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Project Overview

= |tis hypothesized that the strength of a nonlinearity (SNL) in a jointed
system can be predicted by quantifying the magnitude and uniformity of
contact pressure within an interface and by assessing the modal
excitation of an interface.

=  Numerical Methods:

Using Abaqus, we calculated a
variety of statistics regarding
contact pressure and modal strain
to utilize in developing a metric to
predict strength of nonlinearity.
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Project Overview

=  Experimental Methods:

We obtained time response data
for many beam configurations.

= Analysis:

We developed a definition for
SNL based on change in damping
ratio and change in frequency.
Using machine learning, we
assessed the importance of

_ _ ~0.01 various statistics in predicting
Change in Damping 0 -0.015 . . .

Change in Frequency SNL and finalized a metric.
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Configurations — Brake-Reuld Beam

Nominal BRB

= BRB E — !

Mpdified Stiffness (SBRB)
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= Hertzian Contact (HZ) —

= Reverse Pad Contact (RPD)

= Large Pad Contact (LPD)

Small Pad Contact (SPD)
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Configurations — C-Beam

= CBM (also known as the S4 or Sandwich beam)
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Configurations — 4-Bolt Beam.

= 4LS m

(4-bolt Long Same-side)

(4-bolt Short Opposite-sides)

= 4VO
(4-bolt V-shape Outside)




Numerical Methodology

= To develop the metric, we sought easy-to-access data from an FEA
model: modal strain and contact pressure.

= A nonlinear frictionless interface implicit solver was used to determine
contact pressure.

= Alinearized eigen analysis was used to find mode shapes and strain.

= Various statistics were calculated based on the data:
= Mean (Contact Pressure and Strain)
=  Max (Contact Pressure and Strain)
= Standard Deviation (Contact Pressure and Strain)
= Skew (Contact Pressure and Strain)
= Kurtosis (Contact Pressure and Strain)
= Contact Area
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Experimental Methodology

" |mpact Testing = Bandpass Filtering and Hilbert Transform

ERF amp [m/s?/N]
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Experimental Methodology

= CBM = 450
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Experimental Methodology

Impact hammer testing using free-free boundary condition

Bolt torques range from 5SNm = 20Nm

= What is the effect of changing contact pressure within beam
configurations?

Impact Levels ranging from 60N to S00N
=  What is the effect of modal coupling?
= How do we normalize force?

= Standardize by max mode shape
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C Beam Mode 2: Extreme Modal Coupling
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Defining Strength of Nonlinearity (SNL)

= Magnitude of shift in natural frequency and damping as
the response amplitude of a structure is varied between
two fixed bounds.

" SNL=a=2+pA

C Beam Mode 2/ 20Nm / 400N

o
r

o
ok
L

0.999

A¢

=
o
i

Damping Ratio [%]
(==}
=

0.998

Natural Frequency Normalized

10° 10t 10?2

0 | |
10° 10! 10?
Amplitude [m ,r'sz]

Amplitude [m/s?]

14

Introduction Overview Numerical Experimental Characterization Conclusion




Defining SNL

N =

Aw Aw
SNLA = | (20— +(AD?2 | + 20 x— + (AQ)?
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Defining SNL: Perturbations Approach

Based off of a mass-spring-damper system
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Defining SNL: Perturbations Approach

CBM Mode 2 / 20Nm / 100N
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Machine Learning

= Correlation of parameters to SNL and frequency-only-
based SNL by visual inspection and ANOVA

= 70% of variance explained by 5 variables: Mean Strain, Standard
Deviation Strain, Standard Deviation Contact Pressure, Contact Area,
Skew Strain
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Machine Learning

= SNL =.065802 + 1.7405MeanE — 1.3022STDE — 5.7476 * 10~°STDCP — 41.301AreaCP
+.041298SkewE, p-value=1.17e-10, R? = .696

=  MATLAB'’s built-in functions fitim,
stepwiselm, and step were utilized to
create a linear regression model using
the various statistics

Added variable plot for whole model

0.5

0.2

Adjusted SNL

®  Adjusted data
Fit:y=34 6506"x
95% conf. bounds | |

=  stepwiselm automatically tests the
importance of each statistic to create
the optimal metric

o1r

= step takes an existing model and
checks whether additional terms g

Frequency
should be added or existing terms RS Parameters
(R*2=0.696, p- (R*2=0.833,p-
should be removed value=1.17e-10) value=1.49¢-
. ' : 15)
= fitlm fits a model using the MeanE 6.5816e-08  MeanE 6.6878e-12
parameters Specified STDE 1.499e-05 STDE 2.8118e-10
STDCP 4.1232e-05 SkewE 2.6391e-06
AreaCP 0.00032329 STDCP 9.671e-06
SkewE 0.01428 Kurtosisk 0.000461
(KurtosisE) (0.09601) AreaCP 026855
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Conclusions

= We were not able to produce a metric that could accurately
predict the SNL metric using only contact pressure and modal
strain. A future metric could possibly be determined if
additional interface properties were also included.

= We were able to identify the key variables that explain
variance in our SNL metric
= Strain: Mean, Standard Deviation and Skew
= Contact Pressure: Standard Deviation and Area

= We were able to identify areas of improvement for future
research
= Using modal acceleration instead of absolute acceleration
= Better understand how force levels activate modal coupling
= |Implement genetic algorithms for model predictions

= Use surface properties to explain damping variance
20
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