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Highlights =

= High-level language for expressing streaming machine learning pipelines
= Parallel implementation

=  Example pipeline to detect botnets

= Average AUC over 13 different scenarios: .870

= Scales to 61 nodes/ 976 cores

= 373 thousand netflows per second/ 32.2 billion per day
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Motivation Laboratories

= Lots of efforts aimed at analyzing cyber data that is done in an ad-hoc fashion

= Commonalities
o Feature extraction

o Apply machine learning approaches
= Reduce the amount of time to develop pipelines
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Motivation Laboratories

= Cyber data is voluminous and comes at high velocity (a fire hose)
= Have streaming algorithms as first class citizens

o K-medians
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Streaming and Semi-Streaming National_

= Sliding window model
= Streaming O(polylog n) space requirements

=  Semi-streaming O(n polylog n) space requirements
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Case Study: Disclosure e

=  They want to find command and control servers of botnets

= Several hypotheses about difference in behavior between C&C servers and benign servers




Getting Servers @ o

= An IP address belongs to a server if the number of flows directed towards its top two ports (i.e., the
two that receives the most connections) account for at least 90% of the flows towards that address.

Netflows = FlowStream(“localhost”, 9999);

VertsByDest = STREAM Netflows BY Destlp;
Top2 = FOREACH VertsByDest GENERATE topk(DestPort, 10000, 1000, 2);
Servers = FILTER VertsByDest By top2.value(0) + top2.value(1) > 0.9
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Extracting Features (i) .

We extract the mean uf;; and standard deviation F;; separately for both incoming and outgoing flows of
each server.

FlowsizeSumIncoming = FOREACH Servers GENERATE ave(SrcTotalBytes);
FlowsizeSumOutgoing = FOREACH Servers GENERATE ave(DestTotalBytes);
FlowsizeVarincoming = FOREACH Servers GENERATE var(SrcTotalBytes);
FlowsizeVarOutgoing = FOREACH Servers GENERATE var(DestTotalBytes);




Autocorrelation (i) .

Autocorrelation is widely used for cross-correlating a signal with itself in the signal processing domain,

and is useful for identifying repeating patterns in time series data. A series of flow sizes Fi,j can be
converted to a time series by ordering sizes by time.

No semi-streaming approach has been developed for autocorrelation, so not supporting.




Unique Flow Sizes (1)

= Disclosure counts the number of unique flow sizes

Uniquelncoming = FOREACH Servers
GENERATE countdistinct(SrcTotalBytes);

UniqueOutgoing = FOREACH Servers
GENERATE countdistinct(DestTotalBytes);

= They also create an array that provides the count for each unique element.
o Not exactly expressible in SAL, but can use TopK operator to provide frequency of most frequent
unique elements.




Time Series @ sl;:.""?";am

For each server s; and client c;, Disclosure prepares a time series T, ; of flows observed during the analysis
period. Then, a sequence of flow inter-arrival times |, ; is derived from the time series by taking the
difference between consecutive connections;

DestSrc = STREAM Servers BY Destlp , Sourcelp ;

TimeLapseSeries = FOREACH DestSrc TRANSFORM ( TimeSeconds -
TimeSeconds . prev (1)) : TimeDiff




Generate Features on Time Series @ o

TimeDiffVar = FOREACH TimeLapseSeries GENERATE var(TimeDiff);

TimeDiffMed = FOREACH TimeLapseSeries GENERATE median(TimeDiff);

DestOnly = COLLAPSE TimeLapseSeries BY Destlp FOR TimeDiffVar , TimeDiffMed ;
AveTimeDiffVar = FOREACH DestOnly GENERATE ave(TimeDiffVar);
VarTimeDiffVar = FOREACH DestOnly GENERATE var(TimeDiffVar);

=  Can’t express Max/Min because those require O(n) space requirements.




Laboratories
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Case Study Conclusions

@ .

= Easy to express machine learning pipeline that was previously implemented in an ad-hoc fashion.

= 10-40 times fewer lines of code

C++ SAL
Disclosure 520 14
Results Pipeline | 482 31




Streaming Analytics Machine (SAM) ()

= Parallel implementation of SAL in C++
= SALis converted into a C++ executable using Scala Parser/Combinator
= Each node of SAM receives data using a socket layer
= ZeroMQ is used to distribute the netflows across the cluster

o Partitioned by IP (common hash function)

Netflows Netflows
o Push/Pull ZeroMQ sockets are used (lossless) \ N
= Another option is publish/subscribe (lossy) .
NodeO

Netflows

\ Al




Mapping from SAL to SAM

C++ Name Con- | Pro- | Feature Maps To
sumer | ducer | Creator
Read Socket X FlowStream
ZeroMQPushPull X X N/ A
Filter X X FILTER
Transform X X TRANSFORM
CollapsedConsumer X X COLLAPSE
Project X COLLAPSE
EHSum X X sum
EHAve X X ave
EHVariance X X var
TopK X X topk
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Results Fret

= Dataset is CTU-13
o 13 botnet scenarios
o Real botnet attacks
o Real background traffic
O

A variety of protocols (IRC, P2P, HTTP) and behaviors (click-fraud, port scans, DDoS, Fast-Flux)
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SAL Program Isborsors

= Average and variance over following features, imuxed on dest IP and source IP

1. SrcTotalBytes

2. DestTotalBytes

3. DurationSeconds
4. SrcPayloadBytes
5. DestPayloadBytes
6. SrcPacketCount
7.

DestPacketCount




Smaller SAL Program ="

Filtered down to 8 features using greedy selection approach

Average DestPayloadBytes

Variance DestPayloadBytes

Average DestPacketCount

Variance DestPacketCount

Average SrcPayloadBytes

Average SrcPacketCount

Average DestTotalBytes
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Conclusions rrI

= SAL provides a succinct way to represent machine learning pipelines
= SAM is a scalable implementation of SAL
o 373,000 netflows per second

o 32.2 billion per day
=  Example pipeline resulted in an average AUC of ROC of 0.87




