

Streaming Analytics Language for Machine Learning Pipelines

Eric Goodman (9365), Dirk Grunwald

Highlights

- High-level language for expressing streaming machine learning pipelines
- Parallel implementation
- Example pipeline to detect botnets
- Average AUC over 13 different scenarios: .870
- Scales to 61 nodes/ 976 cores
- 373 thousand netflows per second/ 32.2 billion per day

Motivation

- Lots of efforts aimed at analyzing cyber data that is done in an ad-hoc fashion
- Commonalities
 - Feature extraction
 - Apply machine learning approaches
- Reduce the amount of time to develop pipelines

Motivation

- Cyber data is voluminous and comes at high velocity (a fire hose)
- Have streaming algorithms as first class citizens
 - K-medians
 - Frequent Items
 - Mean
 - Quantiles
 - Rarity
 - Variance
 - Vector norms
 - Similarity
 - Count distinct items

Streaming and Semi-Streaming

- Sliding window model
- Streaming $O(\text{polylog } n)$ space requirements
- Semi-streaming $O(n \text{ polylog } n)$ space requirements

Case Study: Disclosure

- They want to find command and control servers of botnets
- Several hypotheses about difference in behavior between C&C servers and benign servers

Getting Servers

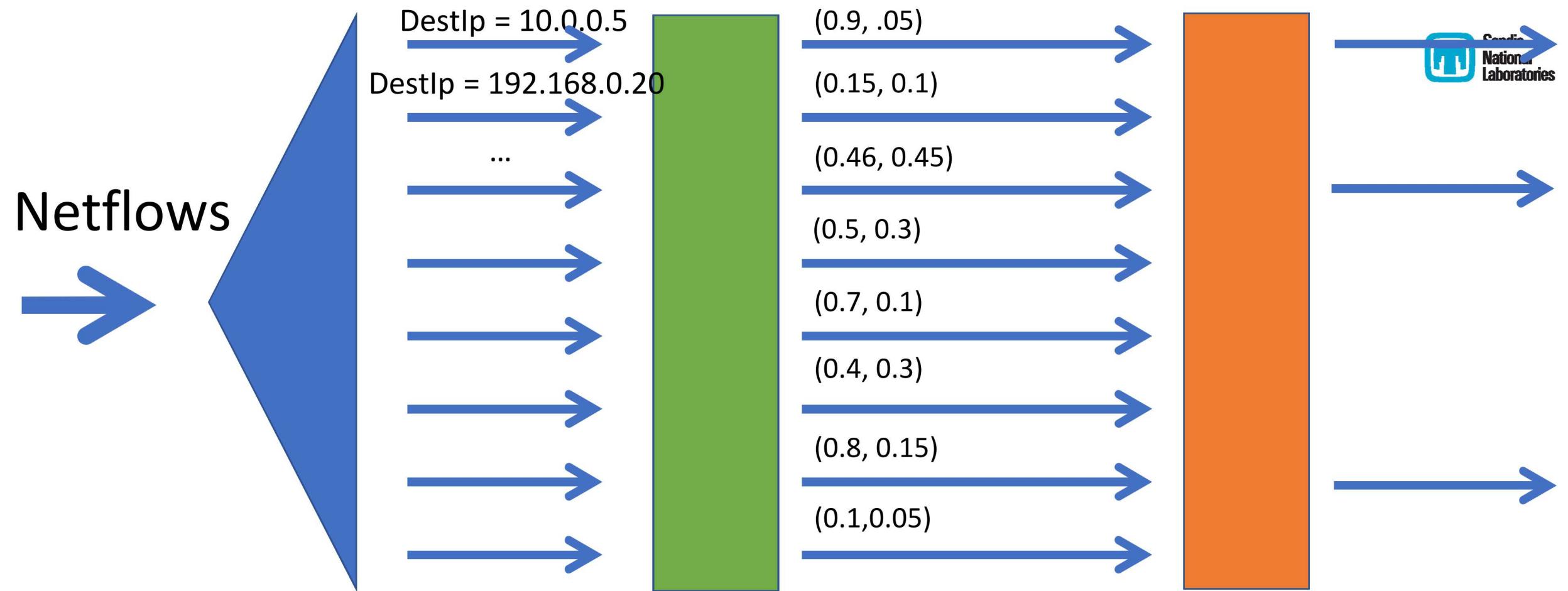
- *An IP address belongs to a server if the number of flows directed towards its top two ports (i.e., the two that receives the most connections) account for at least 90% of the flows towards that address.*

```
Netflows = FlowStream("localhost", 9999);
```

```
VertsByDest = STREAM Netflows BY DestIp;
```

```
Top2 = FOREACH VertsByDest GENERATE topk(DestPort, 10000, 1000, 2);
```

```
Servers = FILTER VertsByDest By top2.value(0) + top2.value(1) > 0.9
```



VertsByDest =
Stream Neflows
BY DestIp;

Top2 = FOREACH
VertsByDest GENERATE
topk(DestPort, 10000,
1000, 2);

Servers = FILTER
VertsByDest By
top2.value(0) +
top2.value(1) > 0.9

Extracting Features

We extract the mean $\mu F_{i,j}$ and standard deviation $F_{i,j}$ separately for both incoming and outgoing flows of each server.

```
FlowsizeSumIncoming = FOREACH Servers GENERATE ave(SrcTotalBytes);  
FlowsizeSumOutgoing = FOREACH Servers GENERATE ave(DestTotalBytes);  
FlowsizeVarIncoming = FOREACH Servers GENERATE var(SrcTotalBytes);  
FlowsizeVarOutgoing = FOREACH Servers GENERATE var(DestTotalBytes);
```

Autocorrelation

Autocorrelation is widely used for cross-correlating a signal with itself in the signal processing domain, and is useful for identifying repeating patterns in time series data. A series of flow sizes $F_{i,j}$ can be converted to a time series by ordering sizes by time.

No semi-streaming approach has been developed for autocorrelation, so not supporting.

Unique Flow Sizes

- Disclosure counts the number of unique flow sizes

UniqueIncoming = FOREACH Servers

```
GENERATE countdistinct(SrcTotalBytes);
```

UniqueOutgoing = FOREACH Servers

```
GENERATE countdistinct(DestTotalBytes);
```

- They also create an array that provides the count for each unique element.
 - Not exactly expressible in SAL, but can use TopK operator to provide frequency of most frequent unique elements.

For each server s_i and client c_j , Disclosure prepares a time series $T_{i,j}$ of flows observed during the analysis period. Then, a sequence of flow inter-arrival times $I_{i,j}$ is derived from the time series by taking the difference between consecutive connections;

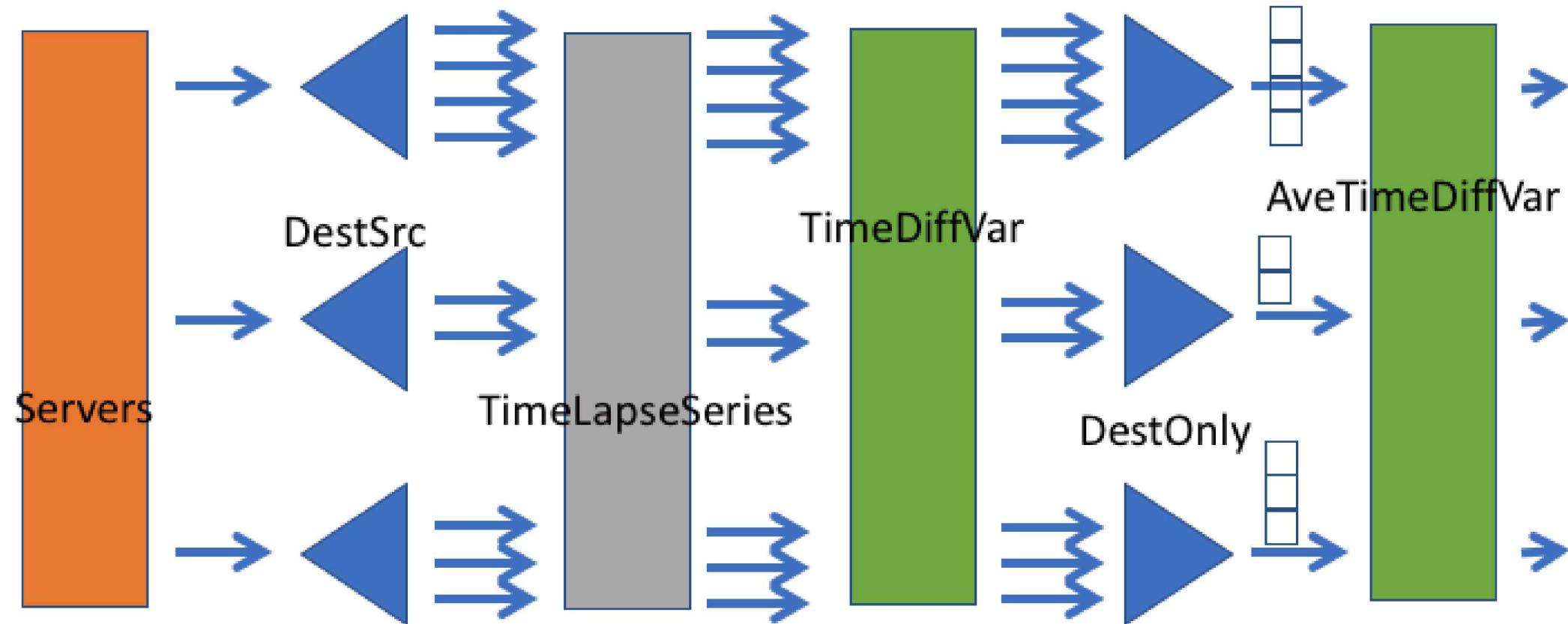
DestSrc = STREAM Servers BY DestIp , Sourcelp ;

TimeLapseSeries = FOREACH DestSrc TRANSFORM (TimeSeconds -
TimeSeconds . prev (1)) : TimeDiff

Generate Features on Time Series

```
TimeDiffVar = FOREACH TimeLapseSeries GENERATE var(TimeDiff);  
TimeDiffMed = FOREACH TimeLapseSeries GENERATE median(TimeDiff);  
DestOnly = COLLAPSE TimeLapseSeries BY DestIp FOR TimeDiffVar , TimeDiffMed ;  
AveTimeDiffVar = FOREACH DestOnly GENERATE ave(TimeDiffVar);  
VarTimeDiffVar = FOREACH DestOnly GENERATE var(TimeDiffVar);
```

- Can't express Max/Min because those require $O(n)$ space requirements.



Servers = FILTER
VertsByDest BY
top2.value(0) +
Top2.value(1) < 0.9

DestSrc = STREAM
Servers BY DestIp,
SourceIp

TimeLapseSeries =
FOREACH DestSrc
TRANSFORM (TimeSeconds –
TimeSeconds.prev(1)) :
TimeDiff

TimeDiffVar =
FOREACH
TimeLapseSeries
GENERATE
var(TimeDiff)

DestOnly =
COLLAPSE
TimeLapseSeries
BY DestIp FOR
TimeDiffVar

AveTimeDiffVar =
FOREACH
DestOnly
GENERATE
ave(TimeDiffVar)

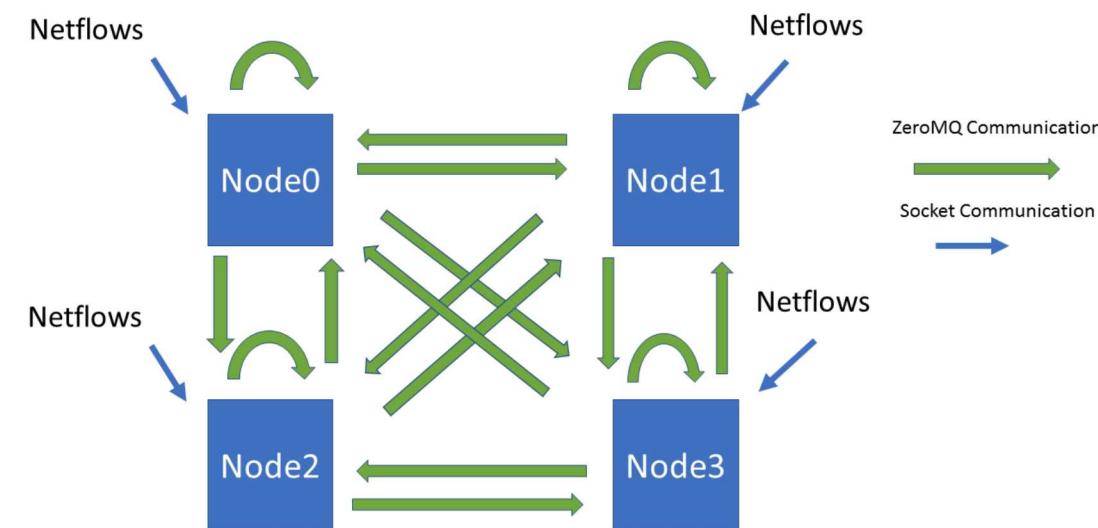
Case Study Conclusions

- Easy to express machine learning pipeline that was previously implemented in an ad-hoc fashion.
- 10-40 times fewer lines of code

	C+ +	SAL
Disclosure	520	14
Results Pipeline	482	31

Streaming Analytics Machine (SAM)

- Parallel implementation of SAL in C++
- SAL is converted into a C++ executable using Scala Parser/Combinator
- Each node of SAM receives data using a socket layer
- ZeroMQ is used to distribute the netflows across the cluster
 - Partitioned by IP (common hash function)
 - Push/Pull ZeroMQ sockets are used (lossless)
 - Another option is publish/subscribe (lossy)



Mapping from SAL to SAM

C++ Name	Con- sumer	Pro- ducer	Feature Creator	Maps To
ReadSocket		x		FlowStream
ZeroMQPushPull	x	x		N/A
Filter	x	x		FILTER
Transform	x	x		TRANSFORM
CollapsedConsumer	x		x	COLLAPSE
Project	x			COLLAPSE
EHSum	x		x	sum
EHAve	x		x	ave
EHVariance	x		x	var
TopK	x		x	topk

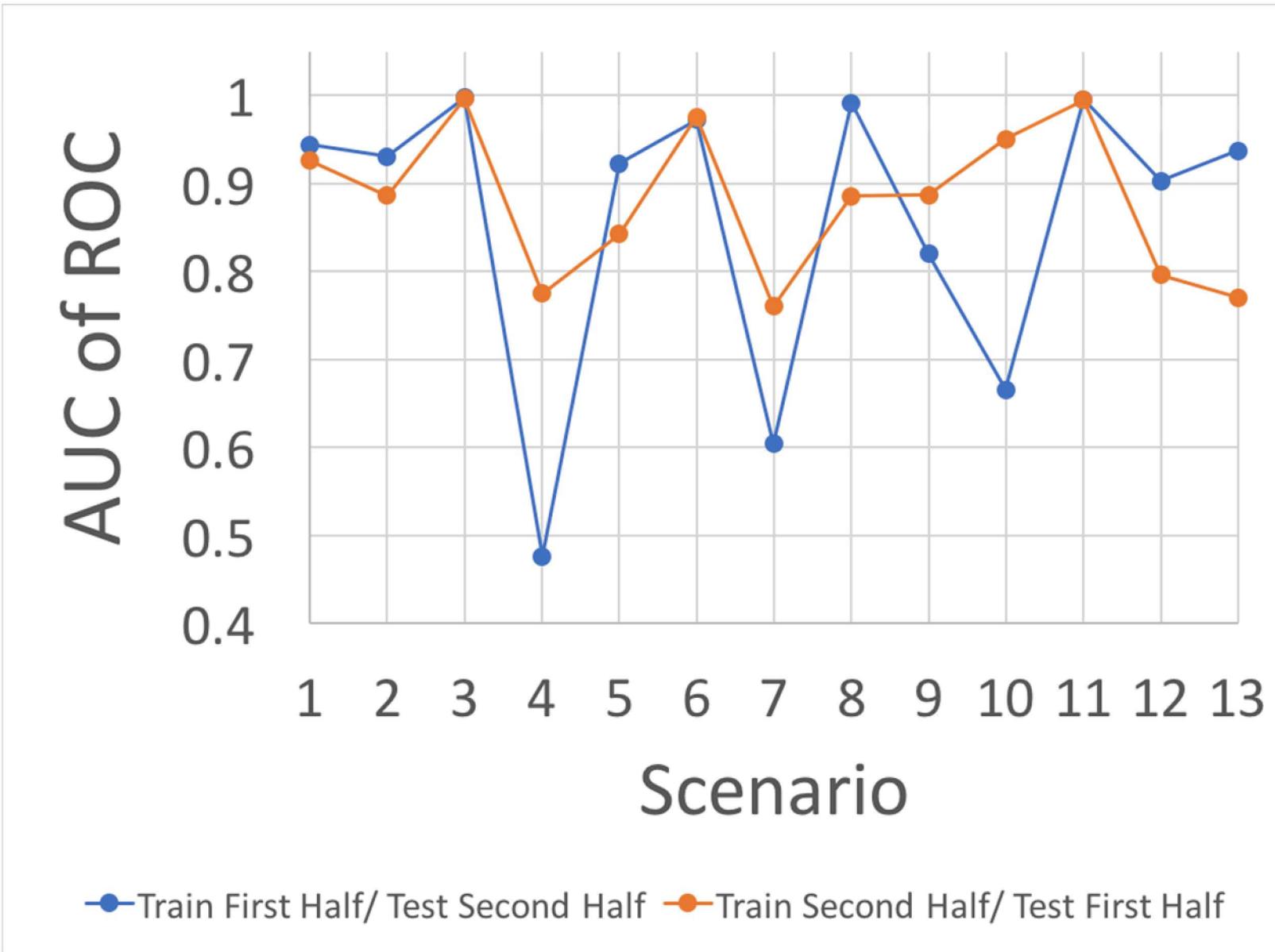
Results

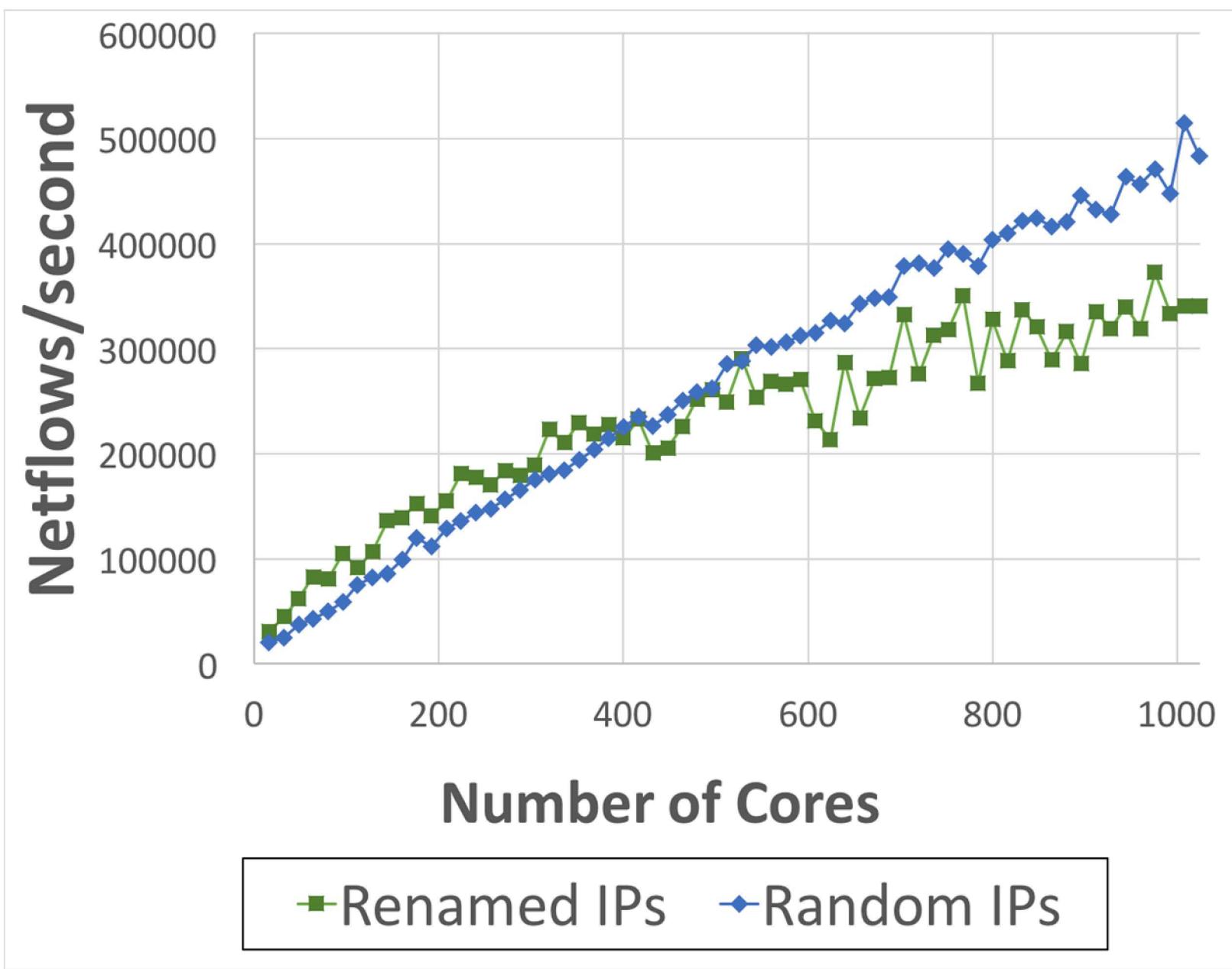
- Dataset is CTU-13
 - 13 botnet scenarios
 - Real botnet attacks
 - Real background traffic
 - A variety of protocols (IRC, P2P, HTTP) and behaviors (click-fraud, port scans, DDoS, Fast-Flux)

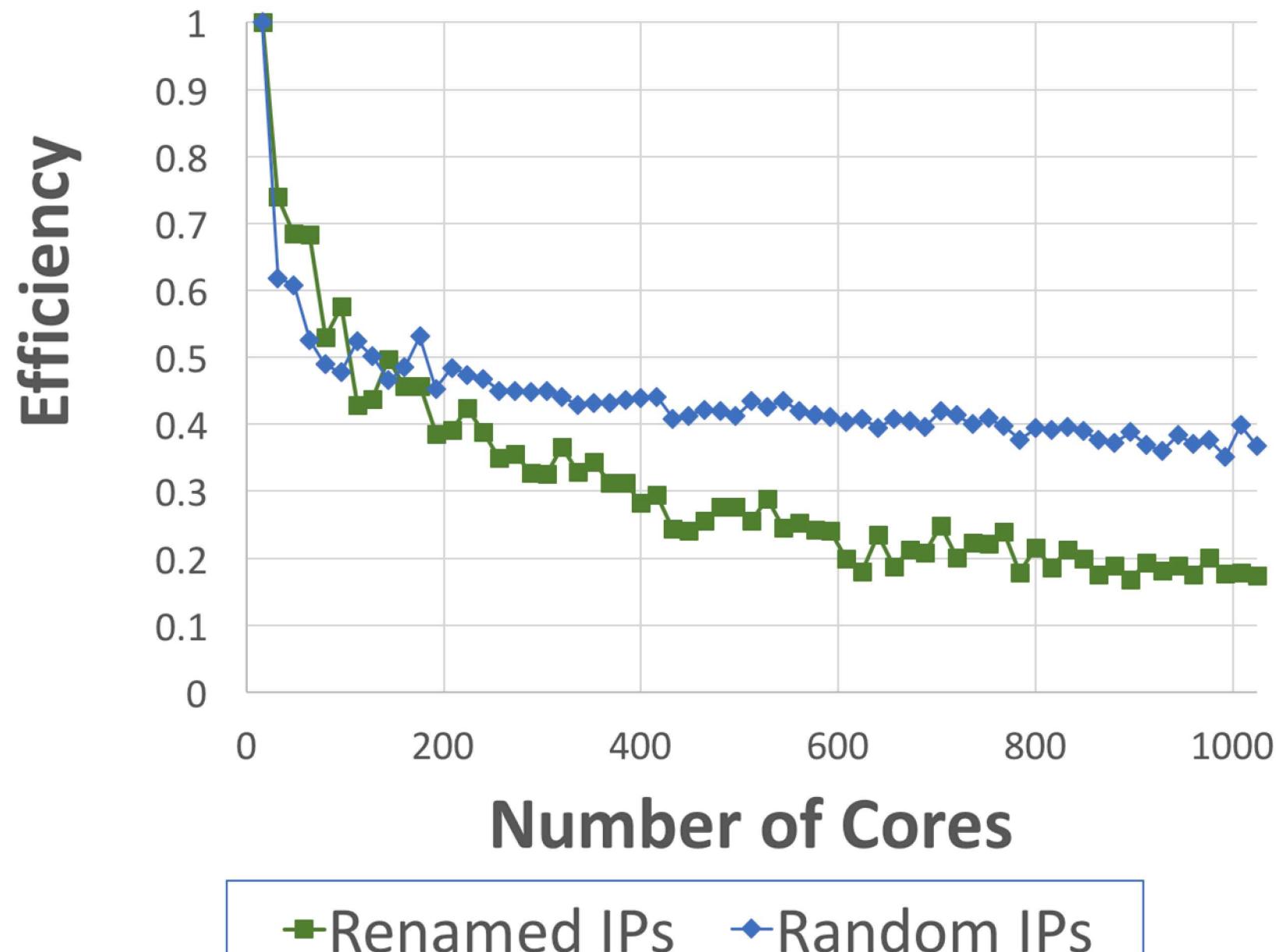
- Average and variance over following features, imuxed on dest IP and source IP
 1. SrcTotalBytes
 2. DestTotalBytes
 3. DurationSeconds
 4. SrcPayloadBytes
 5. DestPayloadBytes
 6. SrcPacketCount
 7. DestPacketCount

Smaller SAL Program

- Filtered down to 8 features using greedy selection approach
 1. Average DestPayloadBytes
 2. Variance DestPayloadBytes
 3. Average DestPacketCount
 4. Variance DestPacketCount
 5. Average SrcPayloadBytes
 6. Average SrcPacketCount
 7. Average DestTotalBytes
 8. Variance SrcTotalBytes







Conclusions

- SAL provides a succinct way to represent machine learning pipelines
- SAM is a scalable implementation of SAL
 - 373,000 netflows per second
 - 32.2 billion per day
- Example pipeline resulted in an average AUC of ROC of 0.87