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Highlights

■ High-level language for expressing streaming machine learning pipelines

■ Parallel implementation

■ Example pipeline to detect botnets

■ Average AUC over 13 different scenarios: .870

■ Scales to 61 nodes/ 976 cores

■ 373 thousand netflows per second/ 32.2 billion per day
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Motivation

■ Lots of efforts aimed at analyzing cyber data that is done in an ad-hoc fashion

■ Commonalities

o Feature extraction

o Apply machine learning approaches

■ Reduce the amount of time to develop pipelines
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Motivation

■ Cyber data is voluminous and comes at high velocity (a fire hose)

■ Have streaming algorithms as first class citizens

o K-medians

o Frequent Items

o Mean

o Quantiles

o Rarity

o Variance

o Vector norms

o Similarity

o Count distinct items
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Streaming and Semi-Streaming

■ Sliding window model

■ Streaming O(polylog n) space requirements

■ Semi-streaming O(n polylog n) space requirements
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Case Study: Disclosure

■ They want to find command and control servers of botnets

■ Several hypotheses about difference in behavior between C&C servers and benign servers
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Getting Servers

■ An IP address belongs to a server if the number of flows directed towards its top two ports (i.e., the
two that receives the most connections) account for at least 90% of the flows towards that address.

Netflows = FlowStream("localhost", 9999);

VertsByDest = STREAM Netflows BY Destlp;

Top2 = FOREACH VertsByDest GENERATE topk(DestPort, 10000, 1000, 2);

Servers = FILTER VertsByDest By top2.value(0) + top2.value(1) > 0.9
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National
Laboratories



Destlp = 14.5

Destlp = 192.168.0.2

•••

N etflows

VertsByDest =

Stream Neflows

BY Destlp;

->
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Top2 = FOREACH

VertsByDest GENERATE

topk(DestPort, 10000,

1000, 2);

Servers = FILTER

VertsByDest By

top2.value(0) +

top2.value(1) > 0.9



Extracting Features
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We extract the mean pFij and standard deviation Fij separately for both incoming and outgoing flows of

each server.

FlowsizesumIncoming = FOREACH Servers GENERATE ave(SrcTotalBytes);

FlowsizeSumOutgoing = FOREACH Servers GENERATE ave(DestTotalBytes);

FlowsizeVarIncoming = FOREACH Servers GENERATE var(SrcTotalBytes);

FlowsizeVarOutgoing = FOREACH Servers GENERATE var(DestTotalBytes);



Autocorrelation

Autocorrelation is widely used for cross-correlating a signal with itself in the signal processing domain,
and is useful for identifying repeating patterns in time series data. A series of flow sizes Fi,j can be
converted to a time series by ordering sizes by time.

No semi-streaming approach has been developed for autocorrelation, so not supporting.
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Unique Flow Sizes
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■ Disclosure counts the number of unique flow sizes

Uniquelncoming = FOREACH Servers

GENERATE countdistinct(SrcTotalBytes);

UniqueOutgoing = FOREACH Servers

GENERATE countdistinct(DestTotalBytes);

■ They also create an array that provides the count for each unique element.

o Not exactly expressible in SAL, but can use TopK operator to provide frequency of most frequent

unique elements.



Time Series
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For each server si and client cj, Disclosure prepares a time series Tij of flows observed during the analysis
period. Then, a sequence of flow inter-arrival times li i is derived from the time series by taking the
difference between consecutive connections;

DestSrc = STREAM Servers BY Destlp 1 Sourcelp ;

TimeLapseSeries = FOREACH DestSrc TRANSFORM ( TimeSeconds —

TimeSeconds . prev (1)) : TimeDiff



Generate Features on Time Series

TimeDiffVar = FOREACH TimeLapseSeries GENERATE var(TimeDiff);

TimeDiffMed = FOREACH TimeLapseSeries GENERATE median(TimeDiff);

DestOnly = COLLAPSE TimeLapseSeries BY Destlp FOR TimeDiffVar , TimeDiffMed ;

AveTimeDiffVar = FOREACH DestOnly GENERATE ave(TimeDiffVar);

VarTimeDiffVar = FOREACH DestOnly GENERATE var(TimeDiffVar);

■ Can't express Max/Min because those require O(n) space requirements.
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iervers TimeLapse eries

TirneDiffVar
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DestOnly
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Ti me La pseSer ies = TimeDiffVar = DestOnly = AveTimeDiffVar =
Servers = FILTER DestSrc = STREAM FOREACH DestSrr FOREACH CO LLAPSE FOREACH
VertsByDest BY Servers BY Destlpe TRANSFORM TimeLapseSeries TimeLapseSeries DestOnly
top2.value(10 Sou rce I P Ti meSeconds — GENERATE BY Destlp FOR GENERATE
Top2_value(1) < 0_9 Ti meSeconds.prev( 1))

limeDiff

varrimeDiff) TimeDiffVar ave(TimeDiffVar)



Case Study Conclusions

• Easy to express machine learning pipeline that was previously implemented in an ad-hoc fashion.

• 10-40 times fewer lines of code

C+ + I SAL
Disclosure 520 14

Results Pipeline I 482 I 31
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Streaming Analytics Machine (SAM)

• Parallel implementation of SAL in C++

• SAL is converted into a C++ executable using Scala Parser/Combinator

• Each node of SAM receives data using a socket layer

• ZeroMQ is used to distribute the netflows across the cluster

o Partitioned by IP (common hash function)
N etflows

o Push/Pull ZeroMQ sockets are used (lossless) \ nv

Another option is publish/subscribe (lossy)

N etflo ws

NodeO

Node2

 MN

N etflows

r8 /

Nodel

Node3

Netflows
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Mapping from SAL to SAM

C+ + Name Con-
sumer

Pro-
ducer

Feature
Creator

Maps To

ReadSocket x FlowSt ream
ZeroMQPushPull x x N/A

Filter x x FILTER
Transform x x TRANSFORM

Col lapsedConsumer x x COLLAPSE
Project x COLLAPSE
EHSum x x sum
EHAve x x ave

EHVariance x x var
TopK x x topk
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Results

■ Dataset is CTU-13

o 13 botnet scenarios

o Real botnet attacks

o Real background traffic

o A variety of protocols (IRC, P2P, HTTP) and behaviors (click-fraud, port scans, DDoS, Fast-Flux)
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SAL Program

■ Average and variance over following features, imuxed on dest IP and source IP

1. SrcTotalBytes

2. DestTotalBytes

3. DurationSeconds

4. SrcPayloadBytes

5. DestPayloadBytes

6. SrcPacketCount

7. DestPacketCount
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Smaller SAL Program

■ Filtered down to 8 features using greedy selection approach

1. Average DestPayloadBytes

2. Variance DestPayloadBytes

3. Average DestPacketCount

4. Variance DestPacketCount

5. Average SrcPayloadBytes

6. Average SrcPacketCount

7. Average DestTotalBytes

8. Variance SrcTotalBytes
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Conclusions

■ SAL provides a succinct way to represent machine learning pipelines

■ SAM is a scalable implementation of SAL

o 373,000 netflows per second

o 32.2 billion per day

■ Example pipeline resulted in an average AUC of ROC of 0.87
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