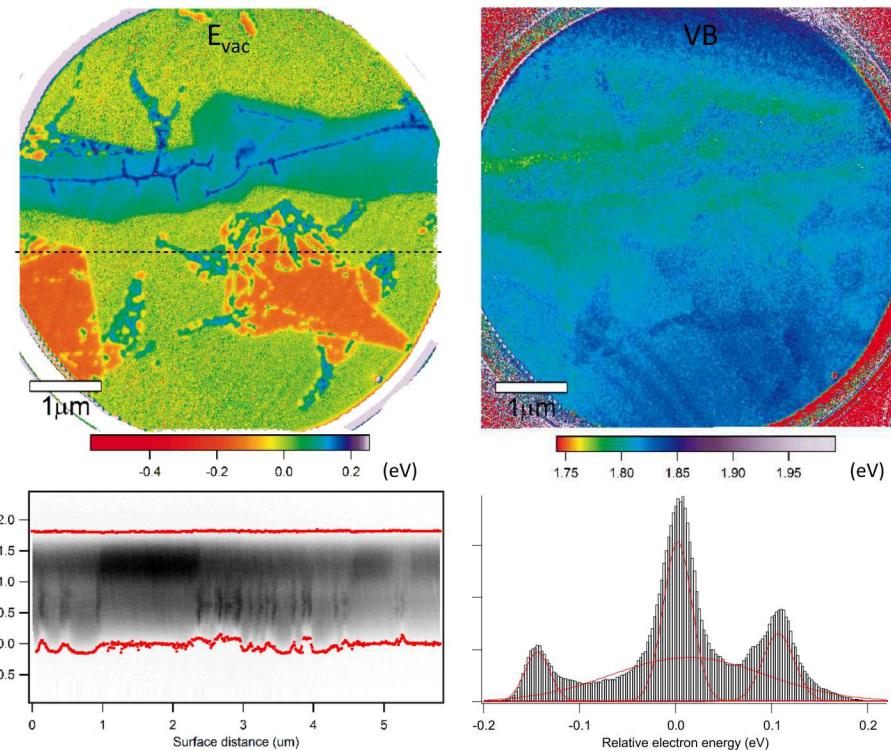


CW laser commissioning


SAND2018-12867D

$\lambda=213\text{nm}$: 5.82eV

(currently) Smallest electron spectrometer slit: $\sim 200\text{meV}$ nominal resolution

Measurement time: $\sim 90\text{min}$

Objective lens compensation: used to eliminate the effect of the start voltage

- Sample: multilayer epitaxial graphene grown on SiC(0001)
 - Areas of different thicknesses form domains with different electronic properties
- Features down to 30-50nm resolved in E_{vac} map
- VB map almost featureless due to uniform metallic, but low DOS of graphene
- Multimodal histogram with symmetric distribution of each mode
 - Each mode originates from the area of different graphene thickness
- The histogram width of $E_{\text{vac}} \sim 30\text{-}40\text{meV}$ reflects the energy resolution of the electron spectrometer's slit used

Acknowledgements

- Financial support:

- CINT, US DOE Office of Science (DE-AC04-94AL85000)
- Sandia LDRD

Center for Integrated Nanotechnologies

- **Open access for the research community via a proposal process!**

U.S. DEPARTMENT OF
ENERGY
Office of Science

> 550 users &
300 publications
annually

<http://cint.lanl.gov> | #CINT |
@CenterIntegratedNanotechnologies

LEEM-PEEM contact:
Taisuke Ohta (tohta@sandia.gov)

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. The views expressed in the article do not necessarily represent the views of the U.S. DOE or the United States Government.