Geometry/Radiography
» Insensitive to element/isotope type
Poor penetration

Gamma spectrum
«  Attenuation and self-shielding

Total neutron rate
«  Spontaneous & induced fission and (a,n)
sources are indistinguishable

Correlated counts

« Requires high efficiency, necessitates large
detection system

«  Efficiency has to be well known

»  Detector lifetime of 10-30 us is long
compared to fission chain processes

« Neutron energy information is lost due to
moderation

> He-3 based
technologies

\ Sandia National Laboratories

20



Thermal Neutron Detection

* High thermal cross section
(efficiency)
* High Q-value (discrimination)

n +3He — 3H + 'H + 0.764 MeV
N+ 1B — 7Li + o + 2.31 MeV

n+%Li->3H+o+4.78 MeV

Taken from ENDF database

Cross Section (bams)

2
10077

| | ) I ] T |l |
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ﬂ'l Sandia National Laboratories
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" Gas Filled Neutron Counters

el
particle

/ Anode (+) Battery or power supply
] 1] 1
He3 Tu be Cathode (-) BF3 Tu be

n+3He —3H + 'H + 0.764 MeV n+19B — 7Li + *He + 2.31 MeV

noise, gammas wall effect continuum full energy peak 4

/ A j
231 MeV
Gamma ray
pulse, noise, etc.  © ¢
threshold ? :‘
I ‘: 084Mev - 14TMeV :2
E 191 573 764 il - .,

Pulzse Size (energy deposited in detector)

dN/dE
it Pulses

deposited energy (keV)

(1) Sandia National Laboratories




1ermal Neutron Counters

2" 3“ 5“ 8" 10" 12" 12" + pb

——25"
_._3n
5 | — 42"
Thermal neutron detector L o025 —.—5"
g I . _6u
= _'_8"
g 0.20 10"
® oo R
0.15 |
g 25"+ Cd
i -3 4 Cd
® 010 | e 4.2%+ Cd
0.05
@ i 0.00
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Ref.: G. Knoll, Radiation detection

and measurement, 3rd ed., p. 539




an-Y Approach

o Measurement =——Poisson

m Measures correlated counts in a fixed

1E+0

gate 5
m Fission chains create variance in i
. . . . T
excess of Poisson distribution
g
2 =
o
. 7 = 1 + Y Coinr.idenceﬁ;te: 1024 us
2. . 0 10 iO 36 40 50 60 76
- 0*“: variance Multilicity
- [ mean

Feynman-Y

T T T

[¢]
5
o 4.5 kg Pu sphere in 7.6 cm poly
0 -
0

500 1000 1500 2000
Coincidence Gate (us)

& A |\ ¥




Neutron Coincidence Counting Equations

7. S=FeMvy(1+ a)

2 2
o D=FE];dMlsz+(

=) ver (1 + v

M- M-1
Us2 + ( ) [2v5,Vi2 + V51 (1 + @)vi3] + 3 ( —

)2 vo1(1 +

1
v

m F = spontaneous fission rate

m ¢ = neutron detection efficiency

= M = neutron leakage multiplication,

® a = (a,n) to spontaneous fission neutron ratio

= f;= doubles gate fraction

m f.= triples gate fraction

B Vg, Vs, Vg3= factorial moments of the spontaneous fission neutron
distribution

B V1, Vjy, V3= factorial moments of the induced fission neutron distribution

t@ﬂ Sandia National Laboratories
25



Targeting Multiplicity 2 correlations only

f > -
?@ ANNNP
D
SN ENERGY Gamma rays

)
Parent Neutrons

(unstable)
AJ\I\IV Daughters

* Neutrons and gamma-rays are emitted nearly simultaneously during the
fission process.

*  Minimum multiplicity equals two:

Gamma-gamma: great for timing, but a lot of detector cross talk and

12

2

3.

uncorrelated background.

Neutron-neutron: without event by event energy, expected correlated
timing is spread on the order of the spread in fission chain dynamics.
Gamma-neutron: gamma starts precise clock, neutron creates certainty

that fission has taken place (also more penetrating).

H

Sandia National Laboratories
26



Fast Organic Scintillators
Three main new advantages JOET T T T T

Pulse Shape Dependence
on Interacting Particle

ll!lli

10°

1.Fast rise time
« Sub-nanosecond timing

Light Intensit
8,

T T T 1

bl o1l

reSOI Ution 10 Fast neutrons
2. Incident neutron energy Wil Tgmmee
- : ’ Z'u!DTime (néﬂ)"J o0
¢ nght OUtPUt proportlonal Glenn Knoll Radiation Detection & Measurement 3™
Edition

to proton recaoill
0.5

3. PSD Capable 045/ Neutron Probability Map

sited N .. (synthetic mixed source)
Discriminate neutronsp% '2*? “E

gamma rays =8

« Gamma rays provide clean
timing S|gnatumg@a‘uﬁfamelated/i
event —

=
w

-to-total ratio

0.25+

Target N
nucleus

0 05 1 15 2 25 3
Light Output (MeVee)

1] Sandia National Laboratories
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Detection Efficiency

Table 13-1. Neutron and gamma-ray interaction probabilities in typlcal gas
proportlonal counters and scintillators

_ | - Interaction Prc')bability
Thermal Detectors ~ Thermal Neutron 1-MeV Gamma Ray
3He (2.5 cm diam, 4 atm) | e 0.0001
Ar (2.5 cm diam, 2 atm) 00 - 0.0005
BF; (5.0 cm diam, 0.66 atm) 7 0.29 - - 0.0006
Altubewall(OSmm) 00 0,014
, | Interaction Probability
Fast Detectors 1-MeV Neutron 1-MeV Gamma Ray
‘He (5.0 cmdiam, 18atm) . 0.01 - 0,001
Al tube wall (0.8 mm) 00 |
Scintillator (5.0 cm thick) - 0.78 - A 0.26

From T.W. Crane and M.P. Baker, Chapter 13, Neutron Detectors

117! Sandia National Laboratories
28




Energy Deposition

Table 13-2. Neutron and gamma-ray energy deposition in typical gas proportional counters an
scintillators s,

Average
Neutron Ratio of
Alphaor  dE/dx for Reaction Electron Neutron to
Proton - 400-keV = Energy Energy  Electron
Range Electron Deposited Deposited Energy

Thermal Detectors (cm) (keV/em)  (keV) (keV)®  Deposition
3He (2.5 cm diam, 4 atm) 21 1.1 ~500 4.0 125
3He (2.5 cm diam, 4 atm) 0.5 67  ~1750 24.0 30
+ Ar(2atm) | . O
_BF3 (5.0 cm diam, 0.66 atm) 0.7 3.6 ~2300 25.7 90
Fast Detectors | .
“He (5.0 cm diam, 18 atm) 0.1 - 6.7 1000 48 20

Scintillator (5.0 cm thick) 0.001 - 2000 1000 400 2.3

#This calculation assumes a path length of \/2 X tube diameter.
From T.W. Crane and M.P. Baker, Chapter 13, Neutron Detectors

@ Sandia National Laboratories
29
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~““ Discrimination - It's all about dE/dx

-dE/dx ~ M Z?/E

Me = 511 keV Mp = 938 MeV

(10 R A B AL 3
- . Energy Loss of Alphas of 5.49 MeV in Air
100.000 E (Stopping Power of Air for Alphas of 5.49 MeV)
E 10.000 k- Electrons _; S
= E Protons 3 Q
- g E =
= [ 2mm ] .
= [
£ 1000k - 2
T E E S
£ E o
(0] B -
2 0100 - 5
& : s
C ] n
0010 -
- ~1MeV ~20MeV .
0.001 N MR | A | P
0.1 10 10.0 100.0 1000.0
Energy (MeV) Path Length [cm]

Mean ranges of protons and electrons in aluminum [Source: E.J. Daly, A Hilgers, G. Dtolshagen. and H DR
Evans, "Space Environment Analysis: Experience and Trends," ESA 1996 Symposium on Envi ling for
Space-based Applications, Sept. 18-20, 1996, ESTEC, Noordm_,k The Ned:erlands]

(i) sandia National Laboratores
e (o



" P
~“ Discrimination - - It’s all about dE/dx

= +
Incident M
charged o i
particle
/ Anode (+) Battery or power supply

Cathode (-)
hies Tuke BF3 Tube
n+3He — 3H + 'H + 0.764 MeV n+ 1B — 7Li + “He + 2.31 MeV
noise, gammas wall affect continuum full anergy peak 4
2.317 MeWV

Gamma ray &

pulse, noise, ete.
= thrashold 3
z z

0.84 MeV _-"'1_4? MeV
| 2.79 MeV

Pulse 51 ited in detect
deposited energy (keV) e Size (energy deposited in or)

(1) Sandia National Laboratories




Discrimination — It’s all about dE/dx

e
=

-dE/dx ~ M Z?/E

Energy (MeV)

& ML o = o w
o

1

=

150 200 250 300
Track Length {mm)

Mean Tail lonization (ark)

e e e

] 50 100 150 200 250 300
Track Length {mm)

Bowden, Heffner, et al, “Directional Fast Neutron
Detection Using a TPC”, NIMA, 2010 117! Sandia National Laboratories
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Discrimination — It’s all about dE/dx

-dE/dx ~ M Z?/E

= 9¢€ | | | .
% " Bubble Formed _
£ § S N
g5 F :
S E L 5
- ;
o> Fk -
= f
E =6 3 Carbon
] 3 -
=]
5 1
10 15 20
16 MeV
Threshold
Energy

Incident Neutron Energy (MeV)

http://www.bubbletech.cal/radiation_detectors_files/B e%20Detectors.html
Sandia National Laboratories
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Neutron Detection — Scintillator

 Luminescence - When a material is excited and it
subsequently gives off light.

* How it is excited determines the type of luminescence.

« Scintillation — luminescence produced by ionizing
radiation excitation.

* Fluorescence — photoluminescence or scintillation that
has a fast decay time (ns to us).

* Phosphorescence — same as fluorescence, but with
much slower decay time (ms to seconds)

|F17) Sandia National Laboratories
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Neutron Detection — Scintillator

» Desirable Properties:
« High conversion efficiency
« Short decay times
* Transparent to its own emission
» Wavelength matched to photodetector
 Inorganic — Nal(TI), Csl(Tl), LaBr, BGO
« Organic — Anthracene, Stilbene, Plastic, Liquid

Photocathode
7

AR LARASE R LN

s

Sandia National Laboratories
35




Excitation
(Absorption)
10"5 Seconds

Internal
Conversion
and
Vibrational
Relaxation
(1014, 107" sec)

e

Fluorescence
(10- 107 Sec)
_

Intersystem
Crossing
o

Quenching
e

Non-Radiative g

Relaxation
L= SN

Jablonski Energy Diagram
Excited Singlet States

5

‘ Vibrational
Energy States

{ Internal
Conversion

Delayed
Fluorescence

5 xEgE,
g, =75 Excited
, ——3 Triplet
i State
| o (T,)
Intersystem
Crossing

Mon-Radiative
Relaxation
(Triplet)

T1+T1=30 + S1

‘ Phasghoresuence
(107- 10% Sec)

o == hdid Ch

e , - Figure 1
Ground State

http://micro.magnet.fsu.edu/primer/techniques/fluorescence/fluorescenceintro.htmi

(i) santia National Laboratores




start with linearity at low ionization
density dL dE

E dr
let the density of excited

molecules be proportional to the
lonization density dE

dx
let k be the fraction that is
guenched dE
dL = n’.x

dx |, g 9E

dx

for small dE/dx, approaches
linearity

for large dE/dx, approaches
saturation 47 4

E kB

s 8 8 8 8

OF L/mg/em® OF ANTHRACENE

3

(=]

‘a.mamml
06 Ol 00S 0G2 00l 0005,
s o0 2 a

Me\/mg,/em?
OF ANTHRACENE

from Birks
(i) sandia National Laboratories



E
L(E)=I S.(dE/dx) dE
) 1+ kB- (dE/dx)\ dx
NE-102
//" .
”.i //, '..
“ // 4
1 ELECTRON 7 .
[ 7
- A // .
T
53 | 2
PROTON
T3 A
<t ¥t
3@ -
z < 1 ONE PARAMETER s
3 TWO PARAMETER —
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1024 {
¥ i G AT AL

PARTICLE ENERGY (MeV)

-1
) dE

LIGHT YIELD (relative)

1.0

0.8
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0.4

02

from Gooding and Pugh

Plastic scintillator
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Sandia National Laboratories




10000
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1000

100

Counts
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{ | RS e e
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0 500 1000 1500 2000
Time (ns)

1] Sandia National Laboratories
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Pulse Shape Discrimination

1 :
BC-501A Liquid Scintillator ;
TCSPC Timing Distributions i
%) 0.1 3
c ]
- o
8 .
0.01
© 3 3
s 1E3f —Neutron -
E T—
(@) ®
< 1E-4
L ]
1E_5 1 1 1 1
0.0 0.5 1.0 1.5

Time (usec)

*Szczesniak, T. et al IEEE Trans. Nucl. Sci. 2010, 57, 3846.

1] Sandia National Laboratories
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PSD - Integrated Rise Time

 Digitally integrate the
pulse and take the
rise time.

 PSD is taken as time
between 10% and
some fraction of total
integral.

Amplitude [au.]
o

u|||||||||||||||||||

1
830 830 D00 D20 O40
Time [nz]

1] Sandia National Laboratories
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PSD - Slow component

-
ARON EAEIED RAEI
| T

» Locate the start of the 1
slow decay
component and
compare integrals in
prompt and slow.

* In this case:

Fast = 0-33 ns
Slow = 33-283 ns

Amplitude [a.u.
mg qe[au]

=
ko

c
‘“a::m 280 mu CR0 1000 10%0 1100 11%0 1200
Tim= [hs]

1] Sandia National Laboratories
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PSD — Gatti and De Martini integral

Starts by leading edge

Integrate the entire pulse with a
suitable weight

S;fz pl(t)wl(t)dt
|

'/, | The optimal weight can be shown to be

I wie)= ﬁz(t)—yzm
o, (t)+0o(t)

E. Gatti, F. de Martini, in: Nuclear Electronics, Proceedings of International
Conference at Belgrade, Vol. Il, IAEA, Vienna, 1962, p. 265.

1 1 I4ml 11 IHm
T [ns)

Sandia National Laboratories
e



PSD — Calibration

‘X}"_Xu
FOM =- :
({W

Y |
B0 - 50000005
p1-2668.954617
107 2 - 0.067000
: P4 b 005000
:a-nrnm | PSD vs. ADC - det1_ch0_zﬂ |
6 - 0000004
P7 - -4.000000
FE-D.MTM? : Ezuoo —
; : o C
102 £ 1800
1 m —
o .
< 1600 —
[ -
; _ | & 1400
TV S L W " i, 2 A : 1200
- 1000
i j 800
10-4 — 600
= _ ; T 400
_IIiIIIIiIIII.IIIIiIIIIiIII iIIIIiII 200-,\- ||||]|||||.IIII|IIII|IIII|IIII|II
500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
ADC Value ADC Value
(1) Sandia National Laboratores
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""" Correlated Radiation Signatures - Stilbene Array

Computer/digitizer

Stilbene array

Beryllium Reflected Plutonium (BeRP) ball, 4.5 kg WGPu
in a 1” shell of High Density Polyethylene

Sandia National Laboratories



Same Fission Gamma-Neutron Correlations

2 I R
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Same Fission Gamma-Neutron Detection Space-Time
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Neutron and gamma are born
from the same fission event
They travel the same distance
the detectors

The measured and actual
difference in time-of-flight is
equivalent

. When subtracting estimated

time of flight of the neutron,
the result is less than zero

At,, — Aty < 0
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Neutron-Gamma Correlation — Fission Chain

Time Of Flight Fixed by Estimated Energy (TOFFEE)
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Fission Chains Gamma-Neutron Space-Time
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TOFFEE Sensitivity to Fissile Material and Configuration

TOFFEE is sensitive to:
1. Fissile vs. fissionable
2. Fissile materials with different neutron magdiilication.
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Extracting Physical Parameters from TOFFEE

Parametric Experiments and Simulations

 TOFFEE distribution was shown Measurements of BeRP ball
to discriminate between fissile  « Bare
assemblies * 0.5in Steel

« Aphysical model is requiredto <+ 1.0 in Steel
extract physical parameters by + 1.5in Steel
fitting the TOFFEE distribution  + 1.0 in Nickel

« Use point-kinetics model
(energy and spatially Simulations
independent), which describes + 0.5-06 in Steel
the neutron population change, < 0.5 -6 in Nickel
which tracks with the density of + 0.5 -6 in Tungsten
fissions in a fissile material « 0.5-6IinAluminum
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Two-region point kinetics

1 v . 'aTLIFTr
Neutron multiplication Return-from-refieetor

\ / Loss in the core

(abs & leakage)
dN k N, N,
Core: C = N+ oot =S
e dt I, L. L,

. Reflector | |nflux from the core Loss in the reflector

N\ /

Reflector: dN, —f N_ &
dt Tl

N. & N,.: the number of neutrons in the fissile core and reflector regions
. & L.: neutron lifetimes in the fissile core and reflector regions
k. : multiplication factor in the fissile core region

f = f.* frc: fraction of neutrons that leak to reflector AND return to the core
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Solution is a double exponential

N.(t) = N,[(1 - R)etrl 1+ Retrz]

i\/4lclr(f +ko—1)+ (lc —L.(k, — 1))2 — .+ L(k,—1)

T- =
v 201
Tl — A
Scale Parameter: R =
n—-r
Rate parameter —
(in a bare configuration): a = l
c
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Normalized Counts
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Fitting Strategy for Reflected Configurations

N.(t) = N,[(1 — R)e'™ + Rel"?]

TOFFEE (ns)

 Allowing reflection
fraction (f) and
neutron lifetime (L,
[.) produces muddled
results

I « Solution: fix k. and [,

to what the core
parameters are from

the fit of the bare
case
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Estimating Multiplication of Reflected Assemblies

Measurement vs Simulation
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»-n timing + better energy estimate
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Aty =R, [ — ) AT
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Time of arrival Time-of-flight Time difference
difference difference between
betweeny and | betweenyand |fissionsin a
neutron neutron chain
T — MINER: the Mobile
b == X mom Imager of Neutrons
for Emergency
Eno = Ep +En; Resp.onse
16 independent
, Bt 3"x3” EJ-309
COS“On1 = 72— liquid scintillator
no
cells
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