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Motivation

• Fe-Co-2V is soft, ferromagnetic
material commonly used for
electrical components

• Often exhibits low strength,
poor ductility, and low
workability due to an ordered
B2 microstructure

• Limited fatigue data currently
exists for Fe-Co-2V
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[Source: Stoloff et al., Scripta Metallurgica et Materialia, 1992]

Characterize the fatigue properties of Fe-Co-2V through
strain-controlled fatigue testing coupled with numerical and
analytical modeling
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Additively Manufactured (AM) Fe-Co-2V

■ Producing Fe-Co-2V using AM could
potentially improve its mechanical

properties

■ AM Specimens exhibited significant
cracking, likely from thermal

residuals stresses

■ Proceeded to use wrought Fe-Co-2V
for the study
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Quasi-Static, Monotonic Tension Tests
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Strain-Controlled Fatigue Testing
(R--1, 1 Hz)
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Strain-Controlled Fatigue Testing
(R--1, 1 Hz)
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• Experimental Data
 Coffin-Manson Curve
• Experimental Elastic Strain
A Experimental Plastic Strain

Elastic Strain
Plastic Strain
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Strain-Controlled Fatigue Testing
(R--1, 1 Hz)
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Calibration Methods

• Gradient

• SLQSP

• Nelder-Mead

• Global

• brute

• basinhopping

Error Metric:
n

1
MSE = 771, In - yir

t o

• Weighted function
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Calibration Methods

Gradient

• Fast Convergence

• Susceptible to local
minima vs. global

Global
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Calibration Methods

Gradient

uloaai

• Guarantees minima

• Inefficient, can run into
memory problems
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Monotonic Calibration

J2 Plasticity

• Generic Implementation of a

von Mises yield surface with
kinematic and isotropic
hardening features

Power Law

• Describes isotropic hardening
of the material

a = ay + MEP — EL)n

Parameters
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Plastic Hardening

Isotropic Hardening

■ Uniform shift of yield surface

■ Compresses at maximum of

current yield stress ay

Isotropic
CT

Kinematic Hardening

■ Asymmetry between compressive and
tensile yield stress

■ Bauschinger's Effect

■ Max compression of initial yield stress 6y0

Kinematic

o

Mixed
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Cyclic Calibration

BCJ _MEM

• Rate and temperature-
dependent elastoviscoplasticity
model with isotropic damage

• Includes effects of
recrystallization and grain
growth

Plastic Strain
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Cyclic Fit 2

Ramberg-Osgood Curve 700

• Based on cyclic stress and 600
strain amplitudes from near
half the fatigue life 500

• Used to obtain n' and H' for
analytical model
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Multi-Stage Fatigue (MSF) Model

Ntotai = NINC + Nsc + NLC

Incubation Cycles, NINc:

PA
o "IrMax 

= L 
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Small Crack Growth Cycles, Nsc:

dAl)
SC 100 gm 
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da

Long Crack Growth Cycles:

(da = Ci(AKef f)ni

ciN ) LC F1 (Kmax)/
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Source: McDowell et al., Eng Fract Mech, 2003

Xue et al., Eng Fract Mech, 2007

Xue et al., Acta Materialia, 2010 20



Finite Element Model 2D
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Average Maximum Plastic Shear Strain Yrax

p

max — A Ymax dA
1113 Afl

[Source: Xue et al., Eng. Fract. Mech., 2007]

AR = 0• 012D2
[Source: Gall et al., int J Fract, 2001]
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ymax versus Ea
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Finite Element Model 3D
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3D versus 2D
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MSF Model Ntotal = NINC Nsc NLC

Incubation Cycles, NINC:
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MSF Model Ntotal = NINC Nsc NLC

Incubation Cycles, NINC:
Ti-6A1-4V

[Source: Torries et al., JOM, 2017]

Fe-Co-2V

Incubation and Small
Crack Growth
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Crack Propagation
• Crack propagation path determined using the eXtended Finite

Element Method (XFEM)

Lth (X) =

IEN

Heaviside

Enrichment Term

4

NI (x) III + H (x)ctI + Fa Ib a 1

a=1 

[

[Source: Abaqus Analysis User's Guide, v6.14, Section 10.7]

Crack Tip

Enrichment Term

• Initial crack: 0.01D = 0.542 pm

• Propagation modeled using LEFM

• Kink angle determined using Maximum tangential stress criterion:

3K/2/ + Vic4 + 81c2Kh
0 = cos- 1  K12 + 9 KI2I

[Source: Abaqus Theory Guide, v6.14, Section 2.17] 28



Crack Propagation

S, Mises (MPa)
(Avg: 75%)
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MSF Model Ntotal = NINC Nsc

Small Crack Growth Cycles, Nsc:

Sr Mises (MPa)
(Avg: 75%)
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MSF Model
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Larger discrepancy between MSF prediction and
experimental data for larger strain amplitudes

4 Incubation life assumption
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Conclusions & Future Work

Conclusions 

■ Fe-Co-2V Coffin-Manson parameters u;, b, q, and c
determined for the first time

■ Micromechanical simulations were used to compute the
nonlocal maximum plastic shear strain amplitude (fl) and
crack tip opening displacement (CTOD)

■ A Multi-Stage Fatigue model was used to predict fatigue life
with no parameter calibration

Future Work 

■ Upper and lower defect sizes to bound MSF model prediction

■ Analysis of AM CT imagery

■ More fatigue tests to populate strain-life curve
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