This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2018-8303C

Destlp = 10.Q.0.5 (0.9, .05) B
Destlp =192.168.0.2| (0.15,0.1) % 0.9
ey 0 43 3?5* = 5
(0.46, 0.45) (@) AveTi| ar E 0.7
Netflows (0.5,0.3) E Destrc B '8 0.6
+ (0.7,0.1) 8 —-> 4 3 3 > > :'-..HEJ 0.5
. 0.4
(0.4,03) | Timg Lapse&erles DestOnIy Bi5
(0.8,0.15) < 0.2
 —— _— —_ - 0.1
(0.1,0.05) o

—_— —_—D 1234567 8910111213 seners- AITER DestSrc sTReaw TimelLapseSeries = TimeDiffVar = DestOnly = ?(\;;E;?"’Var: o 200 400 600 800 1000

VertsByDest = Top2 = FOREACH S = FILTER Scenario VertsiyDest Y Servers BY Destlp, ;gzzéggﬁt:;s(sm :’f)r::ﬁ:esyies $i?rl\-'e-LA::sEeSenes DestOnly Number of Cores
ertsbybest = NaristivBest GENERATE ervers = ;’:;ZZ gl:z(g)] e SourcelP TimeSeconds - GENERATE BY Destip FOR GEN]ERATE_W)
Strea m N EﬂOWS erkS yes VertSBVDGSt BY ~8-Train First Half/ Test Second Half —#-Train Second Half/ Test First Half E::{S)?'c'onds.prevll)) ¢ voriTimeDKf) TimeDiffvar i ‘ —-—Re nam ed | PS - Ra n d om | PS ‘
BY Destlp; topk(DestPort, 10000, top2.value(0) +
1000, 2); top2.value(1) > 0.9

Streaming Analytics Language for Machine Learning Pipelines

Eric Goodman (9365), Dirk Grunwald

U.S. DEPARTMENT OF
NIM Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for
ENERGY <4 the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND NO. 2017-XXXXP

Highlights =

= High-level language for expressing streaming machine learning pipelines
= Parallel implementation

= Example pipeline to detect botnets

= Average AUC over 13 different scenarios: .870

= Scales to 61 nodes/ 976 cores

= 373 thousand netflows per second/ 32.2 billion per day

Sandia

Motivation Laboratories

= Lots of efforts aimed at analyzing cyber data that is done in an ad-hoc fashion

= Commonalities
o Feature extraction

o Apply machine learning approaches
= Reduce the amount of time to develop pipelines

Sandia

Motivation Laboratories

= Cyber data is voluminous and comes at high velocity (a fire hose)
= Have streaming algorithms as first class citizens

o K-medians

O
O
O
O
O
O
O
O

Frequent Items
Mean

Quantiles

Rarity

Variance

Vector norms
Similarity

Count distinct items

Sandia

Streaming and Semi-Streaming National_

= Sliding window model
= Streaming O(polylog n) space requirements

= Semi-streaming O(n polylog n) space requirements

Sandia

Case Study: Disclosure e

= They want to find command and control servers of botnets

= Several hypotheses about difference in behavior between C&C servers and benign servers

Getting Servers @ o

= An IP address belongs to a server if the number of flows directed towards its top two ports (i.e., the
two that receives the most connections) account for at least 90% of the flows towards that address.

Netflows = FlowStream(“localhost”, 9999);

VertsByDest = STREAM Netflows BY Destlp;
Top2 = FOREACH VertsByDest GENERATE topk(DestPort, 10000, 1000, 2);
Servers = FILTER VertsByDest By top2.value(0) + top2.value(1) > 0.9

(0.9, .05)

Destlp = 1o.gio.5
ﬁ .
Destlp = 192.168.0.2 (0.15, 0.1) M=
—
(0.46, 0.45)
Netflows (0.5,0.3)
— —
é (0.7, 0.1)
(0.4, 0.3)
— —
(0.8, 0.15)
(0.1,0.05)
— —
VertsByDest = Top2 = FOREACH Servers = FILTER
Stream Neflows VertsByDest GENERATE VertsByDest By
BY Destlp: topk(DestPort, 10000, top2.value(0) +
1000, 2); top2.value(1) > 0.9

Extracting Features (i) .

We extract the mean uf;; and standard deviation F;; separately for both incoming and outgoing flows of
each server.

FlowsizeSumIncoming = FOREACH Servers GENERATE ave(SrcTotalBytes);
FlowsizeSumOutgoing = FOREACH Servers GENERATE ave(DestTotalBytes);
FlowsizeVarincoming = FOREACH Servers GENERATE var(SrcTotalBytes);
FlowsizeVarOutgoing = FOREACH Servers GENERATE var(DestTotalBytes);

Autocorrelation (i) .

Autocorrelation is widely used for cross-correlating a signal with itself in the signal processing domain,

and is useful for identifying repeating patterns in time series data. A series of flow sizes Fi,j can be
converted to a time series by ordering sizes by time.

No semi-streaming approach has been developed for autocorrelation, so not supporting.

Unique Flow Sizes (1)

= Disclosure counts the number of unique flow sizes

Uniquelncoming = FOREACH Servers
GENERATE countdistinct(SrcTotalBytes);

UniqueOutgoing = FOREACH Servers
GENERATE countdistinct(DestTotalBytes);

= They also create an array that provides the count for each unique element.
o Not exactly expressible in SAL, but can use TopK operator to provide frequency of most frequent
unique elements.

Time Series @ sl;:.""?";am

For each server s; and client c;, Disclosure prepares a time series T, ; of flows observed during the analysis
period. Then, a sequence of flow inter-arrival times |, ; is derived from the time series by taking the
difference between consecutive connections;

DestSrc = STREAM Servers BY Destlp , Sourcelp ;

TimeLapseSeries = FOREACH DestSrc TRANSFORM (TimeSeconds -
TimeSeconds . prev (1)) : TimeDiff

Generate Features on Time Series @ o

TimeDiffVar = FOREACH TimeLapseSeries GENERATE var(TimeDiff);

TimeDiffMed = FOREACH TimeLapseSeries GENERATE median(TimeDiff);

DestOnly = COLLAPSE TimeLapseSeries BY Destlp FOR TimeDiffVar , TimeDiffMed ;
AveTimeDiffVar = FOREACH DestOnly GENERATE ave(TimeDiffVar);
VarTimeDiffVar = FOREACH DestOnly GENERATE var(TimeDiffVar);

= Can’t express Max/Min because those require O(n) space requirements.

Laboratories

-~ 43 =P

. AveTi Var
DestSrc ar | H
Tim '
DestOn I*,,lr

| TimelapseSeries = TimeDiffVar= DestOnly = AveTimeDiffVar =
Servers=FILTER DestSrc =STREAM thpearH DestSre FOREACH COLLAPSE FOREACH
VertsByDest BY ~ Servers BY Destlp, 1pansrorm (TimelapseSeries TimelapseSeries ~ DestOnly
IopLusueid]+ SOUIGEE TimeSeconds — GENERATE BY Destlp FOR GENERATE
Top2.value(1) < 0.9 TimeSeconds.prev(1)) : var(TimeDiff) TimeDiff\Var ave(TimeDiffVar)

TimeDiff

Case Study Conclusions

@ .

= Easy to express machine learning pipeline that was previously implemented in an ad-hoc fashion.

= 10-40 times fewer lines of code

C++ SAL
Disclosure 520 14
Results Pipeline | 482 31

Streaming Analytics Machine (SAM) ()

= Parallel implementation of SAL in C++
= SALis converted into a C++ executable using Scala Parser/Combinator
= Each node of SAM receives data using a socket layer
= ZeroMQ is used to distribute the netflows across the cluster

o Partitioned by IP (common hash function)

Netflows Netflows
o Push/Pull ZeroMQ sockets are used (lossless) \ N
= Another option is publish/subscribe (lossy) .
NodeO

Netflows

\ Al

Mapping from SAL to SAM

C++ Name Con- | Pro- | Feature Maps To
sumer | ducer | Creator
Read Socket X FlowStream
ZeroMQPushPull X X N/ A
Filter X X FILTER
Transform X X TRANSFORM
CollapsedConsumer X X COLLAPSE
Project X COLLAPSE
EHSum X X sum
EHAve X X ave
EHVariance X X var
TopK X X topk

Sandia

Results Fret

= Dataset is CTU-13
o 13 botnet scenarios
o Real botnet attacks
o Real background traffic
O

A variety of protocols (IRC, P2P, HTTP) and behaviors (click-fraud, port scans, DDoS, Fast-Flux)

Sandia

SAL Program Isborsors

= Average and variance over following features, imuxed on dest IP and source IP

1. SrcTotalBytes

2. DestTotalBytes

3. DurationSeconds
4. SrcPayloadBytes
5. DestPayloadBytes
6. SrcPacketCount
7.

DestPacketCount

Smaller SAL Program ="

Filtered down to 8 features using greedy selection approach

Average DestPayloadBytes

Variance DestPayloadBytes

Average DestPacketCount

Variance DestPacketCount

Average SrcPayloadBytes

Average SrcPacketCount

Average DestTotalBytes

ol B L A

Variance SrcTotalBytes

Sandia
Laboratories

1
0.9
0.8
0.7
0.6
0.5
0.4

AUC of ROC

1 2 3 456 7 8 910111213
Scenario

—®-Train First Half/ Test Second Half ~®Train Second Half/ Test First Half

600000

500000

400000

300000

200000

100000

Netflows/second

Sandia
Laboratories

200 400 600 800

Number of Cores

=Renamed IPs <+Random IPs

1000

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Efficiency

Pond\ o

200 400 600 800
Number of Cores

=Renamed IPs <+Random IPs

Sandia
Laboratories

Sandia

Conclusions rrI

= SAL provides a succinct way to represent machine learning pipelines
= SAM is a scalable implementation of SAL
o 373,000 netflows per second

o 32.2 billion per day
= Example pipeline resulted in an average AUC of ROC of 0.87

