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Motivation

= Fe-Co-2V is soft, ferromagnetic
material commonly used for

electrical components °F Fo4aCo-2v
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= Often exhibits low strength,
poor ductility, and low

workability due to an ordered — T
B2 microstructure ,
= Limited fatigue data currently = b
! I 10 10
exists for Fe-Co-2V B -
[Source: Stoloff et al., Scripta Metallurgica et Materialia, 1992]
Project Goal

Characterize the fatigue properties of Fe-Co-2V through
strain-controlled fatigue testing coupled with numerical and
analytical modeling




Additively Manufactured (AM) Fe-Co-2V

" Producing Fe-Co-2V using AM could
potentially improve its mechanical
properties

= AM Specimens exhibited significant
cracking, likely from thermal
residuals stresses

®" Proceeded to use wrought Fe-Co-2V
for the study




Quasi-Static, Monotonic Tension Tests
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Strain-Controlled Fatigue Testing
(R=-1, 1 Hz)
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Strain-Controlled Fatigue Testing

]_() F | 1 | ® Experimental Data
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Strain-Controlled Fatigue Testing

10 : : 1| Experimental Data
§ 1 |— Coffin-Manson Curve
= Experimental Elastic Strain
| | & Experimental Plastic Strain
’é | |=— Elastic Strain
—-—-Plastic Strain
- 10—2 * Historic Data from Stoloff
S~
N
5
-3
- 10
(D)
(@))]
c
T
(a'd
C 1n-4
‘< 10
—
fd
Vo]
-5
10

10° 10° 10* 10°
Cycles to Failure, N,




L
(G
A
=
&
—
_
>
L]
N




SEM — 100um Scale
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SEM —40um Scale
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Calibration — Methods

= @Gradient
= SLQSP
= Nelder-Mead

" Global

= brute

= basinhopping
Error Metric:
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Calibration — Methods

Gradient
= Fast Convergence

= Susceptible to local
minima vs. global

Global
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Calibration — Methods
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Calibration — Data
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Monotonic Calibration
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Plastic Hardening

Isotropic Hardening Kinematic Hardening
=  Uniform shift of yield surface = Asymmetry between compressive and
= Compresses at maximum of tensile yield stress

current yield stress g, = Bauschinger’s Effect

= Max compression of initial yield stress gy,

Isotropic Kinematic Mixed
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Cyclic Calibration
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Cyclic Fit—2

Ramberg-Osgood Curve 700
= Based on cyclic stress and 600 -
strain amplitudes from near
half the fatigue life 500
= Used to obtainn’ and H' for ~
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Multi-Stage Fatigue (MSF) Model

Niotai = Ninc + Ns¢ + Ni¢

Incubation Cycles, N;y:

*

Ay?
p = 12nax = CINCNIOI[VC 30 um

Small Crack Growth Cycles, Ng:

da)
~~) = x(ACTOD — ACTOD,)
().

100 um “

Long Crack Growth Cycles:
<da> _ Ci(AKeff)ni
LG

dN/| — Kmax)q]
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Source: McDowell et al., Eng Fract Mech, 2003
Xue et al., Eng Fract Mech, 2007

Xue et al., Acta Materialia, 2010 20




Finite Element Model-2D
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Average Maximum Plastic Shear Strain y,ﬁlx

p
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[Source: Xue et al., Eng. Fract. Mech., 2007]

Ag = 0.012D?

[Source: Gall et al., IntJ Fract, 2001]
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Finite Element Model - 3D

Applied
Displacement
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3D versus 2D
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MSF Model Ntotar = Ninc + Ns¢ + Nic

Incubation Cycles, N;yc:
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MSF Model Ntotar = Ninc + Ns¢ + Nic

Incubation Cycles, N;yc:
Ti-6AI-4V e

Final Fracture

Long Crack Growth
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[Source: Torries et al., JOM, 2017]




Crack Propagation

= Crack propagation path determined using the eXtended Finite

Element Method (XFEM) N Crack Tip
Heaviside | Enri
. nrichment Term
Enrichment Term ( A \
[ . \ 4
ul(x) = Z N, (x) |u; + H(x)a; + Z E,b¥
IEN I a=1

[Source: Abaqus Analysis User’s Guide, v6.14, Section 10.7]

= |nitial crack: 0.01D = 0.542 um
= Propagation modeled using LEFM
= Kink angle determined using Maximum tangential stress criterion:

6

. (3K&+ K} +8KK]
= COS > >

[Source: Abaqus Theory Guide, v6.14, Section 2.17] 28



Applied Static Load

Crack Propagation arp = 0.5%

Linear Elastic Model
E =215MPa, v = 0.335




0
MSF Model Neotat = Ninc + Nsc + V{C

Small Crack Growth Cycles, Ng,:

Multilinear EI-Pl Model
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Larger discrepancy between MSF prediction and

M S F M O d e I experimental data for larger strain amplitudes
- Incubation life assumption
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Conclusions & Future Work

Conclusions

= Fe-Co-2V Coffin-Manson parameters 0;, b, sj'c, and ¢
determined for the first time

= Micromechanical simulations were used to compute the
nonlocal maximum plastic shear strain amplitude (£) and
crack tip opening displacement (CTOD)

= A Multi-Stage Fatigue model was used to predict fatigue life
with no parameter calibration

Future Work
= Upper and lower defect sizes to bound MSF model prediction

= Analysis of AM CT imagery

= More fatigue tests to populate strain-life curve .
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