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Project Overview

■ It is hypothesized that the strength of a nonlinearity (SNL) in a jointed

system can be predicted by quantifying the magnitude and uniformity of

contact pressure within an interface and by assessing the modal
excitation of an interface.

■ Numerical Methods:

Using Abaqus, we calculated a
variety of statistics regarding

contact pressure and modal strain
to utilize in developing a metric to
predict strength of nonlinearity.
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Project Overview

• Experimental Methods:

We obtained time response data
for many beam configurations.
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• Analysis:

We developed a definition for

SNL based on change in damping
ratio and change in frequency.
Using machine learning, we

assessed the importance of

various statistics in predicting
SNL and finalized a metric.
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Configurations Brake-Reuß Beam
• BRB

• Spring (SBRB)

• Long (LBRB)

Nominal B
ni 1-7

111 Sfifteies

• Hertzian Contact (HZ)

• Reverse Pad Contact (RPD)

• Large Pad Contact (LPD)

• Small Pad Contact (SPD)
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Configurations C-Beam

• CBM (also known as the S4 or Sandwich beam)
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Configurations 4-Bolt Beam

• 4LS
c a --,_-_,.). ri)®
(6) (--c-)-I- 0 a®

(4-bolt Long Same-side)

• 4S0 (3) 
c>)

IC)

(4-bolt Short Opposite-sides)

• 4V0

(4-bolt V-shape Outside)
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Numerical Methodology

• To develop the metric, we sought easy-to-access data from an FEA
model: modal strain and contact pressure.

• A nonlinear frictionless interface implicit solver was used to determine
contact pressure.

• A linearized eigen analysis was used to find mode shapes and strain.

• Various statistics were calculated based on the data:
• Mean (Contact Pressure and Strain)

• Max (Contact Pressure and Strain)

• Standard Deviation (Contact Pressure and Strain)

• Skew (Contact Pressure and Strain)

• Kurtosis (Contact Pressure and Strain)

• Contact Area
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Experimental Methodology
• impact Testing • Bandpass Filtering and Hilbert Transform
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Experimental Methodology
• CBM

• 4LS

tit

• 4S0

• 4V0
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Experimental Methodology
• Impact hammer testing using free-free boundary condition

• Bolt torques range from 5Nm 4 20Nm
• What is the effect of changing contact pressure within beam

configurations?

• Impact Levels ranging from 60N to 900N

• What is the effect of modal coupling?

• How do we normalize force?

• Standardize by max mode shape

o
1 oc' 10L

Amplitude [m/s21

C Beam Mode 2: Extreme Modal Coupling
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Defining Strength of Nonlinearity (SNL)

• Magnitude of shift in natural frequency and damping as
the response amplitude of a structure is varied between
two fixed bounds.

• SNL =
w 
+
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Defining SNL
1
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Defining SNL: Perturbations Approach
• Based off of a mass-spring-damper system

V
/
/101-•-1=1-•

7 il r IrK
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r /

+ kx = 0

• General form of equivalent frequency and damping

,e Monotonic Loading

Interface properties

GO = 1 + C1An-1 = C3 + C2An-1

/ 

Linear Damping 'r

Linear Frequency (Normalized)

Influence of joint on structure
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Defining SNL: Perturbations Approach
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Machine Learnin2
• Correlation of parameters to SNL and frequency-only-

based SNL by visual inspection and ANOVA
• 70% of variance explained by 5 variables: Mean Strain, Standard

Deviation Strain, Standard Deviation Contact Pressure, Contact Area,
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Machine Learning
• SNL = .065802 + 1.7405MeanE — 1.3022STDE — 5.7476

+.041298SkewE, p-value=1.17e-10, R2 = .696

• MATLAB's built-in functions fitlm,

stepwiselm, and step were utilized to

create a linear regression model using

the various statistics

• stepwiselm automatically tests the
importance of each statistic to create
the optimal metric

• step takes an existing model and
checks whether additional terms
should be added or existing terms
should be removed

• fitlm fits a model using the
parameters specified
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Whole Model

Parameters

(RA2=0.696, p-
value=1.17e-10)

p-value

MeanE

STDE

STDCP
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SkewE

(KurtosisE)

6.5816e-08

1.499e-05

4.1232e-05

0.00032329

0.01428

(0.09601)
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Parameters
(RA2=0.833,p-
value=1.49e-
15)
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MeanE
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AreaCP

6.6878e-12

2.8118e-10

2.6391e-06

9.671e-06

0.000461

.026855
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Conclusions
■ We were not able to produce a metric that could accurately

predict the SNL metric using only contact pressure and modal
strain. A future metric could possibly be determined if
additional interface properties were also included.

■ We were able to identify the key variables that explain
variance in our SNL metric

■ Strain: Mean, Standard Deviation and Skew

■ Contact Pressure: Standard Deviation and Area

■ We were able to identify areas of improvement for future
resea rch

■ Using modal acceleration instead of absolute acceleration

■ Better understand how force levels activate modal coupling

■ Implement genetic algorithms for model predictions

■ Use surface properties to explain damping variance
20
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