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ABSTRACT

In this paper, we present an adaptive algorithm to construct re-

sponse surface approximations of high-fidelity models using a hi- ARTICLE INFO
erarchy of lower fidelity models. Our algorithm is based on multi-

index stochastic collocation and automatically balances physical dis- Correspondence:
cretization error and response surface error to construct an approxi- J.D. jakeman
mation of model outputs. This surrogate can be used for uncertainty jdjakem@sandia.gov

quantification (UQ) and sensitivity analysis (SA) at a fraction of the
cost of a purely high-fidelity approach. We demonstrate the effec- Keywords:

tiveness of our algorithm on a canonical test problem from the UQ Uncertainty quantification, multifi-
literature and a complex multi-physics model that simulates the per- delity, sensitivity analysis, decision
formance of an integrated nozzle for an unmanned aerospace vehicle. making, modeling, simulation, val-
We find that when the input-output response is sufficiently smooth idation

our algorithm produces approximations that can be up to orders of
magnitude more accurate than single fidelity approximations for a
fixed computational budget.

1 Introduction

Quantifying uncertainty in simulation-based prediction of engineered systems is essential for credible certifi-
cation and design. Traditional sampling-based approaches for quantifying uncertainty, such as Monte Carlo
(MC), require repeated evaluations at varying parameter realizations. Consequently, MC methods are often
computationally intractable for high-fidelity simulation models because they require a prohibitively large
number of evaluations to obtain moderate accuracy in response statistics. In contrast, surrogate methods
such polynomial chaos [21, 49, 52, 2], Gaussian processes [42, 44], low-rank decompositions [12, 24, 39, 25],
and sparse grid interpolation [36, 51, 29, [I] can be used to build an approximation of the input-output
response often at a fraction of the cost of MC sampling. Once the surrogate has been constructed, various
uncertainty quantification (UQ) tasks, such as sensitivity analysis, density estimation, etc., can then be
performed on the approximation at negligible cost.[!]

Despite the improved efficiency of surrogate methods relative to MC sampling, building a surrogate can
still be prohibitively expensive for high-fidelity simulation models. Fortunately, a selection of models of
varying fidelity and computational cost are typically available for many applications. For example aerospace

1Reduced order models can also be used to construct surrogates and have been applied successfully for UQ on many
applications [10, 48, 8]. These methods do not construct response surface approximations, but rather solve the governing
equations on a reduced basis.

1
Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
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models span fluid dynamics, structural and thermal response, control systems, etc. Leveraging an ensemble
of models can facilitate significant reductions in the overall computational cost of UQ, by integrating the
predictions of quantities of interest (Qol) from multiple sources.

Multi-fidelity methods utilize an ensemble of models, enriching a small number of high-fidelity simulations
with larger numbers of simulations from models of varying prediction accuracy and reduced cost, to enable
greater exploration and resolution of uncertainty while maintaining deterministic prediction accuracy. The
effectiveness of multi-fidelity approaches depends on the ability to identify and exploit relationships among
models within the ensemble. The relationships among models within a model ensemble vary greatly, and
most existing approaches focus on exploiting a specific type of structure for a presumed model sequence. For
example, [41, 31, 26, 32] build approximations that leverage a hierarchy of models of increasing fidelity, with
varying physics and/or numerical discretizations. Multi-level [50] and multi-index [27] also leverage a set
of models of increasing fidelity, with the additional assumption that a model sequence forms a convergent
hierarchy. Such a hierarchy can be formed from a sequence of finite element discretizations to the solutions
of a partial differential equation (PDE), for example, which converges to the exact solution of the governing
equations as the finite element mesh is refined. Some attention has been given to building multi-fidelity
approximations using models that do not admit a strict ordering of fidelity [23, 40]; however literature in
this area is limited.

In this paper, we focus on multi-level /multi-index surrogate methods, observing that access to a sequence
of numerical model discretizations can be more practical than access to an ensemble of models of varying
physics fidelity. Multi-level methods [35, 14, 50] build the multi-fidelity surrogate as a linear combination of
approximations of the differences between the Qol of models of increasing fidelity /discretization. Resources
are allocated to each model level, controlled by a single hyper-parameter, specifying the level of discretization
for example, in a manner that balances computational cost with increase in accuracy. In many applications,
however, multiple hyper-parameters may control the model discretization, such as the mesh and time step
sizes. In these situations, it may not be clear how to construct a one-dimensional hierarchy represented by
a scalar hyper-parameter. To overcome this limitation, a generalization of multi-level collocation, referred
to as multi-index stochastic collocation (MISC), was developed to deal with multivariate hierarchies with
multiple refinement hyper-parameters [27].

In this paper we will present an adaptive extension of MISC and use this algorithm to reduce the cost
of quantifying uncertainty in the performance of a supersonic jet engine nozzle. The main contributions of
this paper are:

e The extension of MISC to function approximation. The original MISC papers focused on estimation
of moments using quadrature.

e The development of an adaptive multi-index collocation approach based upon sparse grid approxi-
mation. The seminal multi-index collocation paper used a priori estimates of model and parameter
importance to allocate samples across the model ensemble. Our algorithm adaptively balances dis-
cretization error introduced by numerically solving the governing equations, response surface error,
and parameter importance.

e Formulation of a multi-index method for variance based sensitivity analysis.

e Application of multi-index collocation to an engineering application of practical importance, specifically
UQ of a nozzle of an unmanned aerospace vehicle.

Multi-level /multi-index surrogate methods are closely related to many multi-level /multi-fidelity sampling
algorithms [9, 18, 22, 28, 34, 40, 23]. These sampling algorithms leverage correlation between the outputs
of multiple models to reduce the variance in statistical estimators of quantities such as expectation. This
variance reduction can result in orders of magnitude reduction in the computational cost of quantifying
uncertainty, but like traditional MC sampling the error decreases slowly as the number of samples is increased
which can still render this approach infeasible in some contexts. As a rough guide, multi-fidelity surrogate
methods are best applied to models which with smooth input-output responses and sampling based methods
are better suited to models with large numbers of parameters and Qol with low regularity.

The remainder of this paper is organized as follows. Section 2 introduces two motivating examples: an
advection-diffusion model problem and an aero-thermo-structural analysis of the performance of a supersonic
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jet engine nozzle. Section B presents the numerical discretization used to solve the aforementioned models,
and introduces the sparse grid interpolation method which is the foundation of our approach. The adaptive
multi-index collocation method is presented in Section M, and Section [ describes how to use MISC for global
sensitivity analysis. Finally, in section [§, we highlight the strengths of the adaptive multi-index method
(AMISC) as demonstrated on the advection-diffusion model problem and the engineering-scale model of the
supersonic nozzle.

2 Problem setup

We seek to quantify uncertainty in a broad class of stochastic partial differential equations (PDE). Let
D C RY, for £ = 1,2, or 3 and dim(D) = ¢, be a physical domain; T > 0 be a real number; and I' C R?, for
d > 1 and dim(T") = d, be the stochastic space. The PDE is defined as

us(x,t, Z) = L(u),
B(U(.’B,t, Z)) =0, (1)
U(ZB,O, Z) = UO(:B7Z)5

where ¢ is the time, = (x1,...,2¢) is the physical coordinate, £ is a (nonlinear) differential operator, B is
the boundary condition operator, ug is the initial condition, and Z = (Z;,...,Zy) € T are a set of random
variables characterizing the random inputs to the governing equation. The solution v € V' is a vector-valued

stochastic quantity -
u:Dx[0,T] xT' — R", (2)

for some suitable function space V and where D = D x 0D is the closure of the interior domain. As an
example, u(x,t,z) can be a vector of temperatures, pressures, and velocities for a specific location in the
domain @, specific time ¢, and for a specific realization z of the stochastic variable Z.

Often, one is more interested in quantifying uncertainty in a particular functional of the solution, called
the quantity of interest (Qol), rather than the full solution. Let

Flu:V —RY, g>0. (3)

be such a function, where F is typically a continuous and bounded functional. Then, we are interested in
estimating statistics of the function

f(z) = Flu(-,2)] : T — R, (4)

which assigns the value of the quantity of interest F[u] to each realization of the random variables z.
Expression (H)) allows us to express the Qol as a function of the random variables without needed to
explicitly state the dependence of the Qol on the PDE solution.

2.1 Advection diffusion equation

As a stochastic model problem, we will use the following transient advection-diffusion PDE, in two spatial
dimensions (D = [0,1]?), to highlight the strengths and weaknesses of our proposed approach,

%(m,t,z) + Vu(x,t,z) — V- [k(z, 2)Vu(z, t, 2)] = g(x,t) (z,t,2) € D x[0,1] x T (5)
=0

u(x,t, z) (z,t,z) € 0D x [0,1] x T

with forcing g(x,t) = (1.5 + cos(2nt)) cos(z1), and subject to the initial condition u(z,0, z) = 0. Following
[37], we model the diffusivity k as a random field represented by the Karhunen-Loéve (like) expansion (KLE)

VL

/2 4
log(k(x,z) — 0.5) =1+ 2 <T> + Z Apd () 2k, (6)
k=2
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with

Ak = (\/E) i exp (—@) k>1, o(x)

where L, = max(1,2L.), L = %i and L. = 0.5.

In this example we truncate () at d = 10 terms and choose Zi, k € {1...,d} to be uncorrelated
independent and identical uniform random variables distributed on [—\/g, \/3] Using 10 terms captures
99.99999996 percent of the total energy of the untruncated expansion. We choose a random field which is
effectively one-dimensional so that the error in the finite element solution is more sensitive to refinement of
the mesh in the z;-direction than to refinement in the xs-direction.

The advection diffusion equation (] is solved using linear finite elements and implicit backward-Euler
timestepping. In the following we will show how solving the PDE with varying numbers of finite elements
and timesteps can reduce the cost of approximating the quantity of interest

Nl =23

1) = [ ule) gz exp(-1= ) o

where * = (0.3,0.5) and ¢ = 0.16. The advection diffusion model, defined here, can be inexpensively evalu-
ated and therefore allows for exhaustive exploration of the behavior of our proposed multi-index collocation
approach.

2.2 Aero-thermo-structural model of a jet engine nozzle

One of the main objectives of this paper is to quantify uncertainty in a supersonic jet engine nozzle. Realistic
modeling of the nozzle requires a multiphysics approach that couples aerodynamic, structural and thermal
analyses. In this paper we use the model introduced in [43], and Figure [ provides a conceptual diagram of
its components. This model performs a steady-state analysis of top-of-climb flight, where temperatures and
stresses are the highest. Forty random variables were identified and characterized from experimental data,
simulations, or expert judgment. Each variable and its distribution is described in Appendix Al

Number | Component Name
1 thermal layer

2 inner load layer
3 middle load layer
4 outer load layer
5 stringers

6-10 baffles 1-5

Figure 1: (Left) schematic of the nozzle components. (Right) Component numbering.

We have developed an automated suite of coupled multidisciplinary analysis tools for the steady aero-
thermal-structural analysis of a supersonic nozzles called MULTI-F. MULTI-F is written in Python and calls
the open source codes SU2 [13] and AERO-S [16] for fluid and thermal/structural analyses, respectively.
The internal and external flow is modeled by Euler equations which are solved using SU2. One-way feed-
forward coupling is used to model the interaction between the fluid and structural analyses. Specifically the
temperature obtained from the aerodynamic analysis furnishes the boundary condition on the inner wall of
the thermal model. The pressure and temperatures obtained from the aerodynamic and thermal analyses
then are used to provide the inner wall pressure and the temperature distribution used in a linear structural
analysis. An elastostatic boundary value problem representing the equilibrium of internal and external forces
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is considered for the structural analysis while a Poisson boundary value problem representing the steady state
heat transfer is considered for the thermal analysis. The other boundary conditions are state-independent; a
convection boundary condition is specified on the outer wall of the thermal model, while a fixed displacement
boundary condition is imposed on the outer edges of the baffles and stringers in the structural model.

In the following we will leverage different resolutions of both the CFD and structural meshes to reduce
the cost of quantifying uncertainty in four model Qol: mass, thrust, load-layer temperature failure ratio, and
thermal-layer failure criteria.

3 Multifidelity Modeling

In this paper, we present a method to efficiently estimate statistics of the Qol (4) obtained from models of
complex physical systems (1)) . For most, if not all, practical applications, the solutions of the governing
equations and statistics of the resulting Qol cannot be computed analytically and numerical approximations
must be employed. In this section we discuss the impact of numerical simulation errors and response surface
errors on the quantification of uncertainty.

Given a set of governing equations ([I}), we assume access to a PDE solver that approximates the solution
u of these equations for a given fixed z. We also assume this solver has a set of hyper-parameters — mesh
size, time step, maximum number of iterations, convergence tolerance, etc. — which can be used to estimate
the Qol f at varying accuracy and cost. Differing settings for these hyper-parameters produces simulations
of varying fidelities (resolution). We refer to approaches that leverage only one model or solver setting as
single-fidelity methods and approaches that leverage multiple models and settings as multi-fidelity methods.

As stated in the introduction, quantifying uncertainty in numerical simulations can be costly, consequently
it is common to construct a surrogate (function approximation) of the model parameters-to-output map.
In this section, we introduce the solver parameters used to solve the two models considered in this paper
(Section B.1]) and then present the method used to build surrogates of a single fidelity model (Section [3.2)).
These foundations are used to construct a multi-fidelity surrogate in Section 4.

3.1 Physical approximation

The accuracy and cost of a model is often determined by a set of solver parameters, such as mesh size,
time step, tolerances of numerical solvers. Let n, denote the number of such parameters for a given model.
Furthermore let [ € N denote the number of values that each solver parameter can assume, such that
the multi-index a = (o, ...,y ) € N o, € My, = {1,...,1*} can be used to index specific values of
the solver parameters. Finally let fa(z) to denote a single-fidelity physical approximation of the Qol f(z)
using the solver parameters indexed by a. In this section we detail the solver indices « for the two models
considered in this paper and their effect on the accuracy and cost of fa (2).

3.1.1 Advection-diffusion model

The advection-diffusion equation () is solved using the Galerkin finite element method with linear finite
elements and the implicit backward-Euler time-stepping scheme. Let h; and ho denote the mesh-size in the
spatial directions z; and x3. Then given some base coarse discretization h; o, we create a sequence of [/
uniform triangular meshes of increasing fidelity by setting ha; = hjo-27%, 0 < oy < 1%, where hjo = i
and [% = 6, j = 1,2. The number of vertices in the spatial mesh is (hy! 4+ 1)(hg} + 1).

The backward-Euler scheme used to evolve the advection-diffusion equation in time is an implicit method
and unconditionally stable; consequently, the time-step size At can be made very large. In this paper, we
use an ensemble of [*# time-step sizes Aty a5 = Atag,0 27, 0 < az < 1% to solve (b)) and set (%3 = 6
and At,, o = 1/4. For high enough oy and a9, the ensemble represents a sequence of models of increasing
accuracy.

The cost of solving the advection-diffusion is dependent on both the number of mesh vertices and the
number of time-steps. The number of mesh vertices is 2(@1+2)(@2+2)  whereas the number of time-steps
is 22312 In the following we use a conservative estimate for the computational cost of evaluating the
advection diffusion model. Specifically we assume that the cost is O(2(*1+2)(@2+2)(as+2)) " This cost model
is representative of the best scaling that one could hope for when solving the advection diffusion on a large
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scale. It mimics the use of a linear solver whose costs grows linearly with the number of degrees of freedom
and a finite element assembly which is constant regardless of the mesh discretization.

Figure 2 depicts the changes induced in the error of the mean of the Qol, i.e. E[f], as the mesh and
temporal discretizations are changed.? The error decreases quadratically with both h; or ho and linearly
with At until a saturation point is reached. These saturation points occur when the error induced by a coarse
resolution in one mesh parameter dominates the others. For example the left plot shows that when refining
hi the final error in E[f] is dictated by the error induced by using the mesh size hy, provided At is small
enough. Similarly the right plot shows that for fixed hs the accuracy in E[f] is dependent on the resolution
of hi. In Section 6.1}, we leverage this varying cost-vs-accuracy profile to efficiently estimate uncertainty in
the advection-diffusion Qol.
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Figure 2: The error in E[f] for varying mesh and temporal resolutions. The legend labels denote the mesh
discretization parameter values (a1, s, as) used to solve the advection diffusion equation. Numeric values
mean that those parameters are held fixed while - denotes the varying parameter of the labeled curve.

3.1.2 Aero-thermal-structural model for a jet engine nozzle

The nozzle model has two solver parameters which control accuracy and cost. These parameters specify the
mesh resolutions for the fluid and structural analyses. The internal and external nozzle flow is calculated
using SU2, an open-source software suite for multiphysics simulations [13]. The governing Euler equations
are discretized in SU2 using a finite volume method with a standard edge-based data structure. The first
discretization index 0 < a7 < 3 indexes the resolution of the CFD mesh. Specifically the meshes indexed by
a represent a sequence of three increasingly refined meshes. The coarsest CFD mesh is depicted in the left
of Figure 3.

The nozzle thermal and structural analyses are calculated using AERO-S, an open-source finite element
method (FEM) analysis software [16]. The second discretization index 0 < ag < 5 of the nozzle model
indexes a sequence of increasingly refined structural meshes. The coarsest structural mesh is depicted on
the right of Figure 3.

The relative computational cost of each nozzle model approximation is given in Table[I. The cost is given
in wall time using 4 CPUs for the CFD model and 1 CPU for the structural model (the structural model
cannot currently be run in parallel).?

3.2 Stochastic approximation

Given evaluations of fa (2z) at various realizations of the random parameters z, this section describes a method
to construct surrogates that can interpolate these samples. With this goal let 3 = (81,. .., Bn,) € N*# denote
a multi-index that controls the computational cost of constructing a surrogate and its corresponding accuracy.

2The expectation is computed using the same 10 samples for all model resolutions. This allows the error in the statistical
estimate induced by small numbers of samples to be ignored. The reference solution is obtained using the model indexed by
(6,6,6).

3The timings in Table [I] were obtained with 4 Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz processors and 64GB of RAM.
The absolute numbers are not important, only the relative timings.
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Figure 3: (Left) The coarse (a1 = 0) 2D CFD mesh for the nozzle geometry and pressure contours for the
fluid moving from left to right. (Right) The coarse mesh (a2 = 0) of the structural model with geometry
specified using the three-dimensional parameterization. The fluid moves from left to right.

*2 0 9 1 2 3 4
a1
0 363 | 39.3 | 442 | 615 | 131.2
1 885 | 90.5 | 95.7 | 113.1 | 184.2
2 293.6 | 297.4 | 300.0 | 317.5 | 384.5

Table 1: Computational cost (in seconds on 4 CPUs) of the nozzle model.

For example, §; could be the number of univariate samples in the ith variable dimension, 1 < i < ng = d,
used to construct a tensor product interpolant. We refer to the entries of 3 as stochastic approximation
hyper-parameters and denote the surrogate, built with this choice of parameters, as fa”@.

Numerous methods, such as those discussed in the introduction, have been developed to build surrogates
of simulation models. In this paper we choose to focus on sparse grid surrogates because the single-fidelity
formulation, presented in this section, can easily be extended to use multiple model fidelities as shown in

Section 4.

3.2.1 Tensor-product interpolation

In this section we describe tensor-product interpolation. Knowledge of tensor-product interpolation is an
essential component of sparse grid approximation. Let fo g(z) be an M-point tensor-product interpolant
of the function fa, with ng = d. This interpolant is a weighted linear combination of tensor-product of
univariate Lagrange polynomials

mg, (k)

2 — 2 _
$ij(z:) = H ﬁ, R =5 [ PO | (8)
k=1,k#j % T %
defined on a set of univariate points zfj),j E{Leis ,m,@i}.ﬂ Specifically the multivariate interpolant is given

by

d
fap(z) = fa(z9) H i ji (2i)- (9)

J<B

The partial ordering 5 < 3 is true if all the component wise conditions are true.

4For tensor-product approximation and sparse grid approximation we can use ng and d interchangeably because ng = d.
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Constructing the interpolant requires evaluating the function fa on the grid of points

d
Zg= ®Zél = [z ... z(Me)] e R¥XMs (10)
i=1
We denote the resulting function evaluations by Fo g = fa(zﬁ) - [fa(z(l)) fa(z(Mﬂ))]T € RMsxa.

where the number of points in the grid is Mg = Hzc-lzl mg, .

It is often reasonable to assume that, for any z, the cost of each simulation is constant for a given . So
letting Wy, denote the cost of a single simulation, we can write the total cost of evaluating the interpolant
Wa,3 = WoMg. Here we have assumed that the computational effort to compute the interpolant once data
has been obtained is negligible, which is true for sufficiently expensive models fa. In this paper, we use the
nested Clenshaw-Curtis points

zlm = cos (M) , je{l,....,mgp} (11)
mg,

to define the univariate Lagrange polynomials. The number of points m(l) of this rule grows exponentially
with the level [, specifically m(0) = 1 and m(l) = 2! + 1 for [ > 1. We remark here that any univariate
sequence of points can be used to construct a sparse grid. However the most efficient rules are nested and
tailored to the distribution of the random variables Z. Clenshaw-Curtis points are popular for uniform
variables and weighted Leja sequences [33] can be used for any continuous bounded variable as well as for a
broad class of unbounded variables.

When using surrogates for uncertainty quantification, it is often useful to compute the expectation of the
approximation. The expectation pq g of a tensor product interpolant can be computed without explicitly
forming the interpolant and is given by

d
i 8= / S Falz) [T 1:(20) (2 = 3 ulePs (12)

i<p Ji<pB

The expectation is simply the weighted sum of the Cartesian-product of the univariate quadrature weights
d : ;
vj = ITiz1 Jp. @i, (2i) dw(z;), which can be computed analytically.

3.2.2 Sparse grid interpolation

The computational effort required to generate function values for a tensor-product interpolation is propor-
tional to the number of grid points, which grows exponentially with the number of random parameters d. In
this section we introduce sparse grid interpolation which can construct multivariate function approximations
with accuracy comparable to that of tensor-product approximations, but at a fraction of the cost.

The sparse grid interpolant and expectation of the function fa can be expressed as a linear combination
of low-resolution tensor-product interpolants [3]

faz(2) =) cgfap(z) o= Y 8 las; (13)
BeT BeT

where the coefficients cg are given by

= S (=19 xL(B+7), xz<k>{1 kel (14)

0 otherwise
je®d {01}

Recalling that Zg are the grid points needed to build the tensor product interpolation faﬁ, then the
points in a sparse grid are Z7 = U,BeI Zg. When using nested univariate sequences to construct the tensor
product grids we can write

Zr = U 238, Z38 = 25\ U Z5+, |8]l1 > 0.
BeT B*eT
B*<B
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where Zgiﬁ = and Zgiff N Zgiff = () if B # B*. This decomposition of the sparse grid points indicates that
many sparse grid points are shared among its constituent tensor-product grids, and thus the total number
of points in the sparse grid satisfies

M(Z) = card (Z7) = card U Zg | < Z Mg.
BeT BeT

The index set Z used in a sparse grid approximation ([I3)) can be tailored to minimize error whilst also
minimizing cost, i.e. the number of function evaluations. The only restriction on the index set is that it
must be downward closed. An index set Z is downward closed if 3; € Z implies that 3, € Z for all 8, < 3;.

Finding an efficient index set Z can be cast as an optimization problem. With this goal, let

AEap = |fazy — fazll AWq g = |Work[fo z1)(8}] — Work|fa z]| (15)

respectively denote the norm of the difference between the sparse grid with and without the interpolant
fa,s and the work needed to add fq g to the sparse grid. Noting that the error in the sparse grid satisfies

If— f azll <D0 B¢T AE. g we can formulate finding a quasi-optimal index set as a binary knapsack problem
4

max »  AFEapls suchthat > AWagds < Wiax, 0 € {0,1} (16)

[BleN,” [BleN,?

for some maximum work Winax. The solution Z = {3 | ég = 1} to this problem balances the computational
work of adding a specific interpolant with the reduction in error that would be achieved.]’

One approach for solving the knapsack problem is to use estimates of the error AF, g derived from
assumptions on the smoothness of the function f,. The resulting grid depends on the space of functions
that fo belongs to, and not on the function itself. Assuming that the function f, has continuous mixed
derivatives of order 7 in each random variable dimension and AWq g = card(ZgiH), yields the traditional
isotropic sparse grid index set and corresponding sparse grid coefficients given below

7(1) = {8 (max(0.1 ~ 1) < |8 <1~ d~ 2} o= (0 ) an

Note again we have used the fact ng = d and that the form of the isotropic index set and coefficients reflect
our choice to set B; > 0[5 The sparse grid using ([17) is often referred to as the Smolyak algorithm [46].
There is no exact formula for the number of points in an isotropic sparse grid. However, for fixed level [
and large enough d, the number of points in the Clenshaw-Curtis isotropic sparse grid satisfies
2l

24

Mz =5

where we use &~ to denote the strong equivalence of sequences [38]. This is much smaller than the number
of points in the tensor-product grid

My =mf = (28 +1)° 1=(,...,0)

In Table 2, we compare the number of points Mz in a isotropic sparse grid and the number of points
M; in a tensor-product grid for increasing number of random parameters and fixed [ = 2. It is clear that
the number of points in the sparse grid increases much more slowly than the number of points in the
tensor-product grid.

5Note Z is only “quasi” optimal since the error decomposition maximized in the knapsack problem is only an upper bound
for the true error.

6Much of the literature assumes 8; > 0, in which case Z(I) = {8 | (I+1 < ||B|l1 <!+d} and cg = (—1)H+d=lIBlL (l+dd—_\|1,6|\1)‘
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d 7 5 10 20 40
Mz | 2.5e+01 | 3.1e+03 | 9.8¢+06 | 9.5¢+13 | 9.1e+27
Mg | 1.3¢+01 | 6.1e+01 | 2.2¢4+02 | 8.4¢+02 | 3.3¢+03

Table 2: The number of points Mz(;) in a isotropic sparse grid and the number of points M; in a tensor-
product for increasing number of random parameters and fixed [ = 2.

For a function with r continuous mixed derivatives, the isotropic level-l sparse-grid based on Clenshaw-
Curtis abscissas with Mz(;) points satisfies [3]:

1f = Fryllooe(ry < Car My (log Mz)) 24D+ (18)
and the tensor-product interpolant satisfies
If = Filla=oy < Kar My (19)

where the constants Cy, and K, depend on the smoothness r and the dimension d, but not on the number
of points in the grid. From ([I8), we can see that the error in a sparse grid approximation depends only
weakly on the dimension d. In contrast, the error in a tensor product interpolant (19) depends exponentially
on the number of random parameters d. For both sparse grid and tensor product interpolation, the error in
each approximation improves as the smoothness r increases.

We remark here that, although an improvement over tensor-product interpolation, the logarithmic term
in the sparse grid error bound can become large when the number of model variables becomes sufficiently
large. In these situations, adaptive strategies for constructing the index set Z have proven to be very effective.
We present one such adaptive strategy in Section 4.2

3.2.3 An example of isotropic sparse grid approximation

In this section we use a simple example to provide insight into the construction and utility of sparse grid
approximations. Consider the function||

falz) = cos(2m21) cos(mz3) (20)

which depends on two random variables Z = (Z;, Z) which are uniformly distributed in I' = [—1,1]2. The
contours of this function are depicted in Figure 4. Figure 4 also plots the points used to build a [ = 2 tensor-
product approximation, the points used to construct a [ = 2 sparse grid approximation, and the contours of
the resulting approximations.

The isotropic sparse grid, depicted in the right plot of Figure 4, is the weighted linear combination of
the tensor-product interpolants shown in Figure 5. The sparse grid points are the union of the points of the
low resolution grids with non-zero coefficients cg. The sparse grid achieves a similar accuracy to the tensor-
product interpolant fa7(2,2) (z) (see the middle plot of Figure 4 and the top right plot of Figure ) but does
not need to use the unique points Zgiﬁ (depicted by green squares) in the finest tensor-product grids (indexed
by (1,2),(2,1) and (2,2)). Moreover despite the sparse grid being comprised of low-resolution /low-accuracy
tensor-product interpolants, the linear combination of these interpolants produces a much more accurate
approximation than any single low-resolution interpolant. Avoiding the construction of fine tensor-product
interpolants, which require large numbers of points, is the primary mechanism by which sparse grids mitigate
the curse of dimensionality.

Note the approximation fo,o is not included in the sparse grid interpolant. As the level [ is increased
more lower-level tensor-product interpolants will be excluded from the sparse grid approximation.

"Note the function in (20) has no physical solver parameters, however we keep the subscript a to be consistent with the
notation in the rest of the paper.
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—0.]

Figure 4: (Left) the function fa(z) = cos(2mz;) cos(mzz). (Middle) the tensor product interpolant fa7(272)(z).

(Right) the isotropic sparse grid interpolant fal@)(z). The black circles depict the samples used to build
each interpolant.

4 Multi-index collocation

Sparse-grids and other surrogate methods can mitigate the curse of dimensionality by exploiting structure
in the function being approximated. However, many if not all surrogate methods can be infeasible in high-
dimensions if the computational cost of evaluating a model is high. In this section, we present a method for
building surrogates in such situations, which leverages simulations of lower-fidelity models of reduced cost
to increase the tractability of building surrogates of a high-fidelity model. We focus on sparse grid function
approximation; however, in Section [5, we briefly discuss how the algorithm we use for managing evaluations
of models of varying fidelity can be generalized to other types of approximations, such as polynomial chaos
expansion constructed on arbitrary points sets, Gaussian processes, low-rank approximations, or even neural
networks.

Using the triangle inequality, it is straightforward to decompose the error in the sparse grid approximation
fayz of the exact model f, built using evaluations of fa, into the sum of the a deterministic and stochastic
approximation errors.

If = fazlloey < IIf = fallo@ + 1 fa = fazllom (21)

Here the first term on the right-hand side represents the deterministic error and the second term represents
the stochastic error. These two errors should be balanced to minimize inefficiency resulting from over-
resolving a non-dominant source of error. Figure 2 demonstrates that mesh discretizations can effect the
accuracy of statistics computed using a numerical model. For example, when the time step is to large,
refining the spatial mesh has no effect on error in the mean E| fa] Analogously (21)) implies that refining
the mesh when the stochastic error is larger will have no effect on overall error ||f — fa,IH Le(T)-

Multi-level /Multi-index collocations methods [11, 27, 35, 50] combine a sequence of approximate physical
models with a sequence of interpolants both to balance physical and stochastic errors and to reduce the com-
putational cost of achieving a specified level of accuracy. In this paper, we extend the multi-index stochastic
collocation method (MISC) presented in [27]. The other multi-level methods cited can be formulated as
specialized instances of MISC.

Given an ensemble of models My = ®*, M,, of varying physical fidelity (numerical discretization),
which can be used to approximate the Qol f, MISC approximates the Qol and its mean with the following
generalization of Equation ([13)

fa(z)= Z Ca,ﬁfa,ﬂ(z)a by = Z Ca,B M, 8- (22)
[e,BleT [o,BleT

MISC works most effectively provided the following assumption

Assumption 1. Given a sequence of tolerance parameters, the error in the successive approzimations of f
decreases as the fidelity increases, i.e. ||far — fllLer) < [[fa = fllir@), if & > a.
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Figure 5: The tensor-product grids and contours of the interpolants used to construct the level | = 2
isotropic sparse grid fa,z(z) (2). The numbers in the top right of each plot are the coefficients c¢g in (17). The
interpolants without coefficients are not used to build the sparse grid. The green squares depict the unique
samples Zgiff of the tensor-product grid Zz that do not exist in another tensor-product grid Zg-, 8 < 3.
Both the samples depicted by the black circles and the green squares are used to build an interpolant.

Similarly to sparse grid function approximation (see Section [3.2.2), the structure of the index set J of
the MISC approximation (22)) directly controls the computational cost of building, and the accuracy of, a
multi-index surrogate. However, unlike the sparse grid index set Z, the MISC index set J not only controls
the allocation of samples to each random variable, but also the allocation of resources to each of the model
discretizations.

Given a MISC approximation f 7, let f 7 U{le,8]} be the new MISC approximation obtained by including
a new tensor-product interpolant fo g. Similarly to Section 3.2.2, let

AEap = f7Utasy — f7] AWa,p = [Work[f7 {(a.a1] — Work[f]] (23)

denote the difference between two successive MISC approximations and the work needed to update the MISC
approximation, respectively. For a given «, the cost of running a simulation at a single realization of z is
again denoted as Wy, such that we have AW, g = Wacard(ZgI%).

With the goal of generating a MISC approximation that balances the computational work and error,
we can again formulate and solve a knapsack problem to define the index set J. The knapsack problem is
identical to ([L6), except now the optimization is not just over B € N, but also over a € N. If the quantities
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AEq g and AW, g are available, the quasi—optimalﬁ solution to the knapsack problem is

j:{[a,,@]GNOO‘+ BIWZ>€}7 (24)

where € is chosen to reflect the desired accuracy in the MISC approximation [27]. Computing this index
set is not practical as it requires computing all possible interpolants and then choosing the approximations
which significantly contribute to the MISC error. The interpolants ignored would contribute little to error
but may incur significant cost. In this paper, we propose using an adaptive algorithm to greedily choose
the most cost effective interpolants to add to a index set J. We will present our adaptive algorithm in
Section 4.2; however, we first provide an example of using MISC with an isotropic index set to approximate
a simple algebraic ensemble of models. This example is intended to develop intuition about the fundamental
mechanisms which cause the improved efficiency of MISC, when compared to single fidelity strategies.

4.1 An example of isotropic MISC approximation

The isotropic MISC approximation of a function f is

P I=llatBls ((Matng— 1Y
f](l) - Z (_1) (l o ||O£ +/6||1>faﬂ (25)

[,BleT (1)

where J (1) = {[a, 8] | (max(0,! — 1) < |la+ B|l1 <1+ ny +ng —2}. Consider the MISC approximation of
the function

£(2) = cos(5 (o1 + 3)) (26)

using the sequence of approximations f,, = cos(Z(z1+ 1 +e€a,)) Where €; > ;11 > 0. These approximations,
shown in the left of Figure [f for €,,—0 = 1/5, €4,=1 = 1/10 and €,,—2 = 1/20, converge to the true function
as epsilon is driven to zero, i.e. f,,(2) = f(2) as a1 — oc.

1.0 1.0{ —. -
\‘\ ——— .fO
N -—— fi—fo
\ A
0.5 0.5 O - b
e _——-"T.\."..'..'.."..‘. TTTT
00 0.0] ~mmETE Ny e
— ¥
\.
\
. B < e .
0.5 0.5 N
\.
~.
—-1.0 T 10 ~--
—-10 =05 00 0.5 1.0 -10 —05 0.0 0.5 1.0
z1 21

Figure 6: (Left) The function f (26) and the approximations f,,. (Middle) The discrepancies between
successive approximations fal and fal‘l’l' (Right) The most accurate (largest 8;) single fidelity interpolants
fou,p1, used by MISC, which use only evaluations of one approximate model fal ,a; = 0,1,2, and the MISC
approximation f 7 which combines each of these interpolants (and some less accurate interpolants).

In Figure [7 we plot the tensor-product grids and corresponding interpolants that make up the MISC
approximation. The interpolants f,, g converge to f,, as B3 increases. However for low values of a; the
deterministic prediction error is large. Refinement of both a7 and 3 is needed for the interpolants to converge

to f.

8The solution is only quasi optimal because it is based upon an upper bound on the approximation error, that is || f — f] | <

Yla,p1¢7 ABap
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Accuracy of deterministic model () —

-1.0 —0.5

Number of grid points () —

Figure 7: The tensor-product grids and interpolants of the level [ = 2 isotropic MISC approxima-
tion fz(2)(2). The grids plotted with a gray background are included in the MISC approximation,
whereas the remaining grids are ignored. The numbers in the top-right of each plot are the coefficients

Cap = (—1)l_||a+ﬂ lh (l—lli_Jrlﬂlll) in (25). The dash-dotted black lines represent the tensor-product inter-

polants fa,ﬁ. These interpolants converge to the lower fidelity models fa (dashed blue lines) as (3 increases,
and to the high-fidelity model f (solid red line) as both a and 3 are increased.

Let Kgjo = {[a*,8"] | B € J,a* = a} denote the set of unique stochastic multi-indices for a given
deterministic refinement . Then for each physical discretization a the MISC approximation requires eval-
uating the function f, on the points

Zege= U 25 (27)
ﬂelcjla

where M, = card (Zx,,,) is the number of samples, of the random variables, at which fu is evaluated.
The total number of samples used by the MISC approximation, for any index set 7, is

Mg = Z Mk 7
acl

where £ = {a | @ € J} is the set of unique physical discretizations indices.
As can be seen in Figure [7], the number of evaluations allocated to an approximate model f,, decreases
as the level of fidelity y increases, i.e. Mk, , > Mk, ., if @ > o and o* # a. For example, 5 samples

are allocated to evaluating fg, 3 to fl and 1 to f2.
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Despite the fact only one sample is allocated to evaluating fg, the MISC approximation, shown in the
right plot of Figure 0], is more accurate than any of the tensor-product interpolants that make up the MISC
approximation (grids with a gray background). Understanding of this observation can be gained by viewing
the discrepancies between models f;-+1 - fl depicted in the middle plot of Figure . The magnitude of these
discrepancies decreases substantially as a; increases. Thus a constant approximation fg’o of fg is sufficient
to balance the deterministic and stochastic errors i.e. the error caused by non-zeros values of € and using a
finite number of samples to build the interpolants, respectively. Specifically the constant approximation is
useful because it reduces the bias in the MISC interpolant by decreasing the physical discretization error.
In contrast the approximation fO!Q is useful as it captures the variation of the function f with respect to the
variable z; thereby reducing the stochastic error.

We remark here that the total number of samples used to build the MISC approximation is much larger
than the number of samples used to build f272. In general, the number of points in a MISC approximation is
much greater than the number of points in a single fidelity sparse grid approximation of the highest fidelity
model fqr+, with equivalent cost, i.e. M(J) > Mq+z. However, for non-trivial models, the total work
needed to build the MISC approximation f 7 will be less than the work needed to build the single fidelity
sparse grid approximation fo+ 7 of fox, since many of these samples occur at lower fidelity.

4.2 Adaptivity

The isotropic MISC approximation (25) balances computational expense with accuracy. The same number
of model evaluations are used for two physical discretization parameters @ # a* if ||af|; = ||a*|;. For
example the same number of model evaluations will be used to evaluate fa and fa* ifn, =2and a = (2,1)
and a* = (1,2). The isotropic formulation does not account for differences in the cost of evaluating the two
models. If fa is twice as expensive as evaluating fa*, then ideally this should be reflected in the sample
allocation used by the MISC approximation. The isotropic formulation also assumes each variable and fa*
contributes equally to the error in the MISC approximation. However, often only a subset of variables
significantly influences the variability of a function. This parameter sensitivity should also be accounted for
when building the MISC approximation.

We propose using a greedy algorithm to adaptively choose the most cost effective interpolants to add to
the MISC approximation. Our adaptive algorithm is based on the algorithm proposed in [19] and pseudo-
code for the algorithm is shown in Algorithm [I. The algorithm is initialized with a MISC approximation
comprising of a set of indices J representing the current approximation, a set of active indices A that
indicate the physical discretization, random dimensions for potential refinement, and sparse grid coefficients
C ={caplapes Often J = {0}, A= {ey, k € [no +ngl}, and C = {cop = 1}. Here we use e; to denote
the unit vector with a value of 1 in the kth position.

Algorithm 1 INTERPOLATE[{ fo(2)},C, T A7, Winax] = f7
1: while NOT TERMINATE[A,N,7,Wpax] do

2 [a*, 3] := argmax|q gle 4 Yo, > Determine the index with the highest priority
3 A=A\ [a*, B7] > Remove [a*, 3] from the active set
4 C=UPDATE[J, [@*, 3%],C] > Update the sparse grid coefficients
5: J =JU|a*, 3] > Add [a*, 3] to the MISC set
6: R :=REFINE[a*, 3",J] > Find all admissible forward neighbors of [a*, 37]
7 Ya,3 = INDICATOR[e, B8] V [o, B] € R > Calculate the priority of the neighbors
8: A=AUR > Add the forward neighbors to the active index set
9: end while

The algorithm begins by selecting the index [a*, 3%] € A with the largest refinement indicator 74, g. The
interpolant fa*,g* is added to the sparse grid and its indices are used to identify new candidate interpolants
for consideration in reducing the approximation error. This process continues until a computational budget
(Wiax) limiting the total computational work (3 ; AWq, g) is reached or until a global error indicator (e.g.,
> 4AFEqg) drops below a predefined threshold 7. These exit criteria are checked using the TERMINATE
routine in step 1 of Algorithm [I. The UPDATE function from step 4 of Algorithm [I] is summarized in
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Algorithm ; it adds the interpolant fa*,g* to the MISC approximation. The INDICATOR routine from step
7 of Algorithm [I] controls which indices are added to the sparse grid via the use of index error and global
error metrics. These indicators provide estimates of the contribution of an index to reducing the error in the
interpolant, and of the error in the entire interpolant, respectively.

Algorithm 2 UPDATE[C 7, T, [a*, B"]] = Cy {ja*.B*]}
1: Cox g = 1
2: for [, 8] € J do
3 A=[a,f]-[ar,B]

4 if minien, 4n5 A > 0 and max;e(n, 4+n, A < 1 then
5: Ca,8 = Ca,p - (fl)HAHI

6: end if

7: end for

In this paper we use the following indicators to guide refinement

AL = ‘f;’ [Elf7 U (2] - Elf7 ()] ABZ

1

The refinement indicator v g attempts to maximize the reduction of the error in the mean and variance of the
approximation whilst minimizing cost. Specifically the error indicator measures (via a convex combination)
the contribution of the interpolant faﬂ to the mean and variance of the MISC approximation f 7 which can
be computed using (22).

We remark here that initialization challenges exist when using x = 0 to construct an adaptive MISC
approximation. For any index [e, 3] with 8 = 0, the interpolants fa’g are built using only a single point
and so are just constant functions. For these interpolants, the variance is zero and so not a useful mdlcator
of the impact of refinement for initial o candidates. Also note that the error indicators, AE" p and AEa G
are relative to the magnitude of the function and its square at the center of the sparse grid. ThlS is important
to ensure that mean or the variance components of the indicator dominate simply because they are on a
different scales.

The index [a, B] with the largest refinement indicator is refined using the function REFINE (step 6 of
Algorithm 1) by adding all indices [o, 8] + ek, k € [no + ng| that satisfy the following downward-closed
admissibility criterion

a,8] +ex—e; €T for j€[ng+ngl, lp >1 (29)

The active set A is then rebuilt by adding each index corresponding to the indices from (29).

Figure § depicts two steps of the adaptive sparse grid algorithm for n, = ng = 1. The first and third plots
depict the index sets J and A represented by the gray and red respectively. The numbers within the boxes
are the sparse grid coefficients. The second and fourth plots represent the samples assigned to each level of
physical discretization level oy, [t = 0,...,3. The points corresponding to the tensor-product interpolants
indexed by the set J and the active set A are given in black and red respectively. The new work required to
refine an index is given by the cost of running the simulation at all the red points Zgi’%. In a previous step,
the index (a1, 1) = (0,1) was chosen for refinement. Both forward neighbors k = [, B8] + €, n € [ng +ng]
are added to the active set A (red boxes in first figure) because these indices satisfy the admissibility
criteria. This requires evaluating both the functions fo and fl at 2 new points. In the next step, the index
(a1, 1) = (0,2) is selected for refinement. In this step, only one new index (aq, 31) = (0,2) + (0,1) = (0, 3)
is added to the active set (third figure) because the other forward neighbor (a1, 51) = (0,2) + (1,0) = (1, 2)
does not satisfy the admissibility criteria. Adding the index (2,0) to A requires evaluating fo at 4 new
points.
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Figure 8: Two steps of the adaptive sparse grid algorithm for n, = ng = 1. The gray and red boxes represent
the sets J and A, respectively. The numbers within the boxes are the sparse grid coefficients. The second
and fourth plots represent the samples assigned to each level of physical discretization level a;. The points
corresponding to the tensor-product interpolations indexed by the set J and the active set A are given in
black and red, respectively.

4.3 Multi-level Collocation

Multi-level collocation (MLC) [50] is a specialized instance of multi-index collocation. MLC assumes that
there is only one discretization index which controls the model accuracy and cost, i.e. a = (a1). We
can easily apply the AMISC algorithm to the multi-level setting by simply defining the index set Mg,
correctly. For the advection-diffusion considered in this paper we make the reasonable choice that M, =
{@2_{1},...,@3_{k}}, k € {1,...,5}. This multi-index model set has a one-to-one mapping with the
one-dimensional multi-level hierarchy Ma ={1,2,3,4,5}. We do not consider multi-level methods for the
nozzle problem as it is unclear how to define a reasonable one-dimensional hierarchy for that model.

The original multi-level algorithm [50] allocate samples to models of different model discretizations using
a priori theoretical error estimates. Consequently it is challenging to apply the method to practical problems
were such theoretical estimates are available. A partially adaptive a posteriori MLC strategy was proposed
in [15]. However when using this approach the resolution of the approximation built over the stochastic space
is a priori tied to the resolution of the numerical solver used to solve the PDE. The adaptive multi-index
collocation presented here can easily be applied in the multi-level setting without the restrictions of the
aforementioned approaches. The computational cost and accuracy of multi-level and multi-index sparse grid
collocation in Section 6.1l

Finally it is important to note that multi-level surrogate methods have been developed which do not
use sparse grids to build multivariate approximations over the stochastic space. Gaussian processes were
used in [41), BT, 26] and low-rank reduced order models were used in [32]. These methods are not considered
further here because, similar to multi-level sparse grid collocation, if a model does indeed have multiple
discretization hyper-parameters it is unclear how to define a one-dimensional model hierarchy.

5 Multi-index sensitivity analysis

Quantifying the sensitivity of a model output f to the model parameters Z can be an important component
of assessing uncertainty in model predictions. For example, parameter sensitivities can be used to prioritize
data collection. Using data or additional knowledge to reduce uncertainty in sensitive model inputs can sig-
nificantly decrease prediction uncertainty. This section demonstrates how to use MISC for global sensitivity
analysis, specifically for computing Sobol indices [47] .

Sobol indices are frequently used to estimate the sensitivity of a function to single, or combinations of
input parameters. Sobol indices can be estimated numerically using Monte Carlo methods [45]; however,
Sobol indices can be computed analytically from a sparse grid [7, 17]. For any tensor-product probability
density function w, there exists a transformation of the Lagrange polynomial basis into a orthonormal
polynomial basis [6], also known as a polynomial chaos expansion (PCE). Applying such a transformation
facilitates simple and analytical computation of Sobol indices from the coefficients of the PCE [49]. The
following sections describe the basic properties of a PCE and how to transform an MISC approximation into
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a PCE for the purpose of computing Sobol indices.

5.1 Polynomial chaos expansions

Polynomial chaos expansions (PCE) [20, 30, 52] represent the model output fu(z) as an expansion of
orthonormal polynomials

fal2) ~ fan(2) = 3 moa(2), Al = . (30)

AEA

The basis functions ¢, are typically constructed to be orthonormal with respect to the density w, that is
(Ox0(2):Bx00 (Dzzen = | dxo(2)br00(2) d(2) = b

where §; ; is the Kronecker delta function and AV, A\() are two different multivariate indices where \ =
(M ..., ) € Ng. When the components of z are independent we can express the basis functions ¢ as tensor
products of univariate orthonormal polynomials. That is

d
z) = Hqﬁl)\ (2), /Q qﬁz(zl)qbﬁc(zl)wz(zz) dz; = 0k, J, k>0, deg QS; =J. (31)
i .
The mean and variance of the PCE can be computed directly from the expansion coefficients.

]E[fa,A] = To, fa A Z BN (32)

AeA
A#£0

The Sobol indices can also be computed analytically from the expansion using the identity

fl =Y m Au={A[X>0,i€u, X =0,j¢u} (33)
AEAu

5.2 Transforming a sparse grid into a polynomial chaos expansion

Let 7 denote the transformation of a Lagrange polynomial interpolant anﬁ to an orthonormal polynomial
interpolant fo . From (22), we have T[f7(2)] = > (eBles CoB T1fap(2)], where cg are the Smolyak
coeflicients. Thus, to transform the sparse grid, we only need the ability to transform each tensor-product
interpolation individually. To apply the transformation of the tensor-product interpolants, we must only
compute transformations of one-dimensional basis functions. In one dimension, the polynomial interpolant
of a set of points is unique. Consequently, we can express the j-th univariate Lagrange basis function in the
i-th variable dimension as

mg1

L (=) vak z;) Vk =/F Lij(2:) % (2) dw(z) j € [mg,],i € [d] (34)

We can compute the coefficients of the orthonormal basis using Gaussian quadrature. Note this step does
not require any evaluations of the model fa and can be precomputed offline and stored for future use. Given
the orthonormal representation of the univariate Lagrange polynomials, the tensor-product interpolant can
be expressed as

d

d mg;
fas(2) =Y faZ) [T lisi(z) = Y fa(zD) H(Zumk m) = > méa(2), (35)

i<p i=1 i<p i=1 \k=1 AEAg

where Ag = {A | A < B}. This expression can be now used with (33) to compute Sobol indices analytically
and efficiently from the sparse grid.
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Note that the algorithm described here is different from the algorithms proposed in [7, 17]. These
approaches solve a multivariate interpolation problem to compute the coefficients 7 of the tensor-product
PCE basis in (35). The dominant cost of that approach is the inversion of the multivariate Vandermonde-like
matrix evaluated at each of the tensor product points, which requires O(M?>(3)) operations. By focusing on
univariate transformations of the Lagrange basis, we can compute the coefficients of the multivariate PCE
via an outer product of the univariate orthonormal basis coefficients at a cost of O(M?2(/3)). This reduction
in the cost of computing the PCE transformation is practically significant, but the complexity of the sparse
grid transformation still grows linearly with the number of points in the sparse grid. Note that the cost of
either transformation algorithm is typically negligible to the cost of evaluating the models fa.

Remark 5.1. In this paper, we use sparse grids to form a MISC approximation. Sparse grids naturally
combine the refinement of the discretization parameters and the refinement of the interpolants. Noting that
the MISC approzimation can be expressed in the general form f7(z) = 2 (a,BleT CaB fap(2), equation (35)
suggest that sparse grids are not the only means to build a MISC approzimation. Specifically, one could draw
from a broad class of surrogate models to construct the approrimations fa,g. One could use PCE constructed
using interpolation, least-squares or {1 minimization, but one could also use Gaussian processes, low-rank
approzimations, or even neural networks. Given a method to build fa,@, the adaptive algorithm described in
Section can be used to guide the selection of the indices [, 8] so long as a sampling method, which can
be controlled by the stochastic discretization parameter 3, is available. It is straightforward to construct such
sampling methods; for example, one approach is to let B be a scalar controlling the number of Monte-Carlo
or Latin-hypercube samples used to build a regression-based PCE or Gaussian process. Alternatively, one
can use sampling schemes such as multivariate Leja sequences for polynomial interpolation, which are more
amenable to dimension-adaptivity [30)].

6 Results

In this section, we explore the efficacy and properties of our proposed approach, first using the advection-
diffusion model problem and then using the engineering model of a jet engine nozzle.

To measure the performance of an approximation, we will use the £* error on a set of test nodes. We
generate a set of @ random samples {z(j)}jci'):1 C T drawn from the density w of the uncertain variables Z.
The relative error is computed as

1 o
- - — argmax|f(219)) — f7(29)|
max;e(q f(2()) — minje(q) f(2)) j¢(q)

If = Frllpeqry =

where f is the exact function and f 7 is the interpolative approximation. We set @) = 1000 and @ = 500 for
the advection diffusion and nozzle models respectively.

We use the £°° norm to quantify error as we are interested in probabilities of failure, and convergence
almost surely is required to guarantee convergence of probability density functions (PDFs) of the Qol [5].
We use the range of the values of the reference function f over the validation samples to normalize the error,
enabling us to highlight how our adaptive approximations balance error among multiple Qol.

6.1 Advection diffusion model

In this section, we will use the adaptive MISC algorithm to approximate the quantity of interest f(z) =
u(3, z) obtained from the advection diffusion model (). For this model, an efficient and accurate approx-
imation must balance spatial refinement, temporal refinement, and the stochastic interpolation error. The
details of the physical discretization are provided in Section [3.1.1].

In Figure 0, we compare the adaptive MISC algorithm (AMISC) with a single level adaptive sparse grid
(see Section [3.2.2). Specifically, we plot the error in each approximation as the total work is increased. Work
is measured relative to the cost of performing a single simulation using the approximate model f5,575 with the
highest fidelity discretization parameters. For example if 7, is the wall time needed to simulate the model
fa at one realization of the parameters z, then the work needed to run this model is Wy, = 74/ 75,55 < 1.
For this particular advection-diffusion problem, we do not know the true Qol exactly, so we use the model
with a = (6,6, 6) as the truth when computing errors. Each time the error is measured all points associated
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Figure 9: (Left) Comparison of the convergence of single-fidelity and multi-fidelity approximations of the
advection-diffusion model. (Right) Comparison of AMISC with adaptive multilevel approximation. The leg-
end labels denote the index sets M, defining the ensemble of models considered by the different algorithms.
Mgy = ®3_,{5} denotes the single fidelity approximation using evaluations of only the highest fidelity model
f(57575), Mo = @3 1{1,...,k} and My = {®3_,{1},...,®3_;{k}} respectively denote multi-index and
multi-level approximation where the highest fidelity model evaluated is f(k.,k,k), ke {3,4,5}.

with indices in both the active index set A and the current index set Z are used and thus contribute to the
value of work on the horizontal axis. The ([0,1,2,3],[0,1,2]) notation in the legend specifies the physical
discretization indices used in each approximation. The gray boxes indicate the approximations that lead to
the cost profiles in Figures [10 and [L1.

The error in both single-level sparse grid and AMISC approximations eventually saturate when the
physical discretization error of the highest fidelity approximate model is reached. As the maximum value of
a1 is increased, the error in the approximations saturates at a smaller error. The AMISC approximations,
however, achieve the same level of error as the single fidelity approach at only a fraction of the work. The
results in Figure 9 are generated by setting £ = 1 in (28). Despite the fact we only adapt to reduce the error
in the mean, we still can reduce the £°° error in the AMISC and single-fidelity approximations.

The AMISC algorithm reduces the total computational cost by over two orders of magnitude, except
in regions where the physical discretization error of the highest fidelity model begins to dominate.” This
reduction is achieved by sampling the lower-level model approximations more than the higher-level models,
and only sampling the high-fidelity models when the physical discretization error starts to dominate the
stochastic error. Figures and plot the total number of simulations the MISC algorithm assigns to
each approximate model for two points in the algorithms evolution (labeled 1 and 2 in Figure 9). When
the stochastic error is approximately equal to the saturation point of the blue curve, most simulations are
allocated to the low-fidelity models which only involve models with indices o; < 3,7 = 1,...,3 (see Figure
10) . However when the stochastic error is below the black curve, numerous samples are allocated to the
higher-fidelity models with indices «; > 3 (see Figure [[T). Although most evaluations are assigned to the
lowest-level models, the highest fidelity models contribute significantly to the total work (Figure [11] right)
despite being evaluated much less frequently. This is the behavior we desire. Specifically, the high-fidelity
models are only evaluated when needed to maintain deterministic prediction accuracy.

The right plot of Figure [9) compare multi-index collocation with multi-level collocation using the multi-
level hierarchy defined in Section 4.3 Using multi-index collocation results in significant computational
savings when high-levels of accuracy are required. The computational savings increase as the number of
levels utilized by the multi-level method increase. Furthermore, if the difference in the computational cost

91f the difference in the computational cost of a model increases the computational benefit of AMISC also increases. For
example if the computational cost of solving the advection-diffusion model grows more quickly with the mesh and temporal
resolution, than the conservative cost model presented in Section [3.1.1], then the benefits of the multi-fidelity methods, relative
to single fidelity methods increase.
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Figure 10: The number of simulations and fraction of total work assigned to each approximate advection
diffusion model at the point labeled 1 in Figure 9.

of a model increases the computational benefit of MISC compared to MLC will increase.

The results generated using MLC were found using, what turned out to be, a reasonable one-dimensional
model hierarchy. It is easy to construct other hierarchies which significantly degrade the performance of MLC
relative to AMISC. One major benefit of AMISC is that when a model does have multiple discretization
hyper-parameters one does not need to decide how to form a one-dimensional model hierarchy.

As expected the multi-level and multi-index approximation saturate at the same points when fixing the
highest fidelity model used in the approximations consistently. The multi-index method does take longer
to reach the saturation point. These inefficiencies are caused by the downward-closed index set constraint
for cases where final reductions in deterministic discretization error could only be addressed using the most
resolved model, resulting in some loss in relative benefits for the tails of the convergence histories. This
effect can be avoided by increasing the resolution of the highest fidelity model. Doing so will not effect the
computational cost of the AMISC algorithm unless the evaluations of the higher fidelity model is needed to
reduce the deterministic prediction error. Future work will leverage this fact to explore extension to AMISC
that do not require the highest fidelity model to be specified a priori.

6.2 Aero-thermal-structural analysis of a jet engine nozzle

In this section, we will use the adaptive MISC algorithm to approximate the four quantities of interest
obtained from the nozzle model, and then use this approximation to quantify sensitivities and uncertainty
in these Qol. The four model Qol we consider are mass, thrust, load-layer temperature failure ratio, and
thermal-layer failure criteria. For both failure-based Qol, a value greater than one indicates failure, and both
are computed using the modified P-norm function (PN-function), which aggregates pointwise values into a
global quantity:

o) = (% Zcf) (39)

As p increases, the PN-function approaches the value max;(c;), where ¢; denote local stress or temperature
values. Here, we set p = 10.
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Figure 11: The number of simulations and fraction of total work assigned to each approximate advection
diffusion model at the point labeled 2 in Figure 9.

6.2.1 AMISC approximation

In this section, we detail the performance of the AMISC method for approximating the aforementioned Qol of
the nozzle model. When considering our nozzle model, an efficient and accurate approximation must balance
CFD and structural model errors. The relative computational cost of each nozzle model approximation is
given in Table [I], where cost is reported in wall time using 4 CPUs for the CFD model and 1 CPU for the
structural model.

For this problem, we are interested in approximating four Qol, so we must adjust slightly the refinement
indicator introduced in Section @.2. Specifically, we use a worst case error indicator that refines the multi-
index set in the AMISC approximation according to the largest error across the set of Qol. Letting 'yfl,ﬁ
denote the error indicator (28) for the ith Qol, we use

o 7

Yeup = WX Vo g (37)
across the set of 4 Qol. We select x = 1/2 in order to balance error reduction for the mean and variance of
the approximation. The latter is consistent with our desire to use variance-based decomposition for global
sensitivity analysis. The former ensures that the refinement indicator is not zero for constant functions,
including approximations for 8 = 0 (see the comment in Section §.2)). Also note that the use of a relative
error indicator is important to ensure that the thrust does not dominate refinement since its scale is orders
of magnitude larger than the other Qol (Figure 14 shows the differing scales for the four Qol).

In Figure [12, we compare the adaptive MISC algorithm (AMISC) with a single-level adaptive sparse grid
(see Section B.2.2). Work is measured relative to the cost of simulation using the highest fidelity discretization
parameters (model f375). We terminate refinement of each approximation after the cost of 3400 high-fidelity
samples is reached. We again observe that, with the exception of the mass Qol, AMISC can approximate
each Qol with the same accuracy as a single fidelity approximation at only a fraction of the cost. The
AMISC approximation at some points on the convergence curves is an order of magnitude less expensive.
This approaches the limit of potential acceleration, as there is only a factor of 20 difference in cost between
the cheapest and most expensive models.

From performing parameter sweeps of each Qol using our MISC approximation we observed that mass
is very close to a linear function of the random variables. Consequently, a level 1 single-fidelity sparse grid
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Figure 12: Comparison of the convergence of single-fidelity and multi-fidelity approximations of (clockwise
from top left) mass, thrust, temperature layer failure and load layer failure. The legend labels denote the
index sets Mg, defining the ensemble of models considered by the different algorithms. Mg, = {2} ® {4}
denotes the single fidelity approximation using evaluations of only the highest fidelity model f(2,4), Mgy =
{0,1,2} ® {0,1,2,3,4} denotes the multi-index approximation where the highest fidelity model evaluated is

f2,9)-

with 81 points can accurately represent mass (top left). 81 is the minimum number of points required to
start the adaptive algorithm (Algorithm ) The 81 points are used to compute the error indicators *y(i)" g for
the lowest fidelity model, indexed by e = (0,0). The set of 81 initial points is comprised of one point at the
center of the domain and 2 points at the upper and lower bounds of each of the 40 random parameters.

The AMISC approximation of mass achieves the same final error as the single fidelity approximation, but
it is slightly less accurate for moderate cost (up to 600 equivalent high-fidelity samples). However, it is more
flexible than the single-fidelity approach in that AMISC can produce reasonably accurate approximations
using less than 10 equivalent high-fidelity samples. This would be important if our computational budget
was more restricted than the 3400 high-fidelity samples used here.

Note that the convergence curves of the approximation of thrust (top right) is noisy in the right tail.
This is related to the tolerance we use for the non-linear CFD solver; in particular, the error is saturating at
the error dictated by this tolerance. We could also include the solver tolerance as a physical discretization
parameter, but this is left for future work.

The AMISC approximation of the thermal-layer failure criteria (lower right) is cheaper to construct for
accuracies up to 10~%. For higher accuracy, the single-fidelity approximation is cheaper to construct. In the
latter situation, the two coarsest structural meshes cannot be used to reduce the total error, which is smaller
than the deterministic prediction error of those models. Consequently, only evaluating the highest fidelity
structural model can reduce the error. Due to the assumption that the sparse grid index set J is downward
closed, the AMISC procedure requires that, for a given value of the discretization parameter ay = k, the
models parameterized by all s = j < k must be evaluated before the model indexed by k is evaluated.
This results in redundant computation, in the form of low-fidelity evaluations when only the model as = k
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can be used to reduce the error of the approximation. For this same reason, the single-level sparse grid
approximation of the load-layer failure criteria (bottom left) will eventually become more efficient than the
AMISC approximation if we were to increase the number of samples used to generate the convergence curves.

Note that for any amount of work, the adaptive strategy we use to build both the AMISC and single-
fidelity approximations attempts to balance the error in each Qol. This is because we use a worst-case error
indicator which refines the approximation so that the largest error among Qol is reduced. Over the entire
evolution of the adaptive algorithm, the refinement of both the single-fidelity and AMISC approximations
is primarily driven by the need to reduce error in the temperature layer criteria, since the error in the
approximation of this Qol is much larger than the error in the other Qol for a given cost. For example, the
error of the AMISC approximation of the temperature-layer failure criteria is approximates 4 x 1072 when
work is 100, whereas the error in the load-layer Qol is 2 x 1073 and the errors in the mass mass and thrust
are even smaller. Consequently, at this point in the sparse grid evolution, work will be assigned to reduce
the error in the load layer criteria until its error becomes comparable to the errors in the other Qol.

In Figure 13, we plot the number of model evaluations allocated to each model discretization. The
AMISC algorithm determined that the CFD and structural model are both large sources of deterministic
prediction error. This is reflected by the large number of samples allocated to the most refined CFD and
structural models. It is interesting to note, however, that it is not necessary to refine both the CFD and
structural meshes simultaneously. There is only one sample allocated to a model, a = (1, 1), for which both
the CFD and the structural mesh have been refined . The error in the CFD model output, which is used
as input to the structural model, does not significantly affect the prediction of the structural quantities of
interest — the load layer and temperature layer failure criteria. From assessing the values of AEL, 8 /AWq g
in the final grid, we determined that refinement of the CFD discretization parameter was driven mainly by
the error in the mass and thrust. And not surprisingly, refinement of the structural discretization parameter
was primarily driven by errors in the two structural Qol.

5
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Figure 13: The number of simulation and fraction of total work assigned to each nozzle model.

6.2.2 Uncertainty quantification

In this section, we use the AMISC approximation to quantify uncertainty in the nozzle model. Specifically
we report sensitivity metrics and construct PDFs for each Qol.

In Figure [14, we plot the marginal PDF's of each quantity of interest. The PDFs are approximated using
Gaussian kernel density estimation using 10 approximate values of the Qol obtained by randomly sampling
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the AMISC approximation according to the distribution of the random parameters. The PDF's of both mass
and thrust appear uniform. This suggests that, because the inputs are uniform, the input-output map for
these Qol are primarily linear. This conclusion is also supported by plots of 1D cross sections of the map,
which appear linear visually (plots omitted for brevity). The PDFs of both failure-based Qol concentrate
mass on low values for each response. Since we deem failure to occur when the failure criteria exceed 1,
there is a relatively small chance of failure in the load layer and numerically zero chance of failure in the
temperature layer.
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Figure 14: PDFs for (left to right) mass, thrust, load layer failure and temperature layer failure.

In Figure [I5], we plot the dominant sources of uncertainty in the nozzle predictions. Specifically, we iden-
tify the parameters and parameter combinations that have large Sobol indices. The parameter combinations
depicted contribute a portion of the first 99.9% of variance of at least one nozzle Qol. It is interesting to
note that, for each Qol, one parameter acting independently of all other parameters contributes over 90%
of the total variance. Moreover almost all contributions to 99.9% of the variance of each Qol are caused by
individual parameters. Only two second-order interactions are significant. However, the convergence curves
in Figure 12 suggest that resolving multivariate interactions becomes important as we drive the surrogate
error to tight tolerances. This is confirmed by further investigation of high-order Sobol indices that are small
but non-zero. We omit these values for brevity.

The most sensitive parameter identified for each Qol matches physical intuition. The density of the CMC
heat layer pM€ is the largest contribution to the uncertainty in the mass of the nozzle, consistent with the
observations that the minimum density of this layer is an order of magnitude larger than the maximum
density of the other layers and the volume of this layer is greater than any other layer. The inlet stagnation
pressure P; has the greatest influence on thrust. The heat transfer coefficient S which transfers heat from
the nozzle to the environment has the greatest impact on the Load layer temperature failure ratio, which is
the ratio of the temperature in the load layer to the maximum allowable temperature. When 3 is decreased,
less heat is able to escape the nozzle and thus the temperature in the nozzle increases. Finally, the failure
strain in the CMC heat layer G?MC has the greatest impact on the failure of the thermal failure.

The sensitivity analysis presented here suggests that uncertainty in the model can be reduced by obtaining
data that constrains uncertainty on three parameters, p€, 3 and e?MC. The inlet stagnation temperature
is a function of the flight conditions and so its variance can not be constrained unless the aircraft mission is
modified. Collecting experimental data and using Bayesian inference to infer updated parameter distributions
to reduce uncertainty in model predictions is a topic for future work.
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Figure 15: Sobol indices that contribute a portion of the first 99.9% of the variance of at least one nozzle
Qol. The labels of the x-axis represent the parameter of the Sobol index. The maximum value of any Sobol
index is one. We zoom in on the y-scale to better highlight the smaller Sobol index values, and report values
greater than the 0.1 plot scale in the gray boxes. The definition of the parameter symbols can be found in
Appendix Al

7 Conclusions

We have described an integrated sparse grid approach for uncertainty quantification and sensitivity analysis,
which generates a surrogate model that spans both random dimensions and model resolution dimensions.
Novel aspects of this work include the extension from moment estimation to function approximation, exten-
sion to an adaptive multi-index construction (from MISC to AMISC), and demonstration of more complete
UQ workflows for realistic applications, including computation of global sensitivity analysis and probability
density functions for a jet engine nozzle application.

AMISC takes a possible set of fidelity levels and greedily allocates samples to the models which provide
the most predictive utility per unit cost. The set of possible models must be specified before the algorithm
is initiated. Given a vector of values for each discretization parameter of a model, we defined the set of
possible models to be those indexed by the Cartesian product of these vectors. As an example, the model of
advection diffusion considered in this paper had 3 discretization parameters which controlled the accuracy
and cost of the simulation. Each one of these hyper-parameters could take 6 values resulting in 63 = 216
possible model fidelities.

Given a Cartesian product of possible model discretization, AMISC applies adaptive generalized sparse
grid refinement to select the tensor product approximation, from multiple grid refinement candidates, which
maximizes benefit per unit cost. Reflecting a focus on complex engineering applications with multiple
statistics of interest, we used an adaptive criterion based upon a convex combination of mean and variance,
across a vector of Qol, to guide refinement.

In the advection-diffusion model problem presented, AMISC was able to effectively allocate resources to
the downward closed subset of the 216 model fidelities. The total computational cost required by AMISC
to construct a surrogate with a fixed accuracy was over two orders of magnitude smaller relative to a sparse
grid applied to only the most resolved model. Moreover, an instructive transition from early resolution of
stochastic error to late resolution of deterministic discretization bias is evident in the convergence history,
demonstrating how multiple error sources are managed by the algorithm.
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In the nozzle example, we show a variable level of improvement in efficiency for the four different Qol,
where the efficiency is strongly dependent on the nonlinearity of the response. With greater nonlinearity,
the AMISC approach displays strong savings. However, savings are not evident for nearly linear functions
due to the additional overhead of carrying multiple models; rather, benefits are limited to greater flexibility
in constructing rough approximations for low cost targets. Some inefficiencies were also caused by the
downward-closed index set constraint for cases where final reductions in deterministic discretization error
could only be addressed using the most resolved model, resulting in some loss in relative benefits for the tails
of the convergence histories. Finally, we also demonstrate several downstream UQ products for the jet nozzle
problem, including Sobol indices and probability density functions for each Qol, generated by processing and
interrogating the final AMISC approximations.

In this paper the relative cost of each model was determined using a small number of pilot runs prior
to using AMISC. In future work we intend to explore modifying AMISC such that the relative cost of each
model can be determined online during the evolution of the algorithm. Similarly this paper focused on the
setting (relevant to the nozzle application) when the number of possible model discretizations is fixed apriori.
That is, we consider the highest-fidelity model to be most accurate and our aim is to construct a surrogate of
the statistics of this model using lower-fidelity models. In the future we hope to extend our work to consider
an infinite set of possible discretizations which converge to the exact solution to the governing equations.
Finally in future work, we will explore approaches that alter the downward-closed requirement, in order to
allow additional refinement freedom. This is expected to be particularly helpful when model discrepancies
do not demonstrate a smooth, monotonic decay.
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A Nozzle model input uncertainties

The materials of the nozzle, inlet conditions, atmospheric conditions, and heat transfer are all sources of
uncertainty that effect predictions of our nozzle model. In this section we explicitly identify and characterize
(assign a probability distribution) to each source of uncertainty.

Al

Material Constants

Figure [16 shows the individual wall layers in the nozzle wall. The material properties of each of these layers
affect nozzle performance. The thermal insulation “aerogel” is not modeled, but all other layers are modeled.
An incomplete set of material properties is gathered from a variety of experimental data sources.

Missing macroscopic properties are either determined through
fundamental physical analysis of the material’s structure or are
approximated by values for similar materials. Table 3 provides
the properties used in the MULTI-F analysis for the CMC ma-
terial, Table 4 for the GR-BMI material, and Table [ for the
TI-HC material. Lastly, Table [ lists the thermal conductivity

of the air gap and gives the distribution for the assumed yield

-~ = —A_G-FEI e

=

Figure 16: Individual layers in the nozzle

stress of the composite panel material used for the baffles.

wall.

Table 3: Assumed isotropic material properties for the heat layer’s ceramic matrix composite material

(CMC).

Property symbol Units Distribution
Density oMC X U(2293.789, 2496.486)
Elastic modulus ECMC GPa 14(58.940, 76.163)
Poisson ratio MO 4(0.23,0.43)
Thermal conductivity B S U(1.37,1.45)
Thermal expansion coefficient | o€ | K=' x 1076 4(0.228,0.252)
Max service temperature TEMe (963, 983)
Failure strain g 4(0.049788,0.096441)

Table 4: Macroscopic laminate material properties for the load layer’s graphite/bismaleimide (GR-BMI)

composite layers used in the axisymmetric shell specification.

Property Symbol Units Distribution

Density = U(1563,1573)

Elastic moduli E, =F, GPa U(57,63)

In-plane shear modulus G GPa U(22.6,24.0)
Poisson ratios Vig = Vo1 U4(0.334,0.354)

Mutual influence coef (first kind) 112 = [2,12 U(-0.1,0.1)

Mutual influence coef (second kind) | p12,1 = p12.2 U(-0.1,0.1)
Thermal conductivity k1 = ko S 1(3.208, 3.546)
Thermal conductivity ks % U(3.243, 3.585)
Thermal expansion coef a1 = ag K x10°6 U(1.16,1.24)
Thermal expansion coef o K~ % 108 U(—0.04,0.04)

Max service temperature o K U(500,510)
Failure strain (tension) €1 =€ % U(0.675,0.825)

Failure strain (compression) €51 = €5 % U(—0.572,—-0.494)

Failure strain (shear) vf % 4(0.153,0.187)
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Table 5: Assumed isotropic macroscopic material properties for titanium honeycomb layer (TI-HC).

Property Symbol Units Distribution
Density - ~ U(177.77,181.37)
Elastic modulus EH GPa U(1.587,2.823)
Poisson ratio vy 4(0.160,0.196)
Thermal conductivity Bt 2 4(0.680,0.736)
Thermal expansion coefficient o K1 x10°6 U(2.88,3.06)
Max service temperature It K U(745,765)
Yield stross o1t MPa 14(9.676, 16.951)

Table 6: Assumed properties of air gap between thermal and load layers and of the panel structure used in

baffles.
Property Symbol | Units Distribution
Thermal conductivity | k&P | 14(0.0320,0.0530)
Yield strength oy.B MPa U(56.876,99.219)

A.2 Mission Parameters

We focus on a typical reconnaissance mission for a small high-subsonic unmanned military aircraft. The
mission includes climbing at maximum rate to a cruise altitude of 43,000 ft, cruising at Mach 0.92 for a
specified distance to an observation point (e.g., 500 km), loitering at an altitude of 43,000 ft and Mach 0.5
for 2 hours, and then returning to the takeoff point. On the return, the aircraft descends to 10,000 ft and
cruises at Mach 0.9 in a high-speed “dash” segment lasting several kilometers before landing. The analysis
of this mission showed that the climb segment was the most critical for nozzle performance since maximum
thrust was required at all altitudes, leading to the highest temperatures and pressures at the inlet of the
nozzle. In particular, the state of climb right before beginning the cruise segment was the most critical in
terms of stresses and temperatures experienced by the nozzle. Consequently, we focus on the climb segment
of the mission here. Table [7] summarizes the mission parameters used in the nozzle analysis. We assume the
altitude and mach number are fixed at 40,000 ft and 0.511, respectively.

Table 7: Mission parameters.

Parameter Symbol | Units Distribution
Inlet stagnation pressure P Pa | U(86362.122,113062.433)
Inlet stagnation temperature T; K 14(928.729, 981.600)
Atmospheric pressure P Pa U(17386.668,20206.125)
Atmospheric temperature T, K U(202.856,231.297)
Heat transfer coefficient to environment B m\;fK U(4.043,37.376)




