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EXECUTIVE SUMMARY

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S.
Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology
(FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel
(SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are
design concept development and disposal system modeling. These priorities are directly addressed
in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged
with developing a geologic repository system modeling and analysis capability, and the associated
software, GDSA Framework, for evaluating disposal system performance for nuclear waste in
geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the
Used Fuel Disposition (UFD) campaign.

This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package
(SF-19SN01030403) level 2 milestone — Status Report on UQ/SA Tools in GDSA Framework
(M2SF-19SN010304031). It presents high level objectives and strategy for development of
uncertainty and sensitivity analysis tools, documents and demonstrates uncertainty quantification
(UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY 19 and describes additional
UQ/SA tools whose future implementation would enhance the UQ/SA capability of GDSA
Framework. This work was closely coordinated with the other Sandia National Laboratory GDSA
work packages: the GDSA Framework Development work package (SF-19SN01030402), the
GDSA Repository Systems Analysis work package (SF-19SN01030405), and the GDSA
Modeling work package (SF-19SN01030406). This report builds on developments reported in
previous GDSA Framework milestones, particularly M2SF-18SN01030406.

Tools for uncertainty quantification (UQ) and sensitivity analysis (SA) are essential
components of performance/safety assessment. Probabilistic performance assessment (PA) relies
on propagating uncertainties in model inputs through a predictive model (or models) to quantify
expected outcomes (e.g., mean dose to an individual, groundwater concentration, or cumulative
radionuclide release) and associated probability distributions for comparison to regulatory limits.
Probabilistic, sampling-based methods of sensitivity analysis are used to understand both
qualitatively and quantitatively the contributions of uncertain inputs to uncertainty in model
outputs and to enhance confidence in predictive models by providing a check that model behavior
is reasonable and expected. UQ/SA is an iterative process. Results may guide further collection of
data to reduce uncertainty in model predictions, identify processes for inclusion or exclusion in
PA models, help debug numerical models, and enable design of a parsimonious final (regulatory)
uncertainty analysis (Figure 1).

il
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Figure 1. Uncertainty Quantification and Sensitivity Analysis as an iterative process

Development of UQ/SA tools within GDSA Framework is driven by the overarching objectives
of GDSA Framework development including: 1) enabling increasingly coupled, mechanistic multi-
physics modeling; 2) leveraging existing high-performance computing capabilities; 3) remaining
flexible enough to take advantage of future advances in hardware, software, and simulation and
analysis methods; and 4) developing in an open-source environment so that implementations are
transparent and software is freely available to stakeholders. Objectives specific to UQ/SA
development include: 1) to make available standard sampling-based methods of uncertainty
propagation, sensitivity analysis, and uncertainty quantification typically used within U.S. nuclear
waste disposal programs; 2) to enable adoption of new methods consistent with the current
standard of practice in the UQ/SA community and appropriate for high-dimensional, highly
coupled, nonlinear problems resulting from the implementation of mechanistic multi-physics
simulations; and 3) to create a consistent, common framework that enables a user to perform a
range of uncertainty and sensitivity analyses for a particular problem or set of simulations. These
are important goals for performance assessments now and in the future.

There is a rich legacy of UQ/SA in repository safety assessments, predicated on a number of
important factors, including regulatory requirements, confidence building for models and data, and
optimization of R&D directed at quantifying and reducing uncertainties. In this document,
regulatory considerations are documented in Chapter 2, the treatment of epistemic vs. aleatory
uncertainty in Chapter 3, and the sampling strategies used in prior safety assessments in Chapter
4. Since the early 2000s, there have been advances in the development of surrogates or emulators
for expensive computational simulations as well as advances in the UQ/SA methods, such as the
increasing use of variance-based sensitivity indices. The variance-based sensitivity indices are
documented in Chapter 5 and Appendix B, surrogates are discussed in Chapters 6 and Appendix

il
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C, and Chapters 7-8 present some of the new UQ/SA methods as applied to two generic reference
case models, that of a shale and crystalline repository, respectively. Chapter 9 outlines some recent
UQ/SA algorithms, including methods to handle time-varying responses, new graphical sensitivity
approaches, and adaptive sampling methods such as importance sampling which can focus
additional samples on regions of interest without attempting to explore the entire parameter space
with limited samples. Additional methods presented include Bayesian calibration methods which
are used to estimate posterior parameter distributions for model parameters given experimental
data (and such parameter distributions can be then carried forward in a UQ study), and multi-
fidelity UQ methods which combine a small number of high-fidelity simulations with a large
number of low-fidelity runs to obtain statistics on the high-fidelity model. Chapter 10 describes
collaborations with the international community. Appendix A provides a list of software tools
implementing some of the existing and new UQ/SA methods, and Chapter 11 provides a summary
of the report.

Development, implementation, and demonstration of new tools and methods for uncertainty
and sensitivity analysis in GDSA Framework will maintain leadership of the repository science
community in UQ/SA methods, while also maintaining an infrastructure of proven tools. Geologic
repository performance assessment in the U.S. involves coupled, multi-physics modeling at high
resolution with large parameter spaces. It requires high-performance computing and costly sample
evaluations. UQ/SA methods discussed in this report, including surrogate modeling to reduce
computational expense, variance-based sensitivity analysis to quantify importance of parameter
interactions in a multi-physics system, multi-fidelity methods, adaptive importance sampling, etc.,
will enable analysis methods to keep pace with the increasing sophistication of the physics models.
GDSA Framework development seeks to keep abreast of improvements to existing UQ/SA
methods, employ new methods, and maintain an infrastructure of proven tools that can be extended
to support computationally expensive analyses.

v
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1. INTRODUCTION

This report presents high level objectives and strategy for development of uncertainty and
sensitivity analysis tools in Geologic Disposal Safety Assessment (GDSA) Framework, a software
toolkit for probabilistic post-closure performance assessment (PA) of systems for deep geologic
disposal of nuclear waste. GDSA Framework is supported by the Spent Fuel and Waste Science
and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear
Energy (NE) and its predecessor the Used Fuel Disposition (UFD) campaign.

This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package
(SF-19SN01030403) level 2 milestone — Status Report on UQ/SA Tools in GDSA Framework
(M2SF-19SN010304031). It documents and demonstrates uncertainty quantification (UQ) and
sensitivity analysis (SA) tools newly implemented in GDSA Framework in FY19, it summarizes
the progress of UQ/SA tools during the UFD and SFWST campaigns, and it describes additional
UQ/SA tools whose future implementation would enhance the UQ/SA capability of GDSA
Framework.

This work was closely coordinated with the other SNL GDSA work packages: the GDSA
Framework Development work package (SF-19SN01030402), the GDSA Repository Systems
Analysis work package (SF-19SN01030405), and the GDSA Modeling work package (SF-
19SN01030406). This report builds on developments reported in previous GDSA Framework
milestones, particularly M2SF-18SN01030406 [1].

The repository community must maintain leadership in UQ/SA methods. Computational codes
are becoming increasingly complex and require high performance computers to run, resulting in
costly sample evaluations. Geologic repository performance assessment in the U.S. involves a
code base that includes coupled, multiphysics modeling at high resolution. Having relatively few
simulation samples highlights the need to consider surrogate models to sample and explore the
input parameter space more extensively. However, this must be done in a careful way so that
surrogate accuracy can be tracked and understood in the context of UQ/SA results. Another
approach is to employ “multifidelity” UQ in which many low fidelity simulation runs (e.g., coarser
mesh, simpler physics) augment a small number of high fidelity runs. Variance-based sensitivity
indices are now a standard practice in the sensitivity analysis community but require a large
number of function evaluations of the predictive model. Much research has focused on calculating
variance-based sensitivity indices while keeping the computational cost reasonable. Keeping
abreast of improvements to existing UQ/SA methods as well as employing new methods is critical
to performing sensitivity and uncertainty analysis of new repository systems which will involve
large parameter spaces and computationally expensive simulations.

1.1 Overview of this Report

This report provides an extensive explanation of UQ/SA methods used in prior geologic
disposal performance assessment as well as a look at current and future methods. It is a
comprehensive report meant to provide historical context, archive important methodological
considerations, document and explain UQ/SA methods, and describe a vision for UQ/SA in
Geologic Disposal Safety Assessment going forward. This report will serve as an important
reference on these subjects.
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The outline of this report is as follows: Chapter 2 provides the regulatory context in geologic
disposal and motivation for why and how UQ/SA support regulatory requirements. Chapter 3
presents the conceptual structure of a performance assessment including the treatment of epistemic
and aleatory uncertainty. Chapter 4 describes sampling methods for UQ/SA and Chapter 5
describes variance-based approaches for sensitivity analysis. Chapter 6 discusses surrogates or
“metamodels” that may be used when the computational cost of performing the UQ, SA, or
calibration is too expensive. Chapters 7 and 8 present recent examples applying various UQ/SA
methods on two generic reference cases being developed in GDSA: a generic shale host-rock
repository and a generic crystalline host-rock repository, respectively. Chapter 9 presents an
overview of some new UQ/SA methods and possible future research directions of interest for more
comprehensive SA, adaptive sampling, and a capability to inherently address time-varying
quantities. Chapter 10 discusses international collaborations around UQ/SA. Chapter 11 presents
conclusions. The Appendices include a description of the UQ/SA software tools available as well
as more mathematical details on variance-based calculations and polynomial chaos expansions.

1.2 GDSA Framework

GDSA Framework (Figure 1.1) capabilities include multi-physics simulation of coupled
processes affecting deep geologic repository performance, uncertainty and sensitivity analysis,
pre- and post-processing, and visualization. For a given performance assessment, these tools will
be linked to a version-controlled parameter database and an automated run-control system. The
overall objectives of GDSA Framework development are to:

e create a framework that is flexible enough to take advantage of future advances in
hardware, software, and simulation and analysis methods;

e leverage existing high-performance computing capabilities (e.g., meshing, simulation,
analysis, and visualization);

e enable increasingly coupled, mechanistic multi-physics modeling;
e provide analysis methods for prioritization of SFWST Disposal Research R&D activities;
e provide transparent implementation of simulation and analysis methods;

e develop and distribute in an open-source environment so that software is freely available
to stakeholders ([1;2;3;4]).

Objectives specific to the uncertainty and sensitivity analysis capability in GDSA Framework
are to make available standard sampling-based methods of uncertainty propagation, sensitivity
analysis, and uncertainty quantification typically used within U.S. nuclear waste disposal programs
(e.g., DOE 2008 [5], DOE 2014 [6]); and to enable future adoption of new methods consistent
with the current standard of practice in the UQ/SA community and appropriate for high-
dimensional, highly coupled, nonlinear problems resulting from the implementation of
mechanistic multi-physics simulations. Having a consistent, common framework which enables a
user to perform a range of sensitivity analysis and UQ approaches for a particular problem or set
of simulations allows for reproducibility, comparative analyses, use of verified algorithms, and
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documentation of best practices. These are important goals for performance assessments now and
in the future.

(Geologic Disposal Safety Assessment) e,
GDSA Framework

Computational Support

Uncertainty
Sampling and
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Figure 1.1 GDSA Framework

The following sections highlight the key components of GDSA Framework. More information
about each can be found by following the links at https://pa.sandia.gov.

1.2.1 PFLOTRAN

PFLOTRAN is an open source, state-of-the-art, massively parallel subsurface flow and
reactive transport simulator ([7;8;9]). Written in object-oriented Fortran 2003, PFLOTRAN is a
porous medium continuum code for modeling multicomponent, multiphase flow and transport,
heat conduction and convection, biogeochemical reactions, geomechanics, and isotope decay and
ingrowth. The code is developed under a GNU LGPL license allowing for third parties to interface
proprietary software with the code. The availability and continuing development of PFLOTRAN
are due to an ongoing collaborative effort of several DOE laboratories led by Sandia. PFLOTRAN
development for GDSA Framework is described by Mariner et al. ([1;2;3;4]) and Sevougian et al.
2018 [10]. PFLOTRAN installation instructions are available at: https://www.pflotran.org.

1.2.2 Dakota

Dakota is an open-source toolkit of algorithms that contains both state-of-the-art research and
robust, usable software for optimization and uncertainty quantification (UQ). It is available at:
https://dakota.sandia.gov [11]. The algorithms allow a user to explore a computational simulation
to answer questions such as:

e what is the best design?
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e how safe is this design?
e what are the most important parameters?
e what effects do uncertainties have on my system?

The Dakota software has a rich set of parametric analysis methods that enable design
exploration, model calibration, risk analysis, and quantification of margins and uncertainty with
computational models. Dakota provides a flexible, extensible interface between simulation codes
and these iterative analysis methods, which include:

e optimization with gradient and nongradient-based methods;

e uncertainty quantification with sampling, reliability, stochastic expansion, and epistemic
methods;

e parameter estimation using nonlinear least squares (deterministic) or Bayesian inference
(stochastic); and

e sensitivity/variance analysis with design of experiments and parameter study methods.

These capabilities may be used on their own or as components within advanced strategies such
as hybrid optimization, surrogate-based optimization, mixed-integer nonlinear programming, or
optimization under uncertainty. Dakota is a C++ code and has been under development at Sandia
since 1994 and has been primarily sponsored by DOE’s Advanced Simulation and Computing
(ASC) program. As such, it has a focus on interfacing to and running simulations which are
computationally expensive, require high performance computing and parallel execution, and
exhibit nonlinearities, non-monotonic and/or discontinuous responses, and often involve noisy
responses and high-dimensional inputs. Thus, a focus of the algorithm development in Dakota has
been on methods that are as efficient as possible and minimize the number of runs required of a
high-fidelity simulation model. Such algorithms include surrogate or emulator models, adaptive
sampling approaches, and multifidelity UQ methods which augment a small number of high
fidelity runs with many low fidelity runs to obtain comparable accuracy in statistical estimators.

Dakota contains the uncertainty quantification and sensitivity analysis methods typically used
in the U.S. repository program. Dakota implements Latin Hypercube Sampling (LHS) with
correlation control on input parameters. It calculates moments on responses of interest as well as
correlation matrices (simple, partial, and rank correlations) between inputs and outputs. Dakota
also contains an algorithm for performing incremental LHS which allows one to double an initial
LHS study such that the second LHS study is a Latin design and the combined initial and second
LHS studies together form a Latin hypercube design. Dakota allows nested studies to perform an
“outer loop” epistemic sampling and an “inner loop” aleatory sampling to generate ensembles of
distributions. Dakota returns tables of input and output amenable to further processing and
visualization with additional tools developed within GDSA Framework or by an individual user.
Additional methods that have been implemented in Python for use in GDSA Framework include
calculation of standardized regression coefficients via stepwise linear regression and calculation
of partial correlation coefficients via iterative loop [2].

A graphical depiction of Dakota interfacing with a computational model such as a repository
simulation in PFLOTRAN is shown in Figure 1.2. Based on the type of study being performed
(optimization, uncertainty quantification, etc.), Dakota chooses the next set of parameters at which
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to evaluate the simulator and runs the simulator, which returns the performance metrics of interest
back to Dakota. Dakota then generates the next set of parameters according to the algorithm being
used for the study and keeps iterating until the specified number of samples is reached.

DAKOTA

» Optimization

 Sensitivity Analysis

’ + Parameter Estimation

+ Uncertainty Quantification

Metrics

Parameters Performance

Computational Model

* Repository Simulator
\ « Black Box Code
(mechanics, circuits, high energy |

physics, biology, chemistry)

» Semi-intrusive Code
(Matlab, Python, multiphysics codes)

Figure 1.2 Dakota interfacing to a computational model such as a repository simulator

The UQ/SA methods in Dakota have evolved as the standard of practice evolves. Over the
past ten years, the Dakota team has invested in methods which calculate the Sobol’ variance-based
sensitivity indices in an efficient manner. Currently, a Dakota user can calculate these by extensive
sampling of the simulation code, by using surrogate methods such as regression or Gaussian
process models, and by the use of polynomial chaos expansions. These advanced methods are
presented in more detail later in this report for possible inclusion in GDSA Framework. Dakota is
an actively maintained and developed code with formal releases issued twice per year. Dakota
uses formal software quality development processes including advanced version control, unit and
regression testing, agile programming practices, and software quality assessment.

1.2.3 Visualization Tools

GDSA Framework employs ParaView and/or VisIT for visualization of results. ParaView is
an open-source, multi-platform data analysis and visualization application developed by Sandia
National Laboratories. As stated on the ParaView website (https://www.paraview.org/):
“ParaView users can quickly build visualizations to analyze their data using qualitative and
quantitative techniques. The data exploration can be done interactively in 3D or or
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programmatically using ParaView’s batch processing capabilities. ParaView was developed to
analyze extremely large datasets using distributed memory computing resources. It can be run on
supercomputers to analyze datasets of petascale size as well as on laptops for smaller data, has
become an integral tool in many national laboratories, universities and industry, and has won
several awards related to high performance computation.”

VisIT has been developed at Livermore National Laboratory. As stated on the VisIT website
(https://wei.llnl.gov/simulation/computer-codes/visit): “VisIT is an open source, interactive,
scalable, visualization, animation, and analysis tool. From Unix, Windows, or Mac workstations,
users can interactively visualize and analyze data ranging in scale from small (<10' cores) desktop-
sized projects to large (>10° cores) leadership-class computing facility simulation campaigns.
Users can quickly generate visualizations, animate them through time, manipulate them with a
variety of operators and mathematical expressions, and save the resulting images and animations
for presentations. Vislt contains a rich set of visualization features to enable users to view a wide
variety of data including scalar and vector fields defined on two- and three-dimensional (2D and
3D) structured, adaptive and unstructured meshes. Owing to its customizeable plugin design, Vislt
is capabable of visualizing data from over 120 different scientific data formats.”

1.2.4 GDSA Software Strategy

The software strategy for GDSA is to leverage and use open source software that is actively
maintained and developed, whenever possible. That is why the GDSA Framework utilizes
PFLOTRAN, Dakota, Paraview, and VisIT. Another goal is to support HPC computing, which is
a primary focus for all of the software tools listed above. In addition, the GDSA Framework should
have the flexibility to develop and adopt new capabilities as state-of-the-art hardware, software,
and methodology evolves. Again, the codes chosen for GDSA exhibit this flexibility and are
constantly evolving and adopting to utilize new software and hardware capabilities. Much of the
interfacing between the codes is currently performed with Python scripts and other scripting tools,
and there will be tighter integration as GDSA Framework progresses.
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2. QUANTIFYING UNCERTAINTY IN A REGULATORY CONTEXT

The ultimate structure of a given post-closure performance assessment depends on the
regulatory context in which it is performed. In the U.S., safety standards and implementing
regulations are promulgated by the U.S. Environmental Protection Agency (EPA) and the U.S.
Nuclear Regulatory Commission (NRC). Safety standards and guidance are also available from
national programs in other countries and from international organizations (e.g., IAEA 2011[1];
2012[2]). Regulations govern the criteria against which the performance of a geologic disposal
system is to be judged (e.g., radionuclide releases to the accessible environment, groundwater
concentrations, doses to members of the public, acceptable levels of risk), the time frame for which
compliance must be demonstrated, how to quantify and present PA model outputs in terms of
statistical estimators (e.g., mean) for comparison to regulatory limits, selection of future scenarios,
and treatment of uncertainties [3].

This section describes the regulatory context in which it is assumed GDSA Framework might
be used in the future. The content draws primarily from the safety case for (generic) deep borehole
disposal [4] and articles describing the regulatory frameworks of the Waste Isolation Pilot Plant
[3] and Yucca Mountain [5].

2.1 The Safety Case

A widely accepted approach for documenting the basis for the understanding of a geologic
disposal system, describing the key justifications for its safety, and acknowledging the unresolved
uncertainties and their safety significance is a structured document, or set of documents, known as
a safety case. The formal concept of a safety case for the long-term disposal of SNF and HLW in
an engineered facility located in a deep geologic formation was first introduced by the Nuclear
Energy Agency (NEA) (NEA 1999a [6]). Initial discussion and documentation on the topic
continued in NEA (2002 [7]), NEA (2004 [8]), and IAEA (2006 [9]). More recently, there have
been a number of international symposia, conferences, working groups, and summary papers
devoted to understanding, developing, and/or summarizing the nature, purpose, context, and
elements of safety cases (e.g., NEA 2008 [10]; NEA 2009 [11]; IAEA 2011 [1]; IAEA 2012 [2];
NEA 2012 [12]; NEA 2013 [13]; and NEA 2018 [15]). In these recent summary and overview
reports, it is observed that there is notable convergence in the understanding and development of
safety case documents published by national and international organizations. In parallel,
UFD/SFWST has published safety case overviews relevant to geologic disposal in the U.S. [14][4].
The following excerpt from NEA (2012, Section 3.1 [12]) provides a definition of a safety case
that is current and consistent with the aforementioned documents:

The safety case is an integration of arguments and evidence that describe, quantify and
substantiate the safety of the geological disposal facility and the associated level of confidence.

A number of elements contribute to and must be described in the safety case (Figure 2.1),
central among them is the safety assessment. There are some differences in the use of the term
safety assessment across national programs and over time; the definition used by Freeze et al.
(2016) [4] 1s:

Safety Assessment — An iterative set of assessments for evaluating the performance of a
repository system and its potential impact that aims to provide reasonable assurance that the
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repository system will achieve sufficient safety and meet the relevant requirements for the
protection of humans and the environment over a prolonged period. The role of a safety
assessment, in a safety case, is (i) to quantify the repository system performance for all selected
situations and (ii) to evaluate the level of confidence (taking into account the identified
uncertainties) in the estimated performance of the system (NEA 2013, Section 5.1 [13]). This
encompasses all aspects that are relevant for the safety of the development, operation and closure
of the disposal facility, including qualitative aspects, non-radiological issues, and organizational
and managerial aspects (IAEA 2012, Section 4.41 [2]).

The scope of this definition has broadened recently to include not just quantitative analyses,
but also a broad range of complementary qualitative evidence and arguments that support the
reliability of the quantitative analyses (NEA 2013, Section 1 [13]). The quantitative components
of a safety assessment (“Disposal System Safety Evaluation” in Figure 2.1) include both “pre-
closure safety analysis” and “post-closure performance assessment”. The GDSA Framework
development is for the purpose of post-closure performance assessment.
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Figure 2.1 Key Elements of a Safety Case [21; 22].
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2.2 Post-Closure Performance Assessment

Post-closure performance assessment and its key requirements are defined by regulation,
which may be written for the general case, or for a specific deep geologic repository. For instance,
the general regulations at 40 CFR § 191.12 [16] define post-closure performance assessment as an
analysis that:

1.

Z

Identifies the processes and events that might affect the disposal system;

Examines the effects of these processes and events on the performance of the disposal
system; and

Estimates the cumulative releases of radionuclides, considering associated uncertainties,
caused by all significant processes and events. These estimates shall be incorporated into
an overall probability distribution of cumulative release to the extent practicable.

Regulations applicable to a repository at Yucca Mountain contain a similar definition of post-
closure PA, but require that dose to an individual be estimated rather than cumulative release of
radionuclides. At 40 CFR § 197.12 [16] performance assessment is defined as an analysis that:

1.

Identifies the features, events, and processes, (except human intrusion), and sequences of
events and processes (except human intrusion) that might affect the Yucca Mountain
disposal system and their probabilities of occurring;

Examines the effects of those features, events, processes, and sequences of events and
processes upon the performance of the Yucca Mountain disposal system; and

Estimates the annual committed effective dose equivalent incurred by the reasonably
maximally exposed individual, including the associated uncertainties, as a result of releases
caused by all significant features, events, processes, and sequences of events and processes,
weighted by their probability of occurrence.

Both of these definitions require accounting for uncertainties in a probabilistic fashion.
Development of UQ/SA capability in GDSA Framework is intended to create a post-closure PA
platform for use in a regulatory environment in which probabilistic PA is required and post-closure
safety criteria (such as standards for containment or dose) may be influenced as described in the
following section.

2.3 Regulatory Criteria and Standards for Post-Closure PA

In a future regulatory environment, post-closure safety standards may be influenced by
(following Freeze et al. 2016 [4]):

existing general criteria and standards (10 CFR § 60 [17] and 40 CFR § 191 [18]),
the risk-informed approach in 10 CFR § 63 [16] and 40 CFR § 197 [19],

and dose or risk metrics recognized internationally to be important to establishing
repository safety (e.g., [AEA 2011 [1]; 2012 [2]).
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Relevant portions of the aforementioned regulations that might provide insights to future
regulations are excerpted in Freeze et al. 2016 [4], Appendix A.

Existing general regulations in the U.S. for disposal of high-activity wastes in geologic
repositories are 10 CFR 60 (NRC) [17] and 40 CFR 191 (EPA) [18], first promulgated in 1983
and 1985, respectively. Regarding post-closure PA, 10 CFR 60.112 together with 40 CFR 191.13,
191.15, and 191.24 establish a containment standard, an individual protection standard, a
groundwater protection standard, and a time frame for compliance of 10,000 years after disposal.
The following descriptions of the standards are excerpted from [4]:

The containment requirements at 40 CFR 191.13(a) state that the cumulative releases of
radionuclides to the accessible environment for 10,000 years after disposal shall: (1) have
a likelihood of less than one chance in 10 of exceeding the release limits; and (2) have a
likelihood of less than one chance in 1,000 of exceeding ten times the release limits. The
release limits, listed in Appendix A of 10 CFR 191, are radionuclide-specific limits
expressed in units of cumulative radionuclide release (curies) per 1,000 metric tons of
heavy metal (MTHM) of spent nuclear fuel or equivalent.

40 CFR § 191.15(a) limits the annual dose to any member of the public in the accessible
environment from undisturbed performance of the disposal system (i.e., “not disrupted by
human intrusion or the occurrence of unlikely natural events” (40 CFR 191.12)) to < 15
mrem/yr for 10,000 years after disposal.

40 CFR § 191.24(a)(1) limits the levels of radioactivity in any underground source of
drinking water, in the accessible environment, from 10,000 years of undisturbed disposal
system performance after disposal, to the limits specified in 40 CFR 141 (the National
Primary Drinking Water Regulations). Maximum contaminant levels for radionuclides are
specified in 40 CFR 141.66 as:

o <5 pCi/L for combined radium-226 and radium-228,

o <15 pCi/L for gross alpha activity (including radium-226 but excluding radon and
uranium),

o <4 mrem/yr (to the total body or any internal organ, based on drinking 2 liters of
water per day) for combined beta particle and photon radioactivity, and

o <30 ug/L for uranium.

The containment criteria are the focus of the performance assessment for the Waste Isolation
Pilot Plant (WIPP), a deep geologic repository for transuranic waste in bedded salt [3]. Many of
the features of the statistical and probabilistic treatment of uncertainty in the performance
assessment are specified or constrained by 40 CFR § 194, including for instance [3]:

40 CFR § 194.34(a) requires that PA results be assembled into complementary, cumulative
distribution functions (CCDFs) that represent the probability of exceeding various levels
of cumulative releases caused by all significant processes and events.
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e 40 CFR § 194.34 also discusses development of probability distributions for uncertain
values, random sampling, and criteria for determining the number of CCDFs needed.

e 40 CFR § 194.25(a) specifies that PA “shall assume that characteristics of the future remain
what they are at the time the compliance application is prepared, provided that such
characteristics are not related to hydrogeologic, geologic or climatic conditions.” This
directive prescribes the human activities considered in the PA, and the conceptual models
describing the effects of those human activities, i.e., potash mining and drilling.

e 40 CFR § 194.32(b) limits the occurrence of potash mining to once per 10,000 years.
Therefore, multiple mining events are not modeled.

e 40 CFR § 194.33(b) requires that future drilling events be represented as random in time
based on the historical drilling rate.

These and other regulations constrain the structure of the WIPP PA (described in Chapter 3),
by requiring specific approaches to addressing uncertainty, including the use of random sampling,
the construction of CCDFs, and comparison of results to cumulative release limits.

In contrast, more recent regulatory criteria in the U.S. and internationally ([1],[5]) emphasize
risk to the individual. Risk-informed post-closure safety criteria are found in 10 CFR § 63 [16] and
40 CFR § 197 [19], both of which were first promulgated in 2001 [5]. These regulations apply
specifically to geologic disposal of spent nuclear fuel and high-level waste at Yucca Mountain.
They are the result of an evolution of safety criteria over the course of the project, driven in part
by recommendations made by the National Academy of Science (NAS) in 1995 [20]. Rechard et
al. [5] discuss the most influential recommendations, including: (1) use a maximum individual risk
evaluated from an effective dose; (2) evaluate compliance at the time of peak risk; (3) evaluate
only the potential consequences (not probability) of selected inadvertent human intrusion
scenarios.” The standards established in response to the recommendations include:

e 10CFR § 63.311 and 40 CFR § 197.20 establish individual protection standards for two time
periods after permanent closure. Dose limits to the reasonably maximally exposed individual
(RME]) are:

o 0.15 mSv (15 mrem) for 10,000 years following disposal; and

o 1.0 mSv (100 mrem) after 10,000 years, but within the period of geologic stability
(10 y).

e 10 CFR § 63.321 establishes the same individual protection standards for a prescribed human
intrusion scenario.

e 10CFR § 63.331 and 40 CFR § 197.30 establish standards for protection of groundwater that
are identical to those at 40 CFR § 191.24 except for the absence of a limit on U
concentration.

o <5 pCi/L for combined radium-226 and radium-228,

o <15 pCi/L for gross alpha activity (including radium-226 but excluding radon and
uranium), and
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O

<4 mrem/yr (to the total body or any internal organ, based on drinking 2 liters of
water per day) for combined beta particle and photon radioactivity.

10 CFR § 63 requires that performance assessment be used to demonstrate a reasonable
expectation that the standards will be met and requires PA to consider “the full range of defensible
and reasonable parameter distributions” (10 CFR § 63.304). As in the WIPP PA, many of the
features of the statistical and probabilistic treatment of uncertainty are specified or constrained by
regulation, including:

e Assumptions that reduce uncertainty about the biosphere (10 CFR § 63.305), the RMEI (10
CFR § 63.312), and the human intrusion scenario (10 CFR § 63.322), for instance,

O

10 CFR § 63.305(a) “Features, events, and processes that describe the reference
biosphere must be consistent with present knowledge of the conditions in the region
surrounding the Yucca Mountain site.”

10 CFR § 63.312(b) The RMEI “has a diet and living style representative of the people
who now reside in the Town of Amargosa Valley, Nevada. DOE will use surveys of
the people residing in the Town of Amargosa Valley, Nevada, to determine their current

diets and living styles and use the mean of these factors in the assessments conducted
for §§ 63.311 and 63.321.”

10 CFR § 63.322(a) “There is a single human intrusion as a result of exploratory drilling
for groundwater;” and (b) “The intruders drill directly through a degraded waste
package into the uppermost aquifer underlying the Yucca Mountain repository.”

10 CFR § 63.342(2) “DOE must assess the effects of climate change. The climate
change analysis may be limited to the effects of increased water flow through the
repository as a result of climate change, and the resulting transport and release of
radionuclides to the accessible environment. The nature and degree of climate change
may be represented by constant-in-time climate conditions. The analysis may
commence at 10,000 years after disposal and shall extend through the period of
geologic stability. The constant-in-time values to be used to represent climate change
are to be the spatial average of the deep percolation rate within the area bounded by the
repository footprint. The constant-in-time deep percolation rates to be used to represent
climate change shall be based on a lognormal distribution with an arithmetic mean of
41 mm/year (1.6 in./year) and a standard deviation of 33 mm/year (1.3 in./year). The
lognormal distribution is to be truncated so that the deep percolation rates vary between
10 and 100 mm/year (0.39 and 3.9 in./year).”

e Use of the mean for comparison to compliance criteria:

©)

10 CFR § 63.303 “Compliance is based upon the arithmetic mean of the projected doses
from DOE’s performance assessments for the period within 1 million years after
disposal.”
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Later guidance from the NRC requires a display of the 5™ and 95" percentiles of dose about the
expected (mean) value, thereby retaining the intent of the earlier regulations to not focus on one
measure of the distribution but to examine the entire distribution [23].

The shift toward assessment of peak dose results in conceptual changes to a PA. Some of the
differences identified by Rechard et al. [5] include:

e Assessment of peak dose removes the arbitrary limit on the length of the regulatory period.
Whereas the general requirements at 40 CFR 191.13(a) impose a 10,000 year regulatory
period, the concept of peak dose effectively extends the regulatory period indefinitely, or for
the period of “geologic stability.”

e Calculation of a peak dose takes credit for (and requires characterization of) dilution and
dispersion in the natural system.

e Peak dose is more sensitive to the release rate of radionuclides from the repository than
cumulative release is, motivating a higher-fidelity source-term model.

e The dose calculation requires a biosphere model which (though having assumptions
constrained by regulation) is defended by the licensee, removing the burden on the regulator
of defending the logic behind the containment criteria.

e Peak dose is more susceptible to “risk dilution” than the containment requirement. Risk
dilution occurs when overly broad uncertainty distributions are used for key parameters, thus
shifting statistical estimators (mean, median, etc.) to lower values.

Assessing risk to an individual is consistent with the risk-informed approach recommended by
the International Atomic Energy Agency (IAEA), which recommends a maximum health (fatality)
risk of 107/yr or maximum dose limit from a disposal facility of 0.3 mSv/yr ([1][5]). Nations that
have adopted an annual dose limit include Germany, France, the Czech Republic, Finland,
Switzerland, Hungary, the Republic of Korea, the Netherlands, Spain, and the Slovak Republic.
Sweden, Canada, and the United Kingdom set the cancer fatality frequency a factor of 10 below
the recommended maximum health risk for 10* years [5]. As suggested by Freeze et al. [4], it
seems likely that future post-closure regulations will be dose and/or risk-based standards to at least
1,000,000 years after closure, consistent with IAEA guidelines, international standards, and Yucca
Mountain post-closure PA requirements.

The objective of GDSA Framework development is to provide a post-closure PA toolkit that
1) has state-of-the-art subsurface flow and reactive transport modeling and simulation capabilities
and 2) addresses the computational challenges of “demonstrating a reasonable expectation that
standards will be met” in a regulatory framework that focuses on risk to the individual by
developing mechanistic models of processes controlling radionuclide release and transport;
leveraging high-performance computing; and implementing computationally efficient methods for
quantifying and reducing uncertainty; and evaluating the effect of uncertainty on compliance
criteria, such as dose, through sensitivity analysis methods. The rest of this report discusses these
methods.
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3. CONCEPTUAL STRUCTURE OF PERFORMANCE ASSESSMENTS
FOR THE GEOLOGIC DISPOSAL OF RADIOACTIVE WASTE

3.1 Introduction

A conceptual structure for performance assessments (PAs) for the geologic disposal of
radioactive waste is described in this chapter. Illustrations of this structure are provided by past
PAs for (i) a repository for transuranic radioactive waste near Carlsbad, New Mexico, known as
the Waste Isolation Pilot Plant (WIPP) [1], and (ii) a proposed repository for spent nuclear fuel
and high-level radioactive waste at Yucca Mountain (YM), Nevada [2]. Probabilistic risk
assessments (PRAs) for nuclear power plants and other complex engineered facilities also have a
similar conceptual structure [3-5].

The following topics are addressed: (i) Characterization of uncertainty (Sect. 3.2), (ii)
Representation of aleatory uncertainty (Sect. 3.3), (ii1) Estimation of consequences (Sect. 3.4), (iv)
Representation of epistemic uncertainty (Sect. 3.5), (v) Propagation and display of uncertainty
(Sect. 3.6), and (vi) Sensitivity analysis (Sect. 3.7). The chapter then ends with a brief summary
(Sect. 3.8). This chapter is an edited and updated adaption of two prior conference presentations
[6; 7] and several book chapters [8-10] and also draws on material in two special journal issues
devoted to the indicated WIPP and YM PAs [1; 2].

It is recognized that not all analyses for the geologic disposal of radioactive waste will have
the same structure as the two PAs [1; 2] used for illustration in this chapter (Chapter 3) describing
the conceptual structure of PAs for the geologic disposal of radioactive waste and in the next
chapter (Chapter 4) describing sampling-based procedures for uncertainty and sensitivity analysis.
Individual PAs for proposed facilities for the geologic disposal of radioactive waste will most
likely have custom designed structures that must incorporate multiple aspects of the proposed
facility and its analysis, including (i) the design of the facility, (ii) the properties of the waste to be
disposed of, (iii) the geologic properties of the site, (iv) the nature and availability of the models
needed to perform an analysis of the facility and its geologic environment, (v) the need to
appropriately treat the inevitable uncertainties that will be present in analysis results, (vi) the
regulatory requirements that must be satisfied, and (vii) the needed, and hopefully available,
resources required to perform a credible analysis. Although the designs for individual facilities for
the geologic disposal radioactive are unlikely to be identical, they will probably have many aspects
and components that are similar to the design described in Chapters 3 and 4.
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3.2 Characterization of Uncertainty

A PA for a geologic repository for radioactive waste or any other complex facility is an analysis
intended to answer three initial questions about the facility and one additional question about the
analysis itself. The initial three questions are: Q1, “What could happen?”’; Q2, “How likely is it to
happen?”; and Q3, “What are the consequences if it does happen?”’. Formally, the answers to the
preceding three questions can be represented by a set of ordered triples of the form

(S, pS;,€8,),i=12,...,nS, (3.2.1)

where (1) S; is a set of similar occurrences, (ii) the sets S; are disjoint (i.e., §;NS; =& fori#))
and U;S,; contains everything that could potentially occur at the particular facility under
consideration, (iii) pS; is the probability for &, and (iv) €S, is a vector of consequences
associated with S; [11]. The fourth question is: Q4, “What is the uncertainty in the answers to the

first three questions?” or, equivalently, “What is the level of confidence in the answers to the first
three questions?”.

The set of ordered triples in Eq. (3.2.1) is often referred to as the Kaplan-Garrick ordered triple
representation for risk [11] and, in essence, is an intuitive representation for a function f'(i.e., a

random variable) defined in association with a probability space (A, A, p,), where (i) A is the set
of everything that could occur in the particular universe under consideration, (ii) A is the collection
of subsets of A for which probability is defined, and (iii) p, is the function that defines probability
for the elements of A ([12], Sect. IV.3).  Specifically, the sets S, are elements of A with

U;S =A; p,(S)is the probability pS; of S;;and f(a,) for a representative element a, of S,
defines €S,. Another less commonly used possibility is that €S, is the expected value of f

conditional on S;.

The uncertainty characterized by the sets S; and associated probabilities pS; in Eq. (3.2.1)

introduced as answers to questions Q1 and Q2 is often referred to as aleatory uncertainty and
results from a perceived randomness in future occurrences that could take place at the facility
under consideration. The descriptor aleatory derives from the Latin aleae, which refers to games
of dice, and is the reason for the notational use of “A” in the definition of the probability space
(A,A, p,). Alternative designators for aleatory uncertainty include stochastic, type A, and

irreducible. Similarly, the function (i.e., model) f provides an answer to question Q3.

The fourth question (Q4) relates to uncertainty that results from a lack of knowledge with
respect to the appropriateness of assumptions and/or parameter values used in an analysis. The
basic idea is that an analysis has been developed to the point that it has a well-defined overall
structure with established definitions for models and parameters but uncertainty remains with
respect to appropriate parameter values and possibly submodel structure or choice for use in this
overall structure. This form of uncertainty is usually indicated by the descriptor epistemic, which
derives from the Greek epistemé for knowledge. Alternative descriptors for epistemic uncertainty
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include subjective, state-of-knowledge, type B, and reducible. Many analyses use probability to
characterize epistemic uncertainty, which in turn means that in some way a probability space
(&,E, py) characterizing epistemic uncertainty must be defined and incorporated into the analysis.

The representation of aleatory and epistemic uncertainty is an important, and sometimes
contentious, part of the analysis of a complex system. As a result, an extensive literature exits on
the incorporation of aleatory and epistemic uncertainty into analyses of complex systems (e.g.,

[13-26]).

The concepts of aleatory uncertainty and epistemic uncertainty are not new. The formal
development of the concept of probability began around 1660 [29]. Even at its early nascent state,
probability was used to characterize both (i) frequency concepts related to the outcomes of games of
chance and the valuation of annuities (i.e., aleatory uncertainty) and (ii) degrees of belief with respect
to the truth of propositions that were devoid of a frequency-based content (i.e., epistemic
uncertainty).

Hacking [29] provides an excellent discussion of the early development of probability and the
dual presence of aleatory uncertainty and epistemic uncertainty in this development. Additional
discussions of interest appear in Refs. [30; 31]. An example of the entry of the concepts of aleatory
uncertainty and epistemic uncertainty into economic analysis is provided by Knight [32], who uses
the term “risk” in reference to aleatory uncertainty and the term “uncertainty” in reference to
epistemic uncertainty.

Significant impetus to the separation and assessment of the effects and implications of aleatory
uncertainty and epistemic uncertainty in analyses of complex systems was given by the Lewis
Committee’s 1978 review [33] of the Reactor Safety Study (commonly known as WASH-1400 after
its report number [34]), which was completed by the U.S. Nuclear Regulatory Commission (NRC)
in 1975. In its review, the Lewis committee praised the WASH-1400 analysis for its assessment of
potential accidents at commercial nuclear power plants (essentially an analysis of the effects and
implications of aleatory uncertainty) but noted that the analysis had not adequately characterized the
(epistemic) uncertainty in its results. The Lewis Committee did not use the descriptor epistemic in
their references to a need for additional uncertainty characterization in the WASH-1400 analysis but
context clearly indicates that epistemic uncertainty was what was being referred to.

The Lewis Committee’s review of the WASH-1400 analysis initiated an intense interest at the
NRC with respect to the appropriate treatment of aleatory uncertainty and epistemic uncertainty in
programs and analyses carried out in support of the NRC’s regulatory responsibilities for assuring
the safety of the nuclear industry in the United States, including (i) development of a methodology
to assess the risk associated with the geologic disposal of radioactive waste [35-41], (ii) development
of the MELCOR code system for the assessment of reactor accident consequences [42-44], (ii1) an
updated assessment of the risk from commercial nuclear power plants (commonly known as
NUREG-1150 after its report number [45]) [3-5; 45-48], and (iv) various studies to assess the
uncertainty in estimates of the off-site consequences associated with reactor accidents [49-61]. Of
particular note is the extensive review and characterization of epistemic uncertainty performed in
support of the NUREG-1150 analyses [62-68]. In addition, the separation of aleatory uncertainty and
epistemic uncertainty played an major role in the design and implementation of the analysis that
supported the U.S. Department of Energy’s (DOE’s) successful Compliance Certification
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Application to the U.S Environmental Protection Agency (EPA) for the Waste Isolation Pilot Plant
(WIPP) [27; 69-73]. Coinciding with the increasing recognition in the 1980s and 1990s of the
importance of an adequate treatment of uncertainty in an analysis of a complex system, a number of
discussions of this topic appeared [11; 13-15; 17; 19; 21; 22; 74-76].

A PA for a geologic repository for radioactive waste or any other complex facility is a highly
complex analysis. The understanding of such an analysis is greatly facilitated if it can be seen “in
the large” before having to work through all the details of the implementation of the analysis.
Fortunately, such an analysis is typically underlain by three basic entities (EN) or components:
EN1, a probability space (A, A, p,) that characterizes aleatory uncertainty; EN2, a function fthat

estimates consequences for individual elements a of the sample space A for aleatory uncertainty;
and EN3, a probability space (£,E, p;) that characterizes epistemic uncertainty [7; 8; 27; 28]. A

recognition and understanding of these three basic entities make it possible to understand the
conceptual and computational structure of a large PA without having basic concepts obscured by
fine details of the analysis and leads to an analysis that results in informative uncertainty and
sensitivity analyses. The nature and role of these three basic entities in PA and associated
uncertainty and sensitivity analyses are elaborated on and illustrated in the following sections.
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3.3 EN1, Representation of Aleatory Uncertainty

As indicated in Sect. 3.2, aleatory uncertainty is formally characterized by a probability space
(A,A, p,). The elements a of A are vectors

a=[a,a,,..,a,,] (3.3.1)

characterizing individual futures that potentially could occur at the facility under consideration.
The set A and the individual futures a contained in A are typically defined for some specified time

interval. For example, the time interval [0, 10* yr] is specified in the regulations for WIPP [27;
72], and time intervals of [0, 10* yr] and [0, 10° yr] are specified in different parts of the regulations
for the proposed YM repository ([28], Sect. 6). In contrast, futures are, in effect, defined for one
year time intervals in PAs for nuclear power plants [3-5]. In practice, the probability space
(A,A, p,) is usually defined by specifying distributions for the individual elements of a. For

notational purposes, it is often convenient to represent the distribution associated with the elements
a of A with a density function d ,(a).

For the 1996 PA supporting the Compliance Certification Application (CCA) for the WIPP,
the only disruptions with sufficient potential for occurrence over the 10* yr regulatory period to
merit inclusion in the analysis were drilling for petroleum resources and mining of potash above

the excavated waste disposal drifts [69; 72]. As a consequence, the individual futures underlying
the 1996 WIPP PA have the form

a:[tl’ll’el’blapl’wl’ byl e,hy, Py Woseoss Byl €,,0,, s W, tmin]’

* n’>nd ~n°~"n>

1st intrusion 2nd intrusion nth intrusion (3 ¥ 2)

where (i) 7 is the number of drilling intrusions over the 10* yr regulatory period, (ii) ¢ is the time
(yr) of the i intrusion, (iii) /, designates the location of the i intrusion, (iv) e, designates the
penetration of an excavated or nonexcavated area by the i intrusion, (v) b, designates whether or
not the /™ intrusion penetrates pressurized brine in the Castile Formation, (vi) p, designates the
borehole plugging procedure used with the i™ intrusion, (vii) w, designates the type of waste

penetrated by the i intrusion, and (viii) ¢, is the time (yr) at which potash mining occurs within

min
the land withdrawal boundary. The distributions for the number » and times ¢, for drilling
intrusions and the time ¢, for potash mining are defined by Poisson processes; the distributions

for the remaining elements of @ are defined on the basis of the properties of the waste disposal
drifts associated with the WIPP and the geologic environment that surrounds these drifts.
Additional information on the elements of @ and their probabilistic characterization is available in
Table IIT of Ref. [70] and in Ref. [72].

For the 2008 PA supporting the license application for the proposed YM repository,

a={nEW,nED, nll, nIE, nSG, nSF, @y, ay,,a;,a,, ag;, ag: |, (3.3.3)
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where (i) nEW = number of early waste package (WP) failures, (ii) ED = number of early drip
shield (DS) failures, (iii) n/I = number of igneous intrusive events, (iv) n/E = number of igneous
eruptive events, (v) nSG = number of seismic ground motion events, (vi) nSF = number of seismic
fault displacement events, (vii) @, = vector defining the nEW early WP failures, (viil) az,=

vector defining the nED early DS failures, (ix) a,, = vector defining the n// igneous intrusive
events, (X) a, = vector defining the n/E igneous eruptive events, (xi) ay; = vector defining the
nSG seismic ground motion events, and (xii) ag, = vector defining the nSF fault displacement

events. In turn, the vectors a,;, , a;,, a,, a,, ay; and ag, are of the form

Apy = [aEW,I’ Apy o5 -eo aEW,nEW:|’aED = |:aED,1’ Appos-eos aED,nED:|> (3.3.4)
a, = |:all,l s @05 gy ]’alE = [315,1 s @y a[E,nIE]B (3.3.5)
and
A6 = [aSG,l’ AsG.25 - aSG,nSG}aSF = I:aSF,l’ Agposees aSF,nSF:|’ (3.3.6)
where (i) agy, ;= vector defining early WP failure j forj = 1, 2, ..., nEW, (ii) a,, ;= vector

defining early DS failurej forj= 1,2, ..., nED, (ii1) a, ;= vector defining igneous intrusive event
jforj=1,2, ..., nll (iv) a,; ;= vector defining igneous eruptive event j forj =1, 2, ..., nlE, (v)
ag; ;= vector defining seismic ground motion eventj forj =1, 2, ..., nSG, and (vi) ag, ;= vector
defining seismic fault displacement eventj forj = 1, 2, ..., nSF. Definitions of the vectors ay, ;,
agp,» Ay, A, ag and ag.  and their associated probabilistic characterizations are given
in Refs. [77-79].

As an example, the individual vectors a Ewo o] = 1,2, ..., nEW, appearing in the definition of
a;, inEq. (3.3.4) are defined by

gy =[t;.b;.d, ] (33.7)

and characterize the properties of failed WP j, where (i) ¢, designates WP type (i.e., ¢; =1 ~
commercial spent nuclear fuel (CSNF) WP, ¢,=2 ~ codisposed (CDSP) WP), (ii) b; designates
percolation bin in which failed WP is located (i.e., b, = k ~ location of failed WP in percolation
bin k for k=1, 2, 3, 4, 5; see Figure 2, Ref. [80]), and (iii) d; designates whether the failed WP
experiences nondripping or dripping conditions (i.e., &, =0 ~ nondripping conditions and d; =

1 ~ dripping conditions). In turn, the associated probilities are based on the assumption that the
number early failed WPs follows a binomial distribution with the failed WPs distributed randomly
over WP types, percolation bins, and nondrippin/dripping conditions.
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Although potentially complex, representations of aleatory uncertainty of the form illustrated
for the WIPP CCA PA and the YM license application PA permit a complete and unambiguous
description of what constitutes aleatory uncertainty and the probabilistic characterization of this
uncertainty.
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3.4 EN2, Model that Estimates Consequences

As indicated in Sect. 3.2, the second entity that underlines a PA for a complex system is a
function f that estimates a vector f{a) of consequences for individual elements a of the sample

space A for aleatory uncertainty. In most analyses, the function f corresponds to a sequence of
models for multiple physical processes that must be implemented and numerically evaluated in
one or more computer programs. However, for notational and conceptual purposes, it is useful to
represent this sequence of models as a function of elements of the sample space A for aleatory
uncertainty. In most analyses associated with radioactive waste disposal, the analysis results of
interest are functions of time. In this situation, the model used to predict system behavior can be
represented by f{z]a), where 7 corresponds to time and the indication of conditionality (i.e., “ja”)
emphasizes that the results at time 7depend on the particular element of A under consideration. In
most analyses, f{ 7j@) corresponds to a large number of results. In general, 7 could also correspond
to designators other than time such as spatial coordinates; however, it is possible that spatial
coordinates and associated location dependent results would simply be viewed as part of a very
large number of results corresponding to f{ 7a).

As an example, the sequence of linked models that corresponds to f'in the 1996 WIPP PA is
indicated in Figure 3.1. As summarized in Table 3.1, the models indicated in Figure 3.1 represent
a variety of physical processes and also involve a variety of mathematical structures (see Refs. [1;
69] for additional information on the models used in the 1996 WIPP PA).

CUTTINGS_S (Release of Cuttings, Cavings, Spallings, Brine to
BRAGFLO_DBR Accessible Environment)

22 N Y i
g _53 — GRASP-INV (Transmissivity Fields) H
w2 Culebra I
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Figure 3.1 Models used in the 1996 WIPP PA ([81], Figure 4); see Table 3.1 for a description of
the individual models.
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Table 3.1 Summary of individual models used in the 1996 WIPP PA ([81], Table 1).

BRAGFLO: Calculates multiphase flow of gas and brine through a porous heterogeneous reservoir. Uses finite
difference procedures to solve system of nonlinear partial differential equations (PDEs) that describes the
conservation of gas and brine along with appropriate constraint equations, initial conditions, and boundary
conditions.

BRAGFLO-DBR: Special configuration of BRAGFLO model used to calculate dissolved radionuclide releases to
the surface at the time of a drilling intrusion. Uses initial value conditions obtained from calculations performed
with BRAGFLO and CUTTINGS S.

CUTTINGS _S: Calculates quantity of radioactive material brought to the surface in cuttings, cavings and spallings
generated by a drilling intrusion. Spallings calculation uses initial value conditions obtained from calculations
performed with BRAGFLO.

GRASP-INV: Generates transmissivity fields conditioned on measured transmissivity values and calibrated to
steady-state and transient pressure data at well locations using an adjoint sensitivity and pilot-point technique

NUTS: Solves system of PDEs for dissolved radionuclide transport in the vicinity of the repository. Uses brine
volumes and flows calculated by BRAGFLO as input.

PANEL: Calculates rate of discharge and cumulative discharge of radionuclides from a waste panel through an
intruding borehole. Uses brine volumes and flows calculated by BRAGFLO as input.

SANTOS: Determines quasistatic, large deformation, inelastic response of two-dimensional solids with finite
element techniques. Used to determine porosity of waste as a function of time and cumulative gas generation,
which is an input to calculations performed with BRAGFLO.

SECOFL2D: Calculates single-phase Darcy flow for groundwater flow in two dimensions based on a PDE for
hydraulic head. Uses transmissivity fields generated by GRASP-INV.

SECOTP2D: Simulates transport of radionuclides in a fractured porous medium. Solves two PDEs: one provides
a two-dimensional representation for convective and diffusive radionuclide transport in fractures and the other
provides a one-dimensional representation for diffusion of radionuclides into the rock matrix surrounding the
fractures. Uses flow fields calculated by SECOFL2D.

As another example, a subset of the models that correspond to fin the 2008 PA for the proposed
YM repository is indicated in Figure 3.2. The particular configuration of models shown in Figure
3.2 was used in the YM PA to calculate consequences associated with elements of the sample

space A for aleatory uncertainty that involved seismic disruptions. Similar model configurations

were used to calculate consequences for early WP failures, early DS failures, and igneous intrusive
events; a very different suite of models was used to calculate consequences for igneous eruptive
events. The number of individual models used in the 2008 YM PA is too great to permit their
individual description here. However, descriptions of these models are available in Ref. [82; 83]
and in the more detailed model-specific technical reports cited in Refs. [82; 83].

As is evident from Figure 3.1, Figure 3.2 and Table 3.2, the function f that constitutes the

second of the three entities that underlie a PA for radioactive waste repository can be quite
complex.
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Figure 3.2 Models used in the 2008 YM PA for seismic disruptions ([82], Figure 6.1.4-6).
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3.5 EN3, Representation of Epistemic Uncertainty

As indicated in Sect. 3.2, epistemic uncertainty is formally characterized by a probability space
(,E, pr) . The elements e of £ are vectors of the form

e:[eA,eM]:[el,ez,...,enE], (3.5.1)

where e, is a vector of epistemically uncertain quantities involved in the definition of the
probability space (A, A, p,) for aleatory uncertainty that constitutes the first of the three entities
that underlies a PA and e,, is a vector of epistemically uncertain quantities involved in the

definition of the function fthat constitutes the second of the three entities that underlies a PA. The
probability space (&,E, p,) for epistemic uncertainty and its associated density function d(e)

are usually developed through an expert review process that involves assigning a distribution to
each element e; of e [62; 84-90]. With the introduction of the epistemically uncertain quantities

that constitute the elements of e = [e,,e,, ], the notation for the density function d,(a)
associated with the probability space (A, A, p,) for aleatory uncertainty becomes d,(ale,) to
indicate the dependence on e ,; similarly, the notation for the time-dependent values for the
function f becomes f(7a, e,, ).

In effect, the probability space (&,E, p,) is the result of combining a probability space
(4, E,,pg,) for epistemically uncertain quantities that affect the definition of the probability
space (A, A, p,) for aleatory uncertainty and a probability space (£,,,E,,, pz,,) for epistemically
uncertain quantities required in the modeling of physical processes. In turn, the sample space for
epistemic uncertainty is defined by £ =€, xE,,, with £ containing vectors of the form defined in
Eq. (3.5.1).

As examples, the probability spaces for epistemic uncertainty in the 1996 WIPP PA and the
2008 YM PA involved nE = 57 and nE = 392 epistemically uncertain quantities, respectively.
Example elements of the vector e for the WIPP and YM PAs are described in Table 3.2 and Table
3.3. The example variables in Table 3.2 and Table 3.3 were selected to include all variables that
appear in the example sensitivity analyses discussed in Sect. 3.7.
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Table 3.2 Examples of the nE = 57 elements of the vector e of epistemically uncertain variables
in the 1996 WIPP PA (see (1) [73], Table 1, for a complete listing of the indicated 57 epistemically
uncertain variables and sources of detailed information on the individual variables and
(11)[150;151] for a description of the procedures used to develop uncertainty distributions for these
variables).

ANHPRM — Logarithm of anhydrite permeability (m?). Distribution: Student’s with 5 degrees of freedom. Range:
—21.0 to —17.1. Correlation: —0.99 rank correlation with ANHCOMP (anhydrite compressibility).

BHPRM - Logarithm of borehole permeability (m?). Distribution: Uniform. Range: —14.0 to —11.0.

HALPOR — Halite porosity (dimensionless). Distribution: Piecewise uniform. Range: 0.001 to 0.03.

SHBCEXP — Brooks-Corey pore distribution parameter for shaft (dimensionless). Distribution: Piecewise
uniform. Range: 0.11 to 8.10.

WRGSSAT — Residual gas saturation in waste (dimensionless). Distribution: Uniform. Range: 0 to 0.15.

Table 3.3 Examples of the nE = 392 elements of the vector e of epistemically uncertain variables
in the 2008 YM PA (see [28], App. B, for a complete listing of the indicated 392 epistemically
uncertain variables and sources of detailed information on the individual variables).

CORRATSS. Stainless steel corrosion rate (um/yr). Distribution: Truncated log normal. Range: 0.01 to 0.51.
Mean/Median/Mode: 0.267. Standard Deviation: 0.209.

CSNFMASS. Scale factor used to characterize uncertainty in radionuclide content of commercial spent nuclear
fuel (CSNF) (dimensionless). Distribution: Uniform. Range: 0.85 to 1.4.

DSNFMASS. Scale factor used to characterize uncertainty in radionuclide content of defense spent nuclear fuel
(DSNF) (dimensionless). Distribution: Triangular. Range: 0.45102.9. Mode: 0.62.

DTDRHUNC. Selector variable used to determine the collapsed drift rubble thermal conductivity (dimensionless).
Distribution: Discrete. Range: 1 to 2.

HLWDRACD. Effective rate coefficient (affinity term) for the dissolution of high level waste (HLW) glass in
codisposed spent nuclear fuel(CDSP) waste packages (WPs) under low pH conditions (g/(m?d)). Distribution:
Triangular. Range: 8.41E+03 to 1.15E+07. Mode: 8.41E+03.

IGRATE. Frequency of intersection of the repository footprint by a volcanic event (yr!). Distribution: Piecewise
uniform. Range: 0to 7.76E-07.

INFIL. Pointer variable for determining infiltration conditions: 10%, 30%, 50 or 90* percentile infiltration
scenario (dimensionless). Distribution: Discrete. Range: 1 to 4.

INRFRCTC. The initial release fraction of ®Tc in a CSNF waste package (dimensionless). Distribution:
Triangular. Range: 0.0001 to 0.0026. Mode: 0.001.

MICCI4. Groundwater Biosphere Dose Conversion Factor (BDCF) for “C in modern interglacial climate
((Sv/year)/(Bq/m?)). Distribution: Discrete. Range: 7.18E—10 to 2.56E-08. Mean: 1.93E-09. Standard
Deviation: 1.85E—09.

MICTC99. Groundwater BDCF for ®Tc in modern interglacial climate ((Sv/year)/(Bq/m?®)). Distribution:
Discrete. Range: 5.28E—10 to 2.85E—08. Mean: 1.12E-09. Standard Deviation: 1.26E-09.

SCCTHR. Residual stress threshold for stress corrosion cracking (MPa). Distribution: Uniform. Range: 315.9
to 368.55.
SCCTHRP. Residual stress threshold for stress corrosion crack (SCC) nucleation of Alloy 22 (as a percentage of
yield strength in MPa) (dimensionless). Distribution: Uniform. Range: 90 to 105.
SZFIPOVO. Logarithm of flowing interval porosity in volcanic units (dimensionless). Distribution: Piecewise
uniform. Range: =5 to —1. Mean/Median/Mode: —3.

Table 3.3 continued on page 3-13
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SZGWSPDM. Logarithm of the scale factor used to characterize uncertainty in groundwater specific discharge
(dimensionless). Distribution: Piecewise uniform. Range: —0.951 to 0.951.

THERMCON. Selector variable for one of three host-rock thermal conductivity scenarios (low, mean, and high)
(dimensionless). Distribution: Discrete. Range: 1to 3.

WDGCA22. Temperature dependent slope term of Alloy 22 general corrosion rate (K). Distribution: Truncated
normal. Range: 666 to 7731. Mean: 4905. Standard Deviation: 1413.

WDGCUA22. Variable for selecting distribution for general corrosion rate (low, medium, or high)
(dimensionless). Distribution: Discrete. Range: 11to 3.

WDNSCC. Stress corrosion cracking growth rate exponent (repassivation slope) (dimensionless). Distribution:
Truncated normal. Range: 0.935 to 1.395. Mean: 1.165. Standard Deviation: 0.115.

WDZOLID. Deviation from median yield strength range for outer lid (dimensionless). Distribution: Truncated
normal. Range: -3 to 3. Mean: 0. Standard Deviation: 1.

As done in the WIPP and YM PAs, probability is the most widely used mathematical structure
for the representation of epistemic uncertainty. However, a number of additional structures for the
representation of epistemic uncertainty in the presence of limited information have also been
developed, including interval analysis, evidence theory and possibility theory (e.g., [91-100]). As
yet, these uncertainty structures have not been used in large-scale PAs.
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3.6 Propagation and Display of Uncertainty

Two possibilities exist when the propagation and display of uncertainty are considered in a PA
that involves a separation of aleatory uncertainty and epistemic uncertainty: (i) Presentation of the
effects of epistemic uncertainty conditional on a specific realization of aleatory uncertainty, and
(i1) Presentation of the effects of aleatory uncertainty conditional on a specific realization of
epistemic uncertainty. The presentation of the effects of epistemic uncertainty conditional on a
specific realization of aleatory uncertainty is considered first.

3.6.1 Effects of epistemic uncertainty conditional on a specific realization of
aleatory uncertainty

Epistemic uncertainty in an outcome of a PA conditional on a specific realization a of aleatory
uncertainty can be formally summarized with a cumulative distribution function (CDF) or a
complementary cumulative distribution function (CCDF). For a real-valued analysis outcome y =
f(da,e,, ), the CDF and CCDF for y resulting from epistemic uncertainty in e,, are defined by

pe(7<yla)=[5,[f(rlae,)]ds (e, )de (3.6.1)
and

pe(v<7la)=1-py(F<vle)=]5,[/(rlae,)]d;(e,)de (3.6.2)

respectively, where (1) e,, is a vector of epistemically uncertain quantities affecting the function
fas indicated in conjunction with Eq. (3.5.1), (i1) d(e,,) is the density function associated with
the probability space that characterizes the epistemic uncertainty associated with e, (iii) £ and

d(e,,) are restricted to possible values for e,,, and (iv)

. lfory<y = . lfory<y
- ~1- = 6.
5,(%) {O otherwise d 3, (7) (%) {0 otherwise. (.69

Specifically, plots of the points [y, p(¥ < y|a)] and [y, p;(y < y|a)] define the CDF and CCDF
for y = f(|a, e,, ), with these plots being conditional on the vector a from the sample space for
aleatory uncertainty. In addition,

< (v]a) jf r|a,e, )d, (e, )dE (3.6.4)
defines the expected value of y = f{ 7a, e,, ) over epistemic uncertainty.

In most PAs, the integrals in Egs. (3.6.1), (3.6.2) and (3.6.4) are too complex to estimate with
formal quadrature procedures, with the result that these integrals are typically estimated with
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procedures based on simple random sampling or Latin hypercube sampling. In turn, the indicated
sampling procedures result in estimates of the form

n
pe(F<yla)=)s,[f(rlae,)]/n (3.6.5)
k=1
pe(y<yla)=35,[f(zlaey)]/n (3.6.6)
k=1
and
Eg(vla)=) f(rlaey)/n, (3.6.7)
k=1
where e,,,, k=1, 2, ..., n, is a sample from £ obtained in consistency with the density function

dg(e,, ) for epistemic uncertainty.

Dose (mrem/yr) to the reasonably maximally exposed individual (RMEI) determined in the
2008 YM PA under the assumption of nominal (i.e., undisturbed) conditions provides an
illustration of the results formally defined in Egs. (3.6.1)-(3.6.7). In the 2008 YM PA, nominal

conditions correspond to the occurrence of the aleatory future a, defined in Eq. (3.3.3) for which

no disruptions of any type occur (i.e., the future in which nEW = nED = nll = nlE = nSG = nSF =
0). The 2008 YM PA used a Latin hypercube sample (LHS)

e, =[e @1 ]k =12,....,n=300, (3.6.8)

of size 300 in the propagation of epistemic uncertainty [28; 101; 102]. Latin hypercube sampling
operates in the following manner to generate a sample of size n from the distributions D,, D,

ey D

n

r associated with the elements of @ =[¢,, e,, ..., e, ]. The range of each variable ¢, is
divided into n disjoint intervals of equal probability and one value e, is randomly selected from
each interval. The n values for e, are randomly paired without replacement with the » values for
e, to produce n pairs. These pairs are then randomly combined without replacement with the »
values for e; to produce n triples. This process is continued until a set of n nE-tuples e, =[e¢,,
€2 oes € uE 1,k=1,2, ..., n,is obtained, with this set constituting the LHS. Owing to its efficient

stratification properties, Latin hypercube sampling has also been used for the propagation of
epistemic uncertainty in the 1996 WIPP PA [73], the NUREG-1150 probabilistic risk assessments
for five nuclear power stations [3; 4], and many other analyses.

As indicated in Sect. 3.5, only elements of the vector e,, in Eq. (3.6.8) are involved in this
example for dose to the RMEI as the elements of the vector e , are involved in the definition of
probability distributions related to the characterization of aleatory uncertainty. In consistency with
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the notation used in the 2008 YM PA, D, (7 |a,,e,,) is used to represent dose to the RMEI at
time 7 conditional on (i) the future corresponding to a, and (ii) the values for epistemically
uncertain quantities contained in the vector e,,. A complex sequence of calculations similar to

those indicated in Figure 3.2 is used to determine
Dy(r|ay,ey,) for 0<7<10° yrand k =1,2,...,n = 300. (3.6.9)

In turn, approximations to the CDF, CCDF and expected value for D, (7 |a,,e,,) as defined in
Egs. (3.6.5)-(3.6.7) are given by

3

(=3

0
5p[ Dy (r1ay.ey)]/n, (3.6.10)

n

IR
]

pr| Dy(rlay.e, )<D]

3
w |l

1
n=300

Sp[ Dy (z1ay.ey)]/n, (3.6.11)

00
E;[Dy(zlay.e,)]= Y Dy(zlay.ey)/n (3.6.12)

pr|D<Dy(rlay.ey)]

I
i g

3
1l
)

b
—_

and illustrated in Figure 3.3a for 7= 600,000 yr.

Also identified in Figure 3.3a are selected quantile values for g = 0.05, 0.5 and 0.95. Once a
CDF is available, quantile values are easily determined as indicated in Figure 3.3a by (i) starting
at a desired quantile value g on the ordinate of the CDF plot, (i1) drawing a horizontal line to the
CDF, and (ii1) then dropping a vertical line to the abscissa to obtain the g-quantile of the variable
under consideration. More formally and with the same notation as used in Egs. (3.6.1)-(3.6.7), the
g-quantile value Q. [f(r|a,e, )] for y = f(da, e, ) conditional on a and arising from the

epistemic uncertainty associated with e,, is the value of y such that

g=1.0,[1(c1aey)]d, (e )de

= kzn;éy [f(r | a,eMk)]/n.

(3.6.13)

Specifically, the quantiles O, [Dy (7 |ay,e, )] for Dy(z|ay,e, ) at 7= 600,000 yr indicated
in Figure 3.3a are defined by the values of D such that

S

n=3

0
Sp[ Dy (t1ay.ey)]/n (3.6.14)

LS}
1R
=~

=1
for ¢ = 0.05, 0.5 and 0.95.
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a: Steps in stepwise rank regression analysis

b: Variables listed in order of selection in stepwise
regression

c: Cumulative R’ value with entry of each variable into
regression model

d: Standardized rank regression coefficients (SRRCs) in
final regression model

Figure 3.3 Estimates obtained with an LHS of size n = 300 of the epistemic uncertainty in dose
Dy(r|ay,e,, ) to RMEI conditional on the realization a, of aleatory uncertainty corresponding

to nominal conditions: (a) CDF and CCDF for D, (7 |a,,e,,) with 7= 600,000 yr ([103], Figure
1b), (b) Individual results D, (z |a,,e,;; ), k=1, 2,..., n, and associated expected (mean) values
E;[Dy(z|ay,e, )] and quantile values O, [Dy(z|ay,e, )] ¢=0.05,0.5,0.95, for0 < 7< 10°
yr ([103], Figure 1a), (c) Stepwise rank regressions for D, (7 |a,,e,, )at 7= 600,000 yr ([80],
Table 10), and (d) Partial rank correlation coefficients (PRCCs) for D, (r|a,,e, )for 0 < r<
10° yr ([80], Figure 23b).
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Also identified in Figure 3.3a are selected quantile values for ¢ = 0.05, 0.5 and 0.95. Once a
CDF is available, quantile values are easily determined as indicated in Figure 3.3a by (i) starting
at a desired quantile value g on the ordinate of the CDF plot, (ii) drawing a horizontal line to the
CDF, and (iii) then dropping a vertical line to the abscissa to obtain the g-quantile of the variable
under consideration. More formally and with the same notation as used in Egs. (3.6.1)-(3.6.7), the
g-quantile value 0, [f( | a,e, )] fory=f(7a, e, ) conditional on a and arising from the epistemic

uncertainty associated with e, is the value of y such that

g=|.0,[f(z1aey)]d; (e, )de

= e

= kzr:;éy [f(r | a,eMk)]/n.

(3.6.15)

Specifically, the quantiles O, [Dy (7 |ay,e, )] for Dy(z|ay,e, )at 7= 600,000 yr indicated
in Figure 3.3a are defined by the values of D such that

n=300
Sp[ Dy (r]ay.e,,)]/n (3.6.16)

B
12

k=1
for g = 0.05, 0.5 and 0.95.

As is the case for many PA results, D, (r|a,,e, ) is a function of time. Specifically,
Dy(r|ay,e,, ) is determined for 0 < 7< 10° yr in the 2008 YM PA. Although plots of the form

shown in Figure 3.3a provide a complete display of the effects of epistemic uncertainty at the time
under consideration (e.g., 7= 600,000 yr in Figure 3.3a), they are not practical for displaying the
effects of epistemic uncertainty at a large number of times. In such situations, an effective
presentation format is to use a single plot to present both (i) the individual results f{7a,e,,, ), k=

1, 2, ..., n, calculated for the time interval #m» < 7 < tmx under consideration and (ii) the expected
value Eg[f(r|a,ey )]and selected quantile values Q, [f(z|a,e, )]lfor flda,e,) also

calculated for the time interval ¢, <7 <t . As an example, this presentation format is illustrated
in Figure 3.3b for D, (z|a,,e,,) and 0 < z<10° yr, where (i) the lighter lines correspond to the
results D, (z|ay,e, ), k=1, 2, ..., n =300, calculated as indicated in conjunction with Eq.
(3.6.9) and (ii) the heavier lines correspond to the expected value E.[D, (7 |a,,e,, )] calculated
as indicated in Eq. (3.6.12) and the quantiles O, [D, (z|a,,e, )], g =0.05,0.5, 0.95, calculated

as indicated in Eq. (3.6.16). The presentation format illustrated in Figure 3.3b provides an effective
way to present a large amount of information in a small amount of space. The sensitivity analysis
results in Figure 3.3c and d are discussed in Sect. 3.7.
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3.6.2 Latin hypercube sampling and the propagation of epistemic
uncertainty

Latin hypercube sampling was developed for use in the analysis of computationally demanding
analysis structures for which computational demands severely limit the number of system
simulations that can be performed ([101]; [104], App. A). As a result, the LHS size in use in such
analyses is often perceived as being small relative to the number of epistemically uncertain
variables being sampled (e.g., an LHS of size 100 from 57 variables in the 1996 WIPP PA and an
LHS of size 300 from 392 variables in the 2008 YM PA). In response to this concern, a replicated
sampling procedure has been developed to provide a way to assess the adequacy of the LHS size
used in the analysis of a complex and computationally demanding analysis structure ([105]; [73],
Sect. 7). Specifically, the goal of the procedure is to determine how much variability exists in
estimated analysis outcomes when different LHSs of size n are used.

The procedure is based on independently generating LHSs of size n with different random
seeds nR times. At an intuitive level, the adequacy of the sample size can be assessed by simply
comparing the results obtained with the individual samples. At a more formal level, the #-
distribution can be used to place confidence intervals around summary results (e.g., expected
values over epistemic uncertainty) obtained from individual samples. Specifically, assume that
the LHS has been replicated nR times to produce » =1, 2, ..., nR independently generated LHSs

€ :[eArlmeMrk]vk:l: 2,...,n, (3.6.17)

of size n and that C;-is an analysis result of interest obtained for replicated sample ». For example,
C might be the expected value E.[f(r|a,e, )] at time 7 that is estimated with use of Latin
hypercube sampling and C, = E, [f(z|a,e,, )] would be the estimate for C= E.[f(r|a,e,, )]

obtained with replicated sample ». Then,

c=%'c./nr and SE(C)= {ZR:[C ~CT' [nR(nR —1)} (3.6.18)

r=1

provide an additional estimate of C and an estimate of the standard error associated with this
additional estimate. The z-distribution with nR — 1 degrees of freedom can now be used to place

confidence intervals around the estimate C for Cin Eq. (3.6.18). Specifically, the 1 — @ confidence
interval for Cis givenby C +¢,__,,SE(C), where f,_,, is the 1 — &/2 quantile of the ¢-distribution

with nR — 1 degrees of freedom. For example, ¢#,_,,,=4.303 for &= 0.05 and nR = 3.

The 2008 YM PA used nR = 3 replicated LHSs of size 300 to assess the adequacy of an LHS
of size 300 from the 392 epistemically uncertain variables under consideration. As an example,
the results obtained for D, (7 |a, e, ) are shown in Figure 3.4. Specifically, the results for the

individual replicates (i.e., £, [Dy(z |ay,e, )] and Oy .[Dy(z|ay,e,, )] forg=0.05,0.5,0.95)

are shown in Figure 3.4a, and the time-dependent 95% confidence intervals for
E.[Dy(r|a,,e,, )] are shown in Figure 3.4b. As indicated by the results in Figure 3.4, an LHS
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of size 300 is adequate for assessing the epistemic uncertainty present in estimates for
Dy(r|ay,e,, ). There is a substantial amount of variability in the LHS results prior to about

300,000 yr; however, this is due to the presence of results that are either 0 or so small as to be
below the resolution of the calculation (see Figure 3.3b).
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Figure 3.4 Illustration of replicated sampling to determine the adequacy of an LHS of size 300 for
the assessment of the epistemic uncertainty present in estimates for the dose D, (r|a,.e,, ) to

the RMEI conditional on undisturbed (i.e., nominal) repository conditions as indicated by the
vector a, ([103], Figure 4): (a) Expected values FE, [D,(r|a,,e, )] and quantiles

Or,[Dy(7|ay.ey )], g = 0.05, 0.5, 095, for Dy(r|ay,e, ) obtained for each of the 3

replicated samples indicated in Eq. (3.6.17), and (b) Time-dependent 95% confidence intervals
(i.e., for =0.05) for E.[D,(7|a,,e,, )] obtained as indicated in conjunction with Eq. (3.6.18)

As part of the 2008 YM PA, the effects of sample size for a large number of different analysis
outcomes were assessed with the three indicated replicated LHSs (e.g., see: [77], Figure 10; [78],
Figs. 10 and 19; [79], Figs. 11 and 23; [106], Figs. 5 and 10; [107]). In each case, an LHS of size
300 is adequate for assessing the epistemic uncertainty present in the analysis outcome under
consideration.

Another approach to assess sample size adequacy is to observe the results obtained with a
sequence of LHSs of increasing size. An adequate sample size then corresponds to the sample size
at which estimates of the analysis results of primary interest stabilize with respect to increasing
sample size (e.g., [108], Figs. 13 and 14). Unlike simple random sampling, the size of an LHS
cannot be extended by sampling additional sample elements without consideration of the sample
elements already present in the sample. However, a technique does exist to extend an LHS of a
given size to an LHS of a larger size [109].

Another concern that arises from the small sample sizes used with Latin hypercube sampling
is that these small sample sizes could result in spurious correlations between variables within a
sample. However, this problem can be controlled with a restricted pairing technique developed by
Iman and Conover to control rank correlations between variables within random samples and LHSs
[110; 111]. Specifically, this technique can be used to ensure that a sample has (i) rank correlations
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close to zero for uncorrelated variables and (ii) desired rank correlations between correlated
variables.

3.6.3 Effects of aleatory uncertainty conditional on a specific realization of
epistemic uncertainty

The formal representation of the effects of aleatory uncertainty conditional on a specific
realization of epistemic uncertainty is similar to the formal representation of the effects of
epistemic uncertainty conditional on a specific realization of aleatory uncertainty but with the roles
of the probability spaces for epistemic uncertainty and aleatory uncertainty reversed. Specifically,
aleatory uncertainty in an outcome of a PA conditional on a specific realizatione =[e ,, e, ] of

epistemic uncertainty can be formally summarized with a CDF or a CCDF. For a real-valued
analysis outcome y =f{7a, e,, ), the CDF and CCDF for y resulting from aleatory uncertainty are

defined by

pi(7svie)=] o [f(rlae,)]d,(ale,)dA (3.6.19)

and
pi(y<yle)=1-p,(3<yle) j 5,[f(zlae,)|d,(ale,)dd,  (3.620)

respectively, where (i) @ is a vector defining one realization of aleatory uncertainty, (ii) d,(a|e ,)
1s the density function conditional on e , associated with the probability space that characterizes
the aleatory uncertainty associated with a, and (iii) J,(7) and éTy( y) are defined the same as in
Eq. (3.6.3). In turn, plots of the points [y, p (7 < y|e)] and [y, p,(»y < y|e)] define the CDF and
CCDF for y =f(ra, e,, ), with these plots being conditional on the vectore =[e ,, e,, ] from the
sample space for epistemic uncertainty. Similarly,

(vle) _[f la,e, )d,(ale,)dA (3.6.21)

defines the expected value of y = f( 7a, e,, ) over aleatory uncertainty.

In most PAs, the integrals in Eqs. (3.6.19)-(3.6.21) are too complex to estimate with formal
quadrature procedures, with the result that these integrals are typically estimated with procedures
based on some variant of random sampling or stratified sampling. In turn, the indicated sampling
procedures result in estimates of the form

ZZ1éy[f(T|ai,eM)]/m or
Ziléy[f(fléﬂeMﬂpA (‘Ai |eA),

pi(F<yle)= (3.6.22)
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~ Z:'n:lgy[f(rlaﬂeM)}/m or

Paly<TIe)=on 5 2 (3.6.23)
Z:i=1§y [f(T | ai’eM)}pA ('Az |eA)

and

ZLf(Tlat’eM)/m or
S f(zlaey,)pa(Ale,),

1

(3.6.24)

E, (yle)

where (i) a,,i=1, 2, ..., m, is a sample from A generated in consistency with the density function
d,(ale,) for aleatory uncertainty and (ii) the sets (i.e., strata) A, i =1, 2, ..., m, satisfy
U, A=A with A N A, =0 fori+#j, a,is arepresentative element of A, and p,(A |e,) is the
probability of A . The summations with a, and a, correspond to approximations with simple
random or quasi-random sampling and stratified sampling, respectively.

Use of the alternative approximations with the sets .4, and associated values a, in Egs. (3.6.22)
-(3.6.24) corresponds to use of the ordered triple representation for risk in Eq. (3.2.1) with S,=A,
, pS= p,(Ale,), and cS=f(r|a, e, ). In effect, representations of this form are being

employed when an event tree is used to represent the effects of aleatory uncertainty, with each path
through the tree being used to both define one set A, and determine the probability of this set.

As an example, the CCDFs for normalized radionuclide release to the accessible environment
obtained in the 1996 WIPP PA are shown in Figure 3.5a. In this example, the individual CCDFs
are calculated as indicated in Eq. (3.6.23) with a random sample of size 10* from the sample space
for aleatory uncertainty, and the distribution of CCDFs results from repeating this calculation for

each element €, =[e,,,e,,] of an LHS of size n = 100 from the sample space for epistemic
uncertainty (See Ref. [112] for computational details). As indicated immediately after Eq. (3.6.20),
each CCDF in Figure 3.5a is a plot of points of the form [y, p,(y < y|€,)] with y corresponding

to normalized release R at 10,000 yr. Specifically, the indicated release is the integrated (i.e., total)
release that takes place from repository closure (i.e., time 0 yr) out to 10,000 yr; thus, in the formal

model representation f{7a, €,,) used in Egs. (3.6.1)-(3.6.24), the time variable 7 corresponds to
10,000 yr in Figure 3.5a.
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Figure 3.5 Distribution of CCDFs for normalized release to the accessible environment over 10*
yr obtained in the 1996 WIPP PA: (a) Individual CCDFs for LHS of size 100 ([112], Figure 1a),
(b) Mean and quantile curves for CCDFs in Frame a ([112], Figure 1b), (c¢) Replicated mean and
quantile curves for CCDFs in Frame a for 3 independent LHSs (i.e., R1, R2, R3) of size 100 ([112],
Figure 2a), and (d) Partial rank correlation coefficients (PRCCs) for all 300 CCDFs used to
generate results in Frame c ([112], Figure 5).

Displays of the form shown in Figure 3.5a provide a visual impression of the effects of
epistemic uncertainty in the determination of the presented results. A more quantitative
presentation of the effects of epistemic uncertainty is provided by a plot of the expected value and
selected quantile values (e.g., ¢ = 0.05, 0.5, 0.95) for the exceedance probabilities associated with
individual values on the abscissa (e.g., normalized release R as in Figure 3.5a). In general and with
the same notation as used in Egs. (3.6.22)-(3.6.24), the indicated expected value £ [p 4 (y<yle)

is given by
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[/(rlae,)]d,(ale,)da}d;(e)e
) {igy[f(f'ai’em)]/m}/” or (3.6.25)

1S5, L (130w s (4 o)
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1

and the ¢ quantile value O, [p,(y < |e)]is the value of p = p,4(y<7y|e)such that

q= J.gép ':pA (v<7l e)]dE(e)dS

- Ig %) {J-A 5,[f(rlaey)]d,(ale, )dA} dg(e)de (3.6.26)
£o
i

k=

m

gy[f(rlai,em)]/m}/n or
1

In:

2

legy [f(T | éi’eMk):IpA (A |eAk)}/n'

i=

As an example, mean and quantile (i.e., percentile) results for the CCDFs in Figure 3.5a are
presented in Figure 3.5b.

Results analogous to those illustrated in Figure 3.5a and b can also be obtained and presented
for CDFs. However, CCDFs rather than CDFs usually provide the preferred presentation format
for results obtained in PAs for two reasons. First, CCDFs provide an answer to questions of the
form “How likely is it to be this bad or worse?”, which is typically the type of question of most
interest in a PA. Second, CCDFs facilitate the display of the probabilities associated with low
probability but high consequence aleatory occurrences (especially when a logio scale is used on
the ordinate); in contrast, such probabilities are difficult to obtain from a CDF owing to the lack
of resolution in displayed probabilities as cumulative probability approaches 1.0.

As previously indicated, the 1996 WIPP PA used an LHS of size 100 in the propagation of
epistemic uncertainty. To assess the adequacy of this sample size, the analysis was repeated with
3 replicated LHSs of size 100 denoted R1, R2 and R3. As shown in Figure 3.5c¢, there is little
variability in the results obtained with the individual replicated samples. The sensitivity analysis
results with PRCCs in Figure 3.5d are discussed in Sect. 7.

An interesting potential regulatory requirement is also illustrated in Figure 3.5a and b. The two
step boundary labeled “EPA Limit” in the upper right corner of Figure 3.5a derives from a
licensing regulation for the WIPP established by the U.S. Environmental Agency (EPA) which
requires for the time interval [0, 10* yr] after repository closure that (i) the probability of exceeding
a normalized release of size R = 1.0 shall be less than 0.1 and (ii) the probability of exceeding a
normalized release of size R = 10.0 shall be less than 0.001. As specified by the EPA, the indicated
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requirement is violated if the mean CCDF in Figure 3.5b crosses the indicated boundary line (see
Ref. [27] for additional details). A requirement of this type places stronger restrictions on system
outcomes as the severity of these outcomes increases and is known as the Farmer limit line
approach to the definition of acceptable risk [113-115].

An additional example of the representation of the effects of aleatory uncertainty conditional
on a specific realization of epistemic uncertainty is provided by the treatment in the 2008 YM PA
of expected dose E,[D(r|a,e, )|e,] over aleatory uncertainty to the RMEI conditional on a

realizatione =[e ,, e, ] of epistemic uncertainty. In the preceding, D(7a, e, ) represents dose

(mrem/yr) to the RMEI at time 7 (yr) conditional on the “future” defined by the vector a of aleatory
quantities (see Eq. (3.3.3)) and the vector e,, of epistemically uncertainty quantities (see Table

3.3) used in the calculation of dose to the RMEI; and E,[D(r |a,e,,)|e ] is defined as indicated
in Eq. (3.6.21). Specifically,

E,[D(r|ae,)le,] :-[AD(T lae, )d,(ale,)dA. (3.6.27)

The time-dependent expected values E,[D(r |a,e, )|e,] for D(7a, e,, ) were estimated for the
time intervals [0, 20,000 yr] and [0, 10° yr] for each of the LHS sample elements e, = [e ,,e,,, ]
indicated in Eq. (3.6.8).

The resultant expected dose curves [z, E,[D(r|a,e,,)|e, ]1], k=1,2, ..., n =300, the
associated curves for the quantiles O, {E,[D(z |a,e,)|e,]}, ¢=0.05,0.5,0.95, and the expected
value E {E [D(r|a,e, )|e,]} fordose over aleatory and epistemic uncertainty are shown in Fig.
3.6a. The quantities £,[D(r|a,e, )|e,] and E_{E,[D(r|a,e,)|e,]} are both expected doses

but with expectations calculated with respect to different probability spaces. In consistency with
regulatory requirements that place bounds on E, {E, [D(r|a,e, )|e,]} for the YM repository,

the 2008 YM PA refers to £,[D(r|a,e,,)|e,] and E, {E [D(r|a,e, )|e,]} as “expected dose”

and “expected (mean) dose”, respectively [28]. A more detailed summary of the distribution
results for E,[D(r|a,e,, )|e, ]at = 10* yr is presented in Fig. 3.6b, and the stability of the

results obtained with the three replicated LHSs of size 300 is illustrated in Fig. 3.6c by the
similarity of the resultant plots for estimates of O, {£,[D(z|a,e,)|e,]},¢=0.05,0.5,0.95, and

E{E,[D(r|a,e, )|e,]} . The sensitivity analysis results in Fig. 3.6d are discussed in Sect. 3.7.
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Fig. 3.6 Estimates obtained with an LHS of size n = 300 of expected dose E,[D(7 |a,e,,)|e ]
to the RMEI in the 2008 YM PA for the time interval [0, 20,000 yr]: (a) Expected dose
E,[D(r|a,ey)[e ] k=1,2,...,n=300, expected (mean) dose Eg{E,[D(r|a,e,)|e,]},
and quantiles O, {E,[D(7 |a,e))|e,]}, ¢ = 0.05, 0.5, 0.95 ([106], Fig. 1a), (b) Cumulative
probabilities p{E ,[D(1 0*|a,e w)le, <D}, exceedance probabilities p.{D < E, [D( 0* |
a,e, )|e,]}, expected (mean) dose Ep{E,[D(r|a,e,)|e,]}, and quantiles
Op, \E [D@10* |a,e,,)|e,]},q=0.050.5, 0.95, for r=10* yr ([106], Fig. 1b), (c) Estimates of
Eg{E,[D(r|a,e))|e ] and O {E,[D(r|a,e,)]e ]}, g = 0.05, 0.5, 0.95, obtained with
three replicated LHSs of size n = 300 as indicated in Eq. (3.6.17) ([106], Fig. 5), and (d) Partial
rank correlation coefficients (PRCCs) for £, {E,[D(r |a,e,, )| e ]} ([106], Fig. 6).

The numerics of determining the expected doses E,[D(r|a,e, )| e, ]] in Fig. 3.6a are quite

complicated and will be discussed briefly after this paragraph. Once the expected doses
E,[D(r|a,ey,)|e Jare available, the estimation of Qg {E,[D(r|a,e,)|e,]}and
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E {E,[D(r|a,e, )|e,]}is straight forward. Specifically, Op AE [D(r|a,e,)€,]}

corresponds to the value y defined and approximated by

=L (B (Dm0 )lo Jis (o)

. (3.6.28)
=35, {EA [D(z| a,eMk)|eAk]}/n,
P
and E.{E,[D(r|a,e, )|e,]} is defined and approximated by
E {E,[D(z|ae,)le,]} :.[gEA [D(r]ae,)le, [d,(e)de
(3.6.29)

=>E,[D(r]aey)le,]/n
k=1

Similarly, O {E,[y(r|a,e,)[e, ]} and E; {E [y(r|a,e,,)|e ]} for an arbitrary analysis result
y(da, €,,) are defined and approximated as indicated in Eqgs. (3.6.28) and (3.6.29) with y(7a,
e, )and y(da, e,,) replacing D(7a, €,,) and D(7a, €,,,).

The numerics of determining the expected doses E,[D(r|a,e,,)|e,] are now

considered. In concept, E,[D(r|a,e,,,)|e ] can be approximated by

m

E,[D(r|ae,)le,|=> D(r|a.e,)/m, (3.6.30)

i=1

where Q;,i=1, 2, ..., m, is a sample from the probability space A for aleatory uncertainty (see

Eq. (3.3.3)) generated in consistency with the density function d,(a|€,). As is the case in many
complex analyses, the overall structure of the 2008 YM PA was too complex (see Eq. (3.3.3) and
Fig. 3.2) for this sampling-based approach for the estimation of E,[D(r|a,e, )|e,] to be
practicable. In such situations, it is necessary to (i) decompose the analysis into a number of
intermediate calculations smaller than a complete calculation of the result of interest (e.g.,
E,[D(r|a,e,,)|e,]inEq.(3.6.30) and Fig. 3.6) and then (ii) combine these intermediate results
in a computationally efficient manner to obtain the final result of interest. The indicated

combination of intermediate results involves taking advantage of computational efficiencies that
derive from specific properties of the analysis and can include (i) division of the original integral

over the sample space A for aleatory uncertainty into a sum of integrals over subsets of A, (ii) use
of additivity, linearity and interpolations in conjunction with intermediate results to obtain
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additional results, and (ii1) development of one or more metamodels that are approximations to the
original model.

In the 2008 YM PA, the first step in the evaluation of E,[D(zr |a,e,,,)|e . ] was to divide
the defining integral for E,[D(r|a,e,,)|e ] in Eq. (3.6.27) into a sum of integrals over

selected subsets of the sample space A for aleatory uncertainty. These subsets are referred to as

scenario classes (and sometimes as modeling cases) in the 2008 YM PA and are denoted and
defined with the notation used in Eq. (3.3.3)-(3.3.6) by (i) A, = {a| ac.A and nEW > 1} for the

early WP failure class, (ii) A, = {al a€.A and nED > 1} for the early DS failure class, (iii) .4,
= {a| ac.A and nll > 1} for the igneous intrusion failure class, (iv) A,;= {a| ac.A and n/E > 1}
for the igneous eruption failure class, (v) Ag;= {a] ac.A and nSG > 1} for the seismic ground
motion failure class, (vi) A, = {a] a€.A and nSF > 1} for the seismic fault displacement failure
class, and (vii) A, = {a| acAand nEW =nED =nll =nlE =nSG = nSF= 0} = {an} for the
nominal failure class. In turn, the indicated sum of integrals is given by

E, [D(rla,eMk)leAk]:jAD(ﬂa,eMk)dA(a|eAk)dA

=D, (r|aN,eMk)+jA CEZA:ACDC(Tla,eMk M, (ale, )dA

=D, (TlaN’eMk)+cZA:4cIADC (r]ae, ), (ale,)dA (3.631)
=D, (r|aN,eMk)+C§wJ'ACDC (rlaey, ), (ale, )dA

=D, (rlaN,eMk)JrC;CEA [Dc(rlae,)ley, |

with (i) MC={EW, ED, II, IE, SG, SF} and (ii) the doses D.(z |a,e,,; ) ) for scenario class A
calculated with use of only the elements of aand € = [€,,€,,] that constitute part of the defining

conditions for scenario class. A~ (i.e., early WP failure, early DS failure, igneous intrusion,
igneous eruption, seismic ground motion, or seismic fault displacement). The preceding
approximation to E,[D(zr|a,e,,,)|e ;] was justified for use in the 2008 YM PA on the basis of

tradeoffs between the effects of high probability-low consequence scenario classes and low
probability-high consequence scenario classes ([106], Sect. 5).

Use of the decomposition in Eq. (3.6.31) reduces the determination of E,[D(7 | a,e,,,)|€ ]
from the evaluation of a single very complex integral to the evaluations of (i) Dy (7 |ay,e, ;)

and (ii) six individual integrals (i.e., one integral for each element of the set MC). The six integrals
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for D.(r|a,e,,, ) over A. for Ce MC that need to be evaluated are still complex, but less
complex than a single integral for D(r |a,e,,, ) over A. The advantage of the decomposition in

Eq. (3.6.31) is that the integrals for D.(z |a,e,,, ) over A.for Ce MC can be implemented in

ways that obtain computational efficiencies that take advantage of specific properties of the dose
function D, (7 |a,e,,, )and the restriction of the density function to the set .4 for scenario class

C.

As a single example, a summary description of the evaluation of Dy (7 | a,e,,, ) over the time
interval [0, 20,000 yr] for the seismic ground motion scenario class will be used for illustration; a
full description of the analysis for Dy, (7 |a,e,,,) is given in Refs. [79; 116; 117]. In effect, the
consideration of only seismic ground motion events reduces the sample space A for aleatory

uncertainty to the previously indicated set A, with elements a defined by

a= [nSG, HoVs Aty Ve s Ay senstyses Vasa s Aus ], (3.6.32)

where (i) nSG = number of seismic ground motion events in 20,000 yr, (ii) ¢ = time (yr) of event
i, (iii) vi = peak ground motion velocity (m/s) for event i, (iv) 4; = damaged area (m?) on individual
WPs for peak ground motion velocity v;, (v) the occurrence of seismic ground motion events is

characterized by a hazard curve for peak ground motion velocity, and (vi) damaged area is
characterized by distributions conditional on peak ground motion velocity. In effect, A is the

sample space for aleatory uncertainty when only seismic ground motion events are considered over
the time interval [0, 20,000 yr].

To evaluate E,[Dy;(r|a,e,,)|e,] it is necessary to integrate the function
Dy;(r|a,e,,, )over the set Asc with a defined as indicated in Eq. (3.6.32). In full detail,
Dy;(r|a,e,,, )is defined by the model system indicated in Fig. 3.2. Evaluation of this system is
too computationally demanding to permit its evaluation 1000’s of times for each element e, =
[e ,..€, ] of the LHS in Eq. (3.6.8). This is a common situation in analyses of complex systems,

where very detailed physical models are developed which then turn out to be too computationally
demanding to be naively used in the propagation of aleatory uncertainty. In such situations, it is
necessary to find ways to efficiently use the results of a limited number of model evaluations to
predict outcomes for a large number of different possible realizations of aleatory uncertainty.

For the seismic ground motion scenario class and the time interval [0, 2x10* yr], the needed
computational efficiency was achieved by evaluating Dy, (7 |a,e,,,) at a sequence of seismic
event times (i.e., 100, 1000, 3000, 6000, 12000, 18000 yrs) and for a sequence of damaged areas
(i.e., 107%%(32.6 m?) fors =1, 2, ..., 5 with 32.6 m*> corresponding to the surface area of a WP) at

each of the indicated times (Fig. 3.7a). This required 6x5 = 30 evaluations of the system indicated
in Fig. 3.2 for each LHS element in Eq. (3.6.8). Once obtained, these evaluations can be used with
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appropriate interpolation and additive procedures to evaluate Dy (7 | a,e,,, ) for different values

of a for each LHS element e, = [e ,.,e,,, ] (see Ref. [79], Sect. 4, for computational details).

The individual CCDFs in Fig. 3.7b are defined by probabilities of the form shown in Eq. (3.6.20)
with (i) Dy.(r|a,e,,,) and e, replacing y(7a,e,,) and e, and (ii) 7= 10* yr. Numerically,
the integrals that define exceedance probabilities for the individual CCDFs are approximated with
(1) random sampling from the possible values for a as indicated in Eq. (3.6.23) and (ii) estimated
values ﬁSG (10* |a,,e,, ) for Dy (10 |a ,e,,) constructed from results of the form shown in
Fig. 3.7a (see Ref. [79], Sect. 4, for computational details). Specifically,

Fy [y <Dy (10 |ae, ) eAk} =35, [[)SG (10°|a,.e, )} /'m, (3.6.33)
i=1

withthe a,,i=1, 2, ..., m, sampled in consistency with the density function d y (ale m ) for vectors

of the form shown in Eq. (3.6.32). The mean and quantile curves in Fig. 3.7b are (i) defined and
approximated as indicated in Egs. (3.6.25) and (3.6.26) and (ii) provide a summary of the
epistemic uncertainty present in the estimation of exceedance probabilities (i.e.,

ply<Dg;(10* |a,e,, )| e, ] for Dy (r|ae,,).
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Figure 3.7 Example results for dose (mrem/yr) to RMEI in the YM PA for seismic ground motion
scenario class: (a) Dose for seismic events occurring at different times and causing different
damaged areas on WPs ([79], Figure 4a), (b) CCDFs for dose at 10,000 yr ([79], Figure 10), (c)
CCDF for expected dose at 10,000 yr ([79], Figure 6b), (d) Time-dependent expected dose ([79],
Figure 6a), (e) Stepwise rank regression for expected dose at 10,000 yr ([117], Table 4), and (f)
Time-dependent PRCCs for expected dose ([117], Figure 4b).
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As indicated in Eqgs. (3.6.21) and (3.6.24), the expected value E,[Dg (10* | a,e,,)le,]of
Dy (10* | a,e,,, ) over aleatory uncertainty can also be defined and estimated, with the estimates
E,[Dy;(10* |a,e,,, )| e, ] obtained with the random samples used to construct the CCDFs in

Figure 3.7b. The expected values E,[Dy.(10* |a,e,,,)| e, ] and their corresponding estimates
are the result of reducing each CCDF in Figure 3.7b to a single number. As illustrated in Figure
3.7¢, the epistemic uncertainty associated with £ ,[Dg; (10* |a,e w)]€,] can be summarized by

(i) an expected (mean) value E;{E [Dg; 1o |a,e, )| e,]} over epistemic uncertainty, (ii) a
CDF defined by the cumulative probabilities for E,[Dg, (10* |a,e v)le,] or (iii) a CCDF

defined by the complementary cumulative probabilities for E,[Dy(1 0*|a,e w)le,]. The
indicated expected value, CDF and CCDF are defined and approximated in a manner analogous to
that used to obtain the results in Figure 3.3a with £,[Dg.(10* |a,e,,,)|e, ] replacing

D, (600,000 |a,,e,, ). The expected (mean) value E, {E [D. (10" |a,e,)|e,]} illustrated in

Figure 3.7c is the outcome of reducing all the information in Figure 3.7b to a single number.

Expected doses E,[Dg;(7]a,e,,)|e,]for individual LHS elements correspond to the
lighter lines in Figure 3.7d, and quantile values Op {E,[Ds;(7]a,€,)|€ ]} and expected
(mean) values E;{E [Ds;(7|a,e, )|e,]} for E,[Dy;(r|a,e,,)|e,,] that summarize the

effects of epistemic uncertainty correspond to the darker dashed and solid lines. The results on
Figure 3.7d at 10,000 years correspond to the results shown in more detail in Figure 3.7c. For
reasons of computational efficiency, the individual expected dose curves

E,[Dg;(r|a,e,,)]€ 4] for 0 < 7<20,000 yr in Figure 3.7d were estimated with a quadrature

procedure that used the results in Figure 3.7a rather than with a sampling-based procedure as
illustrated in Figure 3.7b; details of this procedure are given in Ref. [79]. The sensitivity analysis
results in Figure 3.7e and f are discussed in Sect. 3.7.

The expected doses E ,[Dy; (7 |a,e,,, )| e ;] in Fig. 3.7d constitute one of the six expected doses
appearing in the approximation to E,[D(r|a,e,,)|e ,]in Eq. (3.6.31) for 0 < 7< 20,000 yr.
The other five expected doses E,[D.(7|a,e, ;)| e .1, C=EW, ED, I, IE, SF, were determined

in a generally similar manner in which a representative set of calculations analogous to those
indicated in Fig. 3.7a were performed for each LHS element and then used to estimate

E,[Dq(r|a,e,,)|e,]. Details of these calculations are given in Refs. [77-79]. The resultant
values for all six expected doses E,[D-(7|a,e,,)|e ;] for the LHS in Eq. (3.6.8) are shown
in Fig. 3.8. As indicated in Eq. (3.6.31), the doses E,[D.(r|a,e,;,)|€ ] in Fig. 3.8 are added
to obtain the approximations to E,[D(r|a,e,)|e ] for 0 <z < 20,000 yr in Fig. 3.6a.
Associated analyses showed that Dy (r|a,,e,,, )= 0 mrem/yr for 0 < 7 < 20,000 yr (see Fig.
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3.3b); thus, Dy (7 |a,,e,,,) made no contribution to
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Figure 3.8 Expected dose E,[D.(r|a,e,;)|e,] to RMEI for 0 < 7 < 20,000 yr for

Ce {E W,ED,II,IE,SG,SF } : (a) Early WP failure, (b) Early DS failure, (c) Igneous intrusion, (d)

Igneous eruption, (e) Seismic ground motion, and (f) Seismic fault displacement ([106], Figure 2).
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3.7 Sensitivity Analysis

Sensitivity analysis is an important part of a PA and, indeed, any analysis. Specifically, while
uncertainty analysis is intended to determine the total uncertainty in analysis outcomes, sensitivity
analysis is intended to determine the contributions of individual uncertain analysis inputs to the
total uncertainty in analysis results of interest. The descriptor “sensitivity analysis” is usually used
in reference to the determination of the effects of epistemic uncertainty on analysis outcomes of
interest. As a result, sensitivity analysis is typically closely tied to the previously indicated
propagation of epistemic uncertainty. In particular, a sampling-based propagation of epistemic
uncertainty generates a mapping between uncertain analysis inputs and uncertain analysis results
that can then be explored with a variety of sensitivity analysis procedures, including examination
of scatterplots, correlation analysis, regression analysis, partial correlation analysis, rank
transformations, statistical tests for patterns based on gridding, entropy tests for patterns based on
gridding, nonparametric regression analysis, squared rank differences/rank correlation test, two
dimensional Kolmogorov-Smirnov test, tests for patterns based on distance measures, top down
coefficient of concordance, and variance decomposition [118; 119].

Example sensitivity analyses based on partial rank correlation coefficients (PRCCs) are
presented in Figure 3.3d, Figure 3.5d, Fig. 3.6d and Figure 3.7f. In these examples, the PRCCs are
determined by analyzing the uncertainty associated with the analysis results above individual
values on the abscissas in the indicated figures and then connecting these results to form curves of
sensitivity analysis results for individual analysis inputs ([118], Sects. 6.4 and 6.5; [120]) . As a
result of the use of a rank transform ([118], Sect. 6.5; [121]), a PRCC provides a measure of the
strength of the monotonic effect of an uncertain analysis input on an analysis result after the
removal of the monotonic effects of all other uncertain analysis inputs. In the presence of nonlinear
but monotonic relationships between a dependent variable and multiple independent (i.e., sampled)
variables, use of the rank transform can substantially improve the resolution of sensitivity analysis
results. Specifically, a sensitivity analysis based on rank transformed data operates in the following
manner: (i) the smallest value for each variable is assigned a rank of 1, (ii) next largest value is
assigned a rank of 2, (ii1) tied values are assigned their average rank, and (iv) so on up to the largest
value, which is assigned a rank equal to the sample size in use; then, the analysis is performed with
these rank-transformed values. The rank transformation is a very useful procedure in many
sensitivity analyses as it converts nonlinear but monotonic relationships into linear relationships.

The results in Figures 3.3d, Figure 3.5d, Fig. 3.6d and Figure 3.7f illustrate a spectrum of the
possibilities in which sensitivity analyses can be performed in a PA, including on: (i) results
conditional on a specific realization of aleatory uncertainty (Figure 3.3d), (ii) exceedance
probabilities that define CCDFs that summarize the effects of aleatory uncertainty (Figure 3.5d),
(ii1) expected values over aleatory uncertainty (Fig. 3.6d and 3.7f), and (iv) intermediate results
that are part of a very complex calculation (Figure 3.9).

As another example, stepwise rank regressions are presented in Figure 3.3c¢ and Figure 3.7¢
for results at specific points in time. In stepwise regression, a regression model is first constructed

with the most influential variable (i.e., X; as determined based on R* values for regression models

containing only single variables). Then, a regression model is constructed with X; and the next
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most influential variable (i.e., X, as determined based on R’ values for regression models

containing X; and each of the remaining variables). The process then repeats to determine X5 in

a similar manner and continues until no more variables with an identifiable effect on dependent
variable can be found. Variable importance (i.e., sensitivity) is then indicated by (i) the order in
which variables are selected in the stepwise process, (ii) the changes in cumulative R? values as
additional variables are added to the regression model, and (iii) the standardized regression
coefficients for the variables in the final regression model ([118], Sect. 6.3). In a rank regression,
the variables are rank-transformed before the regression analysis is performed. Plots of standar-
dized regression coefficients analogous to the plots of PRCCs in Figure 3.3d, Figure 3.5d, Fig.
3.6d and Figure 3.7f are also possible.

When relationships between individual independent variables and a dependent variable are
both nonlinear and nonmonotonic, sensitivity analyses with partial correlation coefficients and
stepwise regression procedures will perform poorly with both untransformed data and rank
transformed data. In such situations, examination of scatterplots may be sufficient to reveal the
effects of nonlinear relationships between individual independent variables and a dependent

variable ([118], Sect. 6.6; [122]). Specifically, for a sample X; =[x}, %5 X 71, k=1,2, ...,
n, from n)V uncertain analysis inputs (e.g., as in Eq. (3.6.8)) and a corresponding analysis result
¥, = ¥(X, ), the scatterplot for variable ¥, is a plot of the points (X;;, ;) fork=1,2, ..., n. Asan
example, the well-defined relationship between BHPRM and pressure is clearly shown by the
scatterplot in Figure 3.9 but missed by partial correlation and regression analyses with
untransformed and rank transformed data. More formal procedures to identify nonlinear
relationships in sampling-based analyses are provided by grid-based procedures ([118], Sect. 6.6;

[123]), nonparametric regression procedures ([118], Sect. 6.8; [124-127]), and the squared rank
differences/rank correlation test ([118], Sect. 6.9; [128]).
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Figure 3.9 Example of a scatterplot obtained in the sampling-based uncertainty/sensitivity analysis
for the WIPP ([129], Figure 28; see [129], Sect. 4, for additional discussion of this example).
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Many additional examples of sampling-based sensitivity analysis results are available in Ref.
[1] for the 1996 WIPP PA and in Ref. [2] for the 2006 YM PA. Further, Chapter 4 provides
additional information on and illustrations of sampling-based procedures for uncertainty and
sensitivity analysis. Additional information on both sampling-based approaches to uncertainty and
sensitivity analysis and other approaches to uncertainty and sensitivity analysis (e.g., differential
analysis and variance decomposition) is available in a number of reviews [118; 119; 123; 130-
142]. In addition, Chapter 5 and Appendices B and C describe approaches to sensitivity analysis
based on variance decomposition.
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3.8 Summary

As described and illustrated in this presentation, a conceptual structure and an associated
computational structure for PAs for radioactive waste disposal facilities and other complex
engineered facilities can be based on the following three conceptual entities : EN1, a probability

space (A,A,p,) that characterizes aleatory uncertainty; EN2, a function f that estimates
consequences for individual elements a of the sample space A for aleatory uncertainty; and EN3,

a probability space (&,E, pr) that characterizes epistemic uncertainty [7; 8; 27; 28]. A recognition

and understanding of these three basic entities makes it possible to understand the conceptual and
computational structure of a large PA without having basic concepts obscured by fine details of
the analysis and leads to an analysis that results in insightful uncertainty and sensitivity analyses.
For example, calculations that are basically integrations of very complex functions can be
recognized and described as such before the introduction of the often highly-complex numerical
procedures needed to perform such integrations.

Use of the indicated uncertainty and sensitivity analysis procedures provide important insights
into a PA and the factors that affect its outcomes. Uncertainty analysis results enhance the quality
of decisions that can be made on the basis of a PA and also enhance the credibility of a PA by
showing the resolution (i.e., uncertainty) in its results. Sensitivity analysis provides guidance on
both (i) what are the dominant contributors to the uncertainty in results obtained in a PA and (ii)
if necessary, where resources can be best invested to reduce the uncertainty in the results of a PA.

In addition, sampling-based uncertainty and sensitivity analysis procedures are important
analysis verification tools. The extensive exercising of the models used in a PA in a sampling-
based uncertainty and sensitivity analysis provides a very effective test of the operation of these
models. Further, the associated sensitivity results are effective in revealing inappropriate
relationships between variables that are indicative of errors in the formulation or implementation
of the PA and its underlying models.

Owing to both the insights that can be gained and the potential for the identification of analysis
errors, the examination of uncertainty and sensitivity results should never be limited to only the
final outcomes of greatest interest in a PA. Rather, uncertainty and sensitivity results should be
examined at multiple points in the chain of computations that lead to the final result or results of
greatest interest (e.g., regulatory requirements). Examples of the analysis of intermediate results
in a PA are provided by Refs. [129; 143-147] for the WIPP PA and Refs. [80; 117; 148; 149] for
the YM PA.
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4. SAMPLING-BASED PROCEDURES FOR UNCERTAINTY AND
SENSITIVITY ANALYSIS

4.1 Introduction

This chapter provides an introduction to sampling-based procedures for uncertainty analysis
and sensitivity analysis in analyses of complex systems, where (i) uncertainty analysis involves
the determination of the uncertainty in analysis results that derives from uncertainty in analysis
inputs, and (i1) sensitivity analysis involves the determination of the contributions of individual
uncertain analysis inputs to the uncertainty in analysis results. The indicated uncertainty derives
from a lack of knowledge about the appropriate value to use for quantities that are assumed to have
fixed values in the context of a particular analysis and is usually referred to as epistemic
uncertainty. In the conceptual and computational organization of an analysis for a complex system,
epistemic uncertainty is usually considered to be distinct from aleatory uncertainty, which arises
from an assumed inherent randomness in the behavior of the system under study [1-12].

Sampling-based procedures for uncertainty and sensitivity analysis are both effective and
widely used [13-20] and involve the generation and exploration of a mapping from uncertain
analysis inputs to uncertain analysis results. The underlying idea is that analysis results y(X) =
[1(X), y5(X), ..., ¥,y(X)] are functions of uncertain analysis inputs X = [x;, X,, ..., X,x]. In turn,
uncertainty in X results in a corresponding uncertainty in y(x). This leads to two questions: (i)
“What is the uncertainty in y(X) given the uncertainty in X?”, and (ii) “How important are the
individual elements of X with respect to the uncertainty in y(x)?”. The goal of uncertainty analysis
is to answer the first question, and the goal of sensitivity analysis is to answer the second question.
In practice, the implementation of an uncertainty analysis and the implementation of a sensitivity
analysis are closely connected on both a conceptual and a computational level.

The following sections summarize the five basic components that underlie the implementation
of a sampling-based uncertainty and sensitivity analysis: (i) Definition of distributions D,, D,, ...,
D,y that characterize the epistemic uncertainty in the components x,, x,, ..., X,y of X (Sect. 4.2),
(i) Generation of a sample X;, X, ..., X,s from the X’s consistent with the distributions D,, D,,
..., D,x(Sect. 4.3), (iii) Propagation of the sample through the analysis to produce a mapping [Xi,
y(x)], i =1, 2, ..., nS, from analysis inputs to analysis results (Sect. 4.4), (iv) Presentation of
uncertainty analysis results (i.e., approximations to the distributions of the elements of y
constructed from the corresponding elements of y(X;), i = 1, 2, ..., nS) (Sect. 4.5), and (v)

Determination of sensitivity analysis results (i.e., exploration of the mapping [X;, Y(Xx,)], i =1, 2,
..., nS) (Sect. 4.6). The presentation then ends with several concluding observations (Sect. 4.7).

This chapter is based on material contained in a previously published technical report [21]. The
content of this technical report has also formed the basis for three invited conference presentations
and corresponding publications in the associated conference proceedings [22-24]. The content of
Ref. [23] is effectively the same as the content of Ref. [21].
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4.2 Characterization of Uncertainty

Definition of the distributions D;,D,, ...,D,, that characterize the epistemic uncertainty in the

components X;,X,, ...,X,y of X is the most important part of a sampling-based uncertainty and
sensitivity analysis as these distributions determine both the uncertainty in y and the sensitivity of
the elements of y to the elements of X. The distributions D;,D,, ...,D,y are typically defined

through an expert review process [25-32], and their development can constitute a major analysis
cost. A possible analysis strategy is to perform an initial exploratory analysis with rather crude

definitions for D},D,, ...,D,y and use sensitivity analysis to identify the most important analysis

inputs; then, resources can be concentrated on characterizing the uncertainty in these inputs, and a
second presentation or decision-aiding analysis can be carried out with these improved uncertainty
characterizations.

The scope of an expert review process can vary widely depending on the purpose of the
analysis, the size of the analysis, and the resources available to carry out the analysis. At one
extreme is a relatively small study in which a single analyst both develops the uncertainty
characterizations (e.g., on the basis of personal knowledge or a cursory literature review) and
performs the associated uncertainty and sensitivity analyses. At the other extreme is a large
analysis on which important societal decisions will be based and for which uncertainty
characterizations are carried out for a large number of variables by teams of outside experts who
support the analysts actually performing the analysis.

Given the breadth of analysis possibilities, it is beyond the scope of this presentation to provide
an exhaustive review of how the distributions D},D,, ...,D,, might be developed. However, as

general guidance, it is best to avoid trying to obtain these distributions by specifying the defining
parameters (e.g., mean and standard deviation) for a specific distribution type. Rather, distributions
can be defined by specifying selected quantiles (e.g., 0.0, 0.1, 0.25, ..., 0.9, 1.0) of the
corresponding cumulative distribution function (CDF), which should keep the individual
supplying the information in closer contact with the original sources of information or insight than
is the case when a particular named distribution is specified (Figure 4.1a). Distributions from
multiple experts can be aggregated by averaging (Figure 4.1b).
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Figure 4.1 Characterization of epistemic uncertainty: (a) Construction of CDF from specified
quantile values (Figure 4.1, Ref. [33]), and (b) Construction of mean CDF by vertical averaging
of CDFs defined by individual experts with equal weight (i.e., 1/nE = 1/3, where nE = 3 is the
number of experts) given to each expert (Figure 4.2, Ref. [33]).

This presentation draws its examples from an uncertainty and sensitivity analysis carried out
for a two-phase flow model implemented with the BRAGFLO program [34-36] in support of the
1996 Compliance Certification Application for the Waste Isolation Pilot Plant [37; 38]. A subset

of the 31 uncertain variables considered in the example results (i.e., X;,X;, ...,X,y with nX =31)

and their associated distributions (i.e., D;,D,, ...,D;; ) is summarized in Table 4.1. A full listing of

the indicated 31 variables is available in Table 1 of Ref. [39]. Additional information on the use
of these variables in the two phase flow model and on the development of the associated
uncertainty distributions is available in the original analysis documentation [34; 40].

Additional information: Sect. 6.2, Ref. [41]; Refs. [25-28; 30; 31; 42-54]. As an example, Ref.
[25] describes the approach used in the extensive expert review process that supported the U.S.
Nuclear Regulatory Commission’s (NRC’s) reassessment of the risk from commercial nuclear
power plants (i.e., NUREG-1150; see Refs. [55-60]).
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Table 4.1 Definition of the 15 Out of a Total of 31 Independent (i.e., Sampled) Variables that Are
Identified in the Example Sensitivity Analyses for the Two-Phase Flow Model Presented in Sect.
4.6 (adapted from Table 1, Ref. [39]).

ANHBCEXP — Brooks-Corey pore distribution parameter for anhydrite (dimensionless). Distribution: Student’s
with 5 degree of freedom. Range: 0.491 — 0.842. Mean, median: 0.644, 0.644.

ANHBCVGP — Pointer variable for selection of relative permeability model for use in anhydrite. Distribution:
Discrete with 60% 0, 40% 1. Value of 0 implies Brooks-Corey model; value of 1 implies van Genuchten-Parker
model.

ANHPRM- Logarithm of anhydrite permeability (mz). Distribution: Student’s with 5 degrees of freedom. Range:

—21.0to—17.1 (i.e., permeability range is 1 x 1021 to1x 10171 mz). Mean, median: —18.9,—18.9. Correlation:
—0.99 rank correlation with ANHCOMP.

ANRGSSAT — Residual gas saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees of
freedom. Range 1.39 x 1072 t0 1.79 x 101, Mean, median: 7.71 x 10_2, 7.71 x 1072,

BHPRM — Logarithm of borehole permeability (mz). Distribution: Uniform. Range: —14 to —11 (i.e., permeability
range is 1 x 107140 1 x 10711 m2). Mean, median: —12.5, —12.5.

HALPOR — Halite porosity (dimensionless). Distribution: Piecewise uniform. Range: 1.0 x 1073 to 3 x 1072,
Mean, median: 1.28 x 1072, 1.00 x 1072,

HALPRM — Logarithm of halite permeability (mz). Distribution: Uniform. Range: —24 to —21 (i.e., permeability

range is 1 x 1024 t0 1 x 10721 m2). Mean, median: —22.5, —22.5. Correlation: —0.99 rank correlation with
HALCOMP.

SALPRES — Initial brine pressure, without the repository being present, at a reference point located in the center of
the combined shafts at the elevation of the midpoint of MB 139 (Pa). Distribution: Uniform. Range: 1.104 x 107
to 1.389 x 107 Pa., Mean, median: 1.247 x 107 Pa, 1.247 x 107 Pa.

SHPRMDRZ — Logarithm of permeability (m2) of DRZ surrounding shaft. Distribution: Triangular. Range: —17.0
to —14.0 (i.e., permeability range is 1 x 1017 to 1 x 10-14 m2). Mean, mode: —15.3, —15.0.

SHRBRSAT — Residual brine saturation in shaft (dimensionless). Distribution: Uniform. Range: 0 to 0.4. Mean,
median: 0.2, 0.2.

SHRGSSAT — Residual gas saturation in shaft (dimensionless). Distribution: Uniform. Range: 0 to 0.4. Mean,
median: 0.2, 0.2.

WASTWICK — Increase in brine saturation of waste owing to capillary forces (dimensionless). Distribution:
Uniform: Range: 0 — 1. Mean, median: 0.5, 0.5.

WGRCOR — Corrosion rate for steel under inundated conditions in the absence of CO7 (m/s). Distribution:
Uniform. Range: 0tol.58 x 1014 nys. Mean, median: 7.94 x 10-15 m/s, 7.94 x 10~15 mys.
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Table 4.1 Continued

WGRMICI — Microbial degradation rate for cellulose under inundated conditions (mol/kg s). Distribution:
Uniform. Range: 3.17 x 1071016 9.51 x 1079 mol/kg s. Mean, median: 4.92 x 1079 mol/kg s, 4.92 x 109 mol/kg
.

WMICDFLG — Pointer variable for microbial degradation of cellulose. Distribution: Discrete, with 50% 0, 25%
1, 25% 2, WMICDFLG = 0, 1, 2, implies no microbial degradation of cellulose, microbial degradation of only
cellulose, microbial degradation of cellulose, plastic and rubber.
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4.3 Generation of Sample

Several sampling strategies are available, including random sampling (Sect. 7.5.1, [61];[62]),
quasi random sampling [63-66], importance sampling (Chap. 4, [67] ; Chap. 3, [68] ; Chap. 6,
[69]), and Latin hypercube sampling [70; 71]. Latin hypercube sampling is very popular for use in
analyses with computationally demanding models because its efficient stratification properties
facilitate the extraction of a large amount of uncertainty and sensitivity information with a
relatively small sample size [39; 72; 73].

Latin hypercube sampling operates in the following manner to generate a sample of size nS
from the distributions D;,D,, ...,D,y associated with the elements of X = [X,X,, ...,X,y]. The

range of each x;is exhaustively divided into nS disjoint intervals of equal probability and one
value X; is randomly selected from each interval. The nS values for X are randomly paired
without replacement with the nS values for X, to produce nS pairs. These pairs are then randomly
combined without replacement with the nS values for X5 to produce xS triples. This process is
continued until a set of nS nX-tuples X; =[X;,X;5, ..., X; x|, i=1,2, ..., nS, is obtained, with this

set constituting the Latin hypercube sample (LHS) (Figure 4.2).

Latin hypercube sampling is a good choice for a sampling procedure when computationally
demanding models are being studied. The popularity of Latin hypercube sampling has led to the
original article being designated a Technometrics classic in experimental design [74]. When the
model is not computationally demanding, many model evaluations can be performed and random
sampling works as well as Latin hypercube sampling.

Control of correlations is an important aspect of sample generation. Specifically, correlated
variables should have correlations close to their specified values, and uncorrelated variables should
have correlations close to zero. In general, the imposition of complex correlation structures is not
easy. However, Iman and Conover have developed a broadly applicable procedure to impose rank
correlations on sampled values that (i) is distribution free (i.e., does not depend on the assumed
marginal distributions for the sampled variables), (ii) can impose complex correlation structures
involving multiple variables, (iii) works with both random and Latin hypercube sampling, and (iv)
preserves the intervals used in Latin hypercube sampling [75; 76]. Details on the implementation
of the procedure are available in the original reference [75]; illustrative results are provided in
Figure 4.3.
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Figure 4.2 Example of Latin hypercube sampling to generate a sample of size nS =5 from X = [U,
V] with U normal on [-1, 1] (mean = 0.0; 0.01 quantile = —1; 0.99 quantile = 1) and V triangular
on [0, 4] (mode = 1): (a) Upper frames illustrate sampling of values for U and V, and (b) Lower
frames illustrate two different pairings of the sampled values of U and V in the construction of a
Latin hypercube sample (Figure 5.3, Ref. [33]).
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Figure 4.3 Examples of rank correlations of 0.00, 0.25, 0.50, 0.75, 0.90 and 0.99 imposed with the
Iman/Conover restricted pairing technique for an LHS of size nS = 1000 (Figure 5.1, Ref. [77]).

Unlike simple random sampling, the size of an LHS cannot be increased by simply adding one
sample element at a time. However, it is possible to retain the elements of an initial LHS in an
expanded LHS [78-80]. This can be important in a computationally demanding analysis in which
it is desired both to increase the size of an LHS and also to retain already performed calculations
in the analysis. Further, the stability of results obtained with Latin hypercube sampling for a given
sample size can be assessed with a replicated sampling technique developed by R.L. Iman [40;
81].

The example analysis involving the model for two-phase fluid flow used three independently
generated (i.e., replicated) LHSs of size nS = 100 each from the 31 epistemically uncertain
variables under consideration. The purpose of the replication was to provide a basis for testing the
stability of uncertainty and sensitivity analysis results obtained with Latin hypercube sampling
(Sects. 7, 8, Ref. [40]). The Iman/Conover restricted pairing technique indicated in the preceding
paragraph was used to control correlations within the individual samples. The analyses with the
three replicated samples were sufficiently similar that each analysis would have independently
lead to the same insights with respect to model behavior [39]. However, to make full use of all
model evaluations, final presentation results [35; 36] were calculated with the three replicated
samples pooled together to produce a single sample of size nS = 300.

Additional information: Sect. 6.3, Ref. [41]; Refs. [70; 71; 82-84].
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4.4 Propagation of Sample through the Analysis

Propagation of the sample through the analysis to produce the mapping [X,Y(X.)],i=1,2, ...,

nS, from analysis inputs to analysis results is often the most computationally demanding part of a
sampling-based uncertainty and sensitivity analysis. The details of this propagation are analysis
specific and can range from very simple for analyses that involve a single model to very
complicated for large analyses that involve complex systems of linked models [38; 55].

When a single model is under consideration, this part of the analysis can involve little more
than putting a DO loop around the model that (i) supplies the sampled input to the model, (ii) runs
the model, and (iii) stores model results for later analysis. When more complex analyses with
multiple models are involved, considerable sophistication may be required in this part of the
analysis. Implementation of such analyses can involve (i) development of simplified models to
approximate more complex models, (i) clustering of results at model interfaces, (ii) reuse of model
results through interpolation or linearity properties, and (iv) complex procedures for the storage
and retrieval of analysis results.

As is typical of many large analyses, propagation of the three replicated LHSs through the two-
phase flow model produced a large number of time-dependent results. The subset of these results
used for illustration of uncertainty and sensitivity analysis procedures in this presentation is
summarized in Table 4.2.

Additional information: Examples of complex analyses that have used Latin hypercube
sampling in the propagation of epistemic uncertainty are provided by (i) the NUREG-1150
analyses for five nuclear power plants [25; 55-60], (ii) the analyses carried out in support of the
Compliance Certification Application for the Waste Isolation Pilot Plant [38], and (iii1) the analyses
carried out in support of the licensing application for the proposed high-level radioactive waste
repository at Yucca Mountain, Nevada [85].
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Table 4.2 Definition of Dependent Variables Calculated by BRAGFLO Program for Two Phase
Flow and Used in the Illustration of Uncertainty and Sensitivity Analysis Procedures.

BNBHDNUZ — Cumulative brine flow (1n3) down borehole at Market Bed (MB) 138 (i.e., from cell 223 to cell 575 in Figure
3, Ref. [34]).

BRAABNIC — Cumulative brine flow (m3) out of north anhydrites A and B into disturbed rock zone (DRZ) (i.e., from cell 556
to cell 527 in Figure 3, Ref. [34]).

BRAABSIC — Cumulative brine flow (m3) out of south anhydrites A and B into DRZ (i.e., from cell 555 to cell 482 in Figure 3,
Ref. [34]).

BRAALIC — Cumulative brine flow (m3) out of all MBs into DRZ (i.e., BRAALIC = BRM38NIC + BRAABNIC + BRM39NIC +
BRM38SIC + BRAABSIC + BRM39SIC).

BRM38NIC — Cumulative brine flow (m3) out of north MB138 into DRZ (i.e., from cell 588 to cell 587 in Figure 3, Ref. [34]).

BRM38SIC — Cumulative brine flow (m3) out of south MB138 into DRZ (i.e., from cell 571 to cell 572 in Figure 3, Ref. [34]).

BRM39NIC — Cumulative brine flow (m3) out of north MB139 to DRZ (i.e., from cell 540 to cell 465 in Figure 3, Ref. [34]).

BRM39SIC — Cumulative brine flow (m3) out of south MB139 into DRZ (i.e., from cell 539 to cell 436 in Figure 3, Ref. [34]).

BRNREPTC — Cumulative brine flow (m3) into repository (i.e., into regions corresponding to cells 596 — 625, 638 — 640 in
Figure 3, Ref. [34]).

REP SATB — Brine saturation in upper waste panels (i.e., average brine saturation calculated over cells 617 — 625 in Figure 3,
Ref. [34]).

WAS PRES — Pressure (Pa) in lower waste panel (i.e., average pressure calculated over cells 596 — 616 in Figure 3, Ref. [34]).

WAS SATB — Brine saturation in lower waste panel (i.e., average brine saturation calculated over cells 596 — 616 in Figure 3,
Ref. [34])

Notation: The designator EO is used to indicate results calculated for undisturbed conditions, and the designator
E2 is used to indicate results calculated for disturbed conditions due to a drilling intrusion that penetrates the lower
waste panel of the repository 1000 yr after repository closure. Further, the designator R1 indicates results calculated
for the first of the three replicated Latin hypercube samples indicated in Sect. 4.3, and the designators R1, R2, R3
collectively are used to indicate results calculated with the three replicates pooled together.
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4.5 Presentation of Uncertainty Analysis Results

Presentation of uncertainty analysis results is generally straight forward and involves little more
than displaying the results associated with the already calculated mapping [X;,Y(X;)],i=1,2, ...,

nS. Presentation possibilities include means and standard deviations, density functions, cumulative
distribution function (CDFs), complementary cumulative distribution functions (CCDFs), and box
plots [71]. Presentation formats such as CDFs (Figure 4.1a), CCDFs (Figure 4.4a) and box plots
(Figure 4.4b) are usually preferable to means and standard deviations because of the large amount
of uncertainty information that is lost in the calculation of means and standard deviations. Owing
to their flattened shape, box plots are particularly useful when it is desired to the display and
compare the uncertainty in a number of related variables.
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Figure 4.4 Representation of uncertainty in scalar-valued analysis results: (a) CDFs and CCDFs
(Figure 7.2, Ref. [33]) and (b) box plots (Figure 7.4, Ref. [33]).

The representational challenge is more complex when the analysis outcome of interest is a
function rather than a scalar. For example, a system property that is a function of time is a common
analysis outcome. As another example, a CCDF that summarizes the effects of aleatory
uncertainty is a standard analysis outcome in risk assessments. An effective display format for
such analysis outcomes is to use two plot frames, with first frame displaying the analysis results
for the individual sample elements and the second frame displaying summary results for the
outcomes in the first frame (e.g., quantiles and means) (Figure 4.5).
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Figure 4.5 Representation of uncertainty in analysis results that are functions: (a, b) Pressure as a
function of time (Figs. 7.5, 7.9, Ref. [33]), and (c, d) Effects of aleatory uncertainty summarized
as a CCDF (Figure 10.5, Ref. [33]).

4-12



Status Report on Uncertainty Quantification and Sensitivity Analysis Tools in GDSA Framework
September 2019

4.6 Determination of Sensitivity Analysis Results
Determination of sensitivity analysis results is usually more demanding than the presentation

of uncertainty analysis results due to the need to actually explore the mapping [X,,¥(X,)],i=1,2,

., nS, to assess the effects of individual components of X on the components of y. A number of
approaches to sensitivity analysis that can be used in conjunction with a sampling-based

uncertainty analysis are listed and briefly summarized below. In this summary, (i) X; is an
element of X = [X,,X,, ...,X ], (ii) V, is an element of y(x) =[},(X), ¥,(X), ..., ,(X)], (iii) X,
= [Xis X5 «os X ], i =1,2, ..., nS, is a random or Latin hypercube sample from the possible
values for X generated in consistency with the joint distribution assigned to the x;, (iv) ¥, = Y(X,)

fori=1,2,...,nS, and (v) Xx;

; and Y, are elements of X;and Y, , respectively.

4.6.1 Scatterplots

Scatterplots are plots of the points [x,.j , V] fori=1,2, ..., nS and can reveal nonlinear or other

unexpected relationships (Figure 4.6). In many analyses, scatterplots provide all the information
that is needed to understand the sensitivity of analysis results to the uncertainty in analysis inputs.
Further, scatterplots constitute a natural starting point in a complex analysis that can help in the
development of a sensitivity analysis strategy using one or more additional techniques.

Additional information: Sect. 6.6.1, Ref. [41]; Sect. 6.1, Ref. [23].
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Figure 4.6 Examples of scatterplots obtained in a sampling-based uncertainty/sensitivity analysis
(Figs. 8.1, 8.2, Ref. [33]).
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4.6.2 Cobweb Plots

Cobweb plots are plots of the points [X,, v, =[x, X5, -.sX; Yyl fori=1,2, ..., nS and
provide a two-dimensional representation for [X;,y, ], which is a nX + 1 dimensional quantity.
Specifically, values for the y, and also for the elements x; of X;appear on the ordinate of a

cobweb plot and the variables themselves are designated by fixed locations on the abscissa. Then,
the values y,,i=1, 2, .., nS, for y, and the values N 1, 2, ..., nS, for each X, are plotted

above the locations for y, and x; on the abscissa and each nX + 1 dimensional point [X,, y, ]is
represented by a line connecting the values for the individual components of [X,,y, ]. When y,
and the x's have significantly different ranges, their values will have to rank transformed in order
to produce a practical and readable plot. Cobweb plots provide more information in a single plot
frame than a scatterplot but are harder to read.

Additional information: Sect. 11.7, Ref. [86].

4.6.3 Regression Analysis

Regression analysis provides an algebraic representation of the relationships between J; and

one or more X j'S. Unless stated otherwise, regression analysis is usually assumed to involve the

construction of linear models of the form

nX
P=by+ ) bx, (4.6.1)
j=1

for multiple independent variables (i.e., X;;,X;5, -..,X; v ). The regression coefficients in Eq.

(4.6.1) are determined such that the sum

S (n-5) - §|:yi —{b(, S, ﬂ (4.6.2)

i=l1

is minimized. As a result, such regression models in are often referred to as least squares models
due to the minimization of the sums of squares in Eq. (4.6.2).

An important property of least squares regression models is the equality

nS nS nS

27 =20 -3) + (5 x) with y=3 5, /nS. (463)

=1 =1 i=1
For notational convenience, the preceding equality is often written

S8, =SSy, + S8, (4.6.4)

tot
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where
nS nS nS

St = 2 (3 =) s 8Sg = D (Fi = F) +88es = (51— 1) (4.6.5)

i=1 i=1 i=1

and the three preceding summations are called the total sum of squares (SS,,, ), regression sum of

squares (SS,,, ) and residual sum of squares (SS..,), respectively.
The ratio
5 nS ) ) nS 2
R* =88, [ 8810 = 2.(5 =F)" | 2(3: - F) (4.6.6)
i=1

i=1

provides a measure of the extent to which the regression model can match the observed data.

Specifically, when the variation about the regression model is small (i.e., S, is small relative to

res

S8, )» then the corresponding R’ value is close to 1, which indicates that the regression model is

accounting for most of the uncertainty in y. Conversely, an R* value close to 0 indicates that the
regression model is not very successful in accounting for the uncertainty in y. When the individual

X ; in the regression model in Eq. (4.6.1) are linearly independent, the R? value for the regression

model can be expressed as

R*=S5S,./SS, =Rl +R +..+ R}, (4.6.7)

reg

where Rf. is the R* value that results from regressing y on only x - Thus, Rjz. is equal to the

contribution of X, to the R* value for the regression model in Eq. (4.6.1) when the x's are

linearly independent.

The regression coefficients bj ,j=1,2, ..., nX, are not very useful in sensitivity analysis
because each b . 1s influenced by the units in which X is expressed and also does not incorporate

any information on the distribution assigned to x;. Because of this, the regression model in Eq.

(4.6.1) is usually reformulated as

—
<>
|
<
Ss?
\
>
Il

Zz;(bfej /3)(x; %, )/SJ s (4.6.8)

where

§=13 (v -5) /(ns —1)}1/2 5, = {Z(x] -%,) /(ns —1)}1/2 X, = Zj:x] /nS. (4.6.9)
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The coefficients bj§j /S in Eq. (4.6.8) are referred to as standardized regression coefficients
(SRCs).

The SRC b ,5 i /§ provides a measure of variable importance based on the effect on y relative
to the standard deviation § of y of moving x; away from its expected value X; by a fixed fraction
of its standard deviation § ;- Further, when the xj's are linearly independent, the inclusion or
exclusion of an individual x; from the regression models in Eqs. (4.6.1) and (4.6.8) has no effect
on the SRCs for the remaining variables in the model. Thus, as long as the x's are linearly
independent, the SRCs bj§j /5 in Eq. (4.6.8) provide a useful measure of variable importance, with
(1) the absolute values of the coefficients bj§ i / § providing a comparative measure of variable
importance (i.e., variable X, is more important than variable x, if |b,5, /5| >|b,5,/5|) and (ii)

the sign of b j§j / § indicating whether x , and y tend to move in the same direction or in opposite

directions. However, when xj's are not linearly independent, SRCs do not provide reliable

indications of variable importance (Sect. 6.6.7, Ref. [41]).

For purposes of sensitivity analysis, there is usually no reason to construct a regression model
containing all the uncertain variables (i.e., Xj,X,,...,X,y) as indicated in Egs. (4.6.1) and (4.6.8).
Rather, a more appropriate procedure is to construct regression models in a stepwise manner. With
this procedure, a regression model is first constructed with the most influential variable (e.g., %,

as determined based on R”values for regression models containing only single variables). Then,
a regression model is constructed with X, and the next most influential variable (e.g., X, as

determined based on R* values for regression models containing ¥, and each of the remaining

variables). The process then repeats to determine J; in a similar manner and continues until no

more variables with an identifiable effect on y can be found. Variable importance (i.e., sensitivity)
is then indicated by the order in which variables are selected in the stepwise process, the changes
in cumulative R* values as additional variables are added to the regression model, and the SRCs
for the variables in the final regression model. An example of a sensitivity analysis of this form is
presented in Table 4.3.
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Table 4.3 Example of Stepwise Regression Analysis to Identify Uncertain Variables Affecting the
Uncertainty in Repository Pressure at 10,000 yr in Figure 4.5a (Table 8.6, Ref. [33]).

Step? Variableb SRC® R

1 WMICDFLG 0.718 0.508
2 HALPOR 0.466 0.732
3 WGRCOR 0.246 0.792
4 ANHPRM 0.129 0.809
5 SHRGSSAT 0.070 0.814
6 SALPRES 0.063 0.818

* Steps in stepwise regression analysis.

® Variables listed in the order of selection in regression analysis.

¢ SRC:s for variables in final regression model.

4 Cumulative R? value with entry of each variable into regression model.

A display of regression results of the form shown in Table 4.3 is very unwieldy when results
at a sequence of times are under consideration. In this situation, a more compact display of

regression results is provided by plotting SRCs as functions of time for all x; that appear to have

a significant effect on y at some point in the time interval under consideration (Figure 4.7a).

Additional information: Sects. 6.6.2, 6.6.3, 6.6.5, Ref. [41]; Sect. 6.3, Ref. [23]. Further,
general information on regression analysis is available in a number of texts (e.g., Refs. [87-91]).

4.6.4 Correlation

The (Pearson or sample) correlation coefficient (CC) c¢(x;, y) provides a measure of the

strength of the linear relationship between x; and y and is defined by

nS
> (3 =% ) (3 - 7)
c(x;. )= = . (4.6.10)

Se-sr] [So-m]

i=1 i=1

The CC ¢( x;, y) has a value between —1 and 1, with a positive value indicating that x; and y tend
to increase and decrease together and a negative value indicating that x; and y tend to move in
opposite directions. Further, gradations in the absolute value of ¢(x;, y) between 0 and 1
correspond to a trend from no linear relationship between X ; and y to an exact linear relationship

between x; and y. As an example, the CCs associated with the scatterplots in Figure 4.8 are

¢(HALPOR, REP SATB) = 0.75 (Figure 4.8a) and c(WGRCOR, REP SATB) = —0.41 (Figure
4.8b).
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Figure 4.7 Time-dependent sensitivity analysis results for uncertain pressure curves in Figure 4.5a:
(a) SRCs as a function of time, and (b) PCCs as a function of time (Figure 8.3, Ref. [33]).
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Figure 4.8 Illustration of correlation coefficients: (a) c(x;, y) =0.75 with x; = HALPOR and y
= REP_SATB and (b) c(x;,y) =-0.41 with x; = WGRCOR and y = REP_SATB (Figure 8, Ref.
[21]).

The CC ¢(x,, y) is closely related to results obtained in a linear regression relating y to x ;.
Specifically, c( X, y) is equal to the standardized regression coefficient in the indicated regression,

and the absolute value of ¢( X, y) is equal to the square root of the corresponding R? value. As a

4-18



Status Report on Uncertainty Quantification and Sensitivity Analysis Tools in GDSA Framework
September 2019

correlation of 0 only indicates the absence of a linear association between x; and y, it does not

preclude the existence of a well-defined nonlinear relationship between x;and y (e.g., y =sin X;
).

Additional information: Sect. 6.6.4, Ref. [41]; Sect. 6.2, Ref. [23].

4.6.5 Partial Correlation

The partial correlation coefficient (PCC) between x; and y can be defined in the following

manner. First, the two regression models indicated below are constructed:

nX nX

R=co+)c,x,and =b,+ ) bx,. (4.6.11)
p=l1 p=l1
p*j p#j

Then, the results of the two preceding regressions are used to define the new variables x; — fcj and

y—y. The PCC between x;and y is the CC c(x; —fcj,y—j;) (see Eq. (4.6.10)) between x; —fcj
and y—y. As for SRCs, PCCs are often defined for variables that are functions of time and
presented as time-dependent plots (Figure 4.7b).

The PCC characterizes the linear relationship between X; and y after a correction has been

made for the linear effects on y of the remaining elements of X, and the SRC characterize the effect
on y that results from perturbing X, by a fixed fraction of its standard deviation. Thus, PCCs and

SRCs provide related, but not identical, measures of variable importance. In particular, the PCC
between x; and y provides a measure of variable importance that tends to exclude the effects of

the other elements of X, the assumed distribution for X, and the magnitude of the impact of the
uncertainty in X, on the uncertainty in y. In contrast, the SRC relating X to y is more influenced

by the distribution assigned to X; and the magnitude of the impact of the uncertainty in X, on the

uncertainty in y. However, when the elements of X are linearly independent, PCCs and SRCs give
the same rankings of variable importance. Specifically, an ordering of variable importance based
on the absolute value of PCCs is the same as an ordering based on either the absolute value of CCs
or the absolute value of SRCs (Sect. 6.6.4, Ref. [41]). A cosmetic benefit of using PCCs is that
PCCs tend to be spread out in value more than SRCs and thus produce results that are easier to
read (e.g., compare Figure 4.7a and Figure 4.7b); however, the downside to this is that a variable
can appear to have a larger effect on the uncertainty in y than is actually the case.

As for analyses based on SRCs, analyses based on PCCs can give very misleading results when
correlations exist between the elements of X. Specifically, if X contains two highly correlated
variables, then each variable will cancel the other’s effect when PCCs with y are calculated.

Additional information: Sect. 6.6.4, Ref. [41]; Sect. 6.4, Ref. [23]; Ref. [92].
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4.6.6 Rank Transformations

A rank transformation replaces values for ), and X, with their corresponding ranks.

Specifically, the smallest value for a variable is assigned a rank of 1; next largest value is assigned
a rank of 2; tied values are assigned their average rank; and so on up to the largest value, which is
assigned a rank of nS. Use of the rank transformation converts a nonlinear but monotonic

relationship between ), and Xx;to a linear relationship and produces rank (i.e., Spearman)

correlations, rank regressions, standardized rank regression coefficients (SRRCs) and partial rank
correlation coefficients (PRCCs). In the presence of a nonlinear but monotonic relationships

between the x; and ), the use of the rank transform can substantially improve the resolution of

sensitivity analysis results (Table 4.4).

Table 4.4 Comparison of Stepwise Regression Analyses with Raw and Rank-Transformed Data
for Variable BRAALIC in Figure 4b (Table 8.8, Ref. [33]).

Raw Data Rank-Transformed Data
Step? VariableP SRC® R VariableP SRRC*® R
1 ANHPRM 0.562 0.320 WMICDFLG —0.656 0.425
2 WMICDFLG —0.309 0.423 ANHPRM 0.593 0.766
3 WGRCOR —0.164 0.449 HALPOR —0.155 0.802
4 WASTWICK —0.145 0.471 WGRCOR —0.152 0.824
5 ANHBCEXP -0.120 0.486 HALPRM 0.143 0.845
6 HALPOR -0.101 0.496 SALPRES 0.120 0.860
7 WASTWICK -0.010 0.869

@ Steps in stepwise regression analysis.

Variables listed in order of selection in regression analysis.

¢ SRCs for variables in final regression model.

Cumulative R? value with entry of each variable into regression model.
¢ SRRC:s for variables in final regression model.

An effective analysis strategy with stepwise regression analysis with either untransformed or
rank-transformed variables is to have a scatterplot printed for each variable selected in the stepwise

process. Even when the regression performs poorly (i.e., has a low R* value), it often selects the
dominant variables even though they have nonlinear effects on the output variable of interest.
Examination of the indicated scatterplots will often identify the dominant variables and provide a

clear indication of why a model with a low R* value was obtained.
Additional information: Sect. 6.6.6, Ref. [41]; Sect. 6.6, Ref. [23]; Ref. [93].

4.6.7 Tests for Patterns Based on Gridding.

Analyses on raw and rank-transformed data can fail when the underlying relationships between
the x; and ), are nonlinear and nonmonotonic (Figure 4.9). The scatterplot in Figure 4.6b is for

the pressure at 10,000 yr in Figure 4.9a versus the uncertain variable BHPRM. The analyses with
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PRCCs summarized in Figure 4.9b fail at later times because the pattern appearing in Figure 4.6b
is too complex to be captured with a regression analysis based on raw or rank-transformed data.
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Figure 4.9 Illustration of failure of a sensitivity analysis based on rank-transformed data: (a)
Pressures as a function of time and (b) PRCCs as a function of time (Figure 8.7, Ref. [33]).

An alternative analysis strategy for situations of this type is to place grids on the scatterplot for
J; and x;; and then perform various statistical tests to determine if the distribution of points across
the grid cells appears to be nonrandom. Appearance of a nonrandom pattern indicates that x; has
an effect on y. Possibilities include (i) tests for common means (CMNs) and common distributions
(denoted by CL for common locations) for values of ), based on partitioning the range of x;

(Figure 4.10a) and (i1) tests for common medians (CMDs) and statistical independence (SI) based
on partitioning the ranges of x; and y (Figure 4.10a for CMDs and 4.10b for SI).

Descriptions of the preceding tests follow. The CMNss test is based on dividing the values of
xX; (ie, x;,i=1,2, .., nS) into nl classes and then using the F-test to determine if y has a

common mean across these classes (Sect. 3.1, Ref. [94]). The required classes are obtained by
dividing the range of X, into a sequence of mutually exclusive and exhaustive subintervals

containing equal numbers of sampled values (Figure 4.10a).

The CLs test employs the Kruskal-Wallis test statistic 7, which is based on rank-transformed
data and uses the same classes of x; values as the CMNs test (pp. 229-230, Ref. [95]).
Specifically, if the y values conditional on each class of x; values have the same distribution, then

the statistic 7 approximately follows a y? distribution with nf — 1 degrees of freedom (pp. 230 -
231, Ref. [95]). Thus, the probability prob(T >T |nl —1) of obtaining a value T that exceeds 7
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in the presence of identical y distributions for the individual classes can be obtained from a Y ’
distribution with n/ — 1 degrees of freedom.

The CMDs test is based on the } ? test for contingency tables, which can be used to test for
the equality of the median values of y for the classes into which the values of X, have been divided
(pp. 143-144, Ref. [95]).

The SI test also uses the ¥ ? _test to indicate if the pattern appearing in a scatterplot appears to
be nonrandom. The SI test uses the same partitioning of X, values as used for the CMNs, CLs

and CMDs tests. In addition, the y values are also partitioned in a manner analogous to that used
for the x; values (Figure 4.10b). The four tests described in this section are illustrated in Table

4.5 for y=WAS PRES at 10,000 yr under disturbed conditions (Figure 4.9a).
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Figure 4.10 Grids used to test for nonrandom patterns: (a) Partitioning of range of X, for tests

based on common means and common distributions and ranges of x; and Y, for test based on
common medians (Figure 8.8, Ref. [33]), and (b) Partitioning of ranges of x, and y, for test of
statistical independence (Figure 8.9, Ref. [33]).
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Table 4.5 Statistical Tests for Patterns Based on Gridding for Pressure (WAS PRES) at 10,000 yr
under Disturbed (i.e., E2) Conditions (Figure 4.9a) (adapted from Tables 4 and 21 of Ref. [96]).

) CMNs: 1x5P | CLs: 1x5¢ | CMDs: 2x5d SI: 5x5¢
Variable?
Rank p-val | Rank p-val | Rank p-val | Rank p-val

BHPRM 1 0.0000 1 0.0000 1 0.0000 1 0.0000
HALPRM 2 0.0000 2 0.0000 2 0.0000 2 0.0002
ANHPRM 3 0.0002 3 0.0000 3 0.0007 4 0.0049
ANHBCEXP 4 0.0405 4 0.0602 4 0.0595 14 0.4414
HALPOR 5 0.0415 5 0.0940 5 0.0700 11 0.3142
WGRCOR 17 0.5428 9 0.2242 14.50.5249 3 0.0002

2 Table includes only variables that had a p-value less than 0.05 for at least one of
the procedures although the variable rankings for a specific procedure are based
on the p-values obtained for that procedure for all variables considered in the
analysis (see Table 1).

b Variable ranks and p-values for CMNs test with 1 x 5 grid; see Eq. (15), Ref.
[23]. Exceptions for CMNs, CLs, CMDs and SI tests: because variables
ANHBCVGP and WMICDFLG are discrete with 2 and 3 values, respectively (see
Table 1), nD = 2 and 3 rather than 5 for these two variables.

€ Variable ranks and p-values for CLs test with 1 x 5 grid; see Eq. (16), Ref. [23].
d variable ranks and p-values for CMDs test with 2 x 5 grid; see Eq.(18), Ref. [23].
€ Variable ranks and p-values for SI test with 5 x 5 grid; see Eq. (20), Ref. [23].

Additional information: Ref. [96]; Sects. 6.6.8 and 6.6.9, Ref. [41]; Sect. 6.6, Ref. [23]. As
discussed and illustrated in Sect. 6.7 of Ref. [23], several grid-based tests for patterns in
scatterplots based on measures of entropy give results similar to those obtained with the SI test.

4.6.8 Nonparametric Regression

Nonparametric regression seeks more general models than those obtained by least squares
regression and can succeed in situations such as the one illustrated in Figure 4.9 where regression
and correlation analysis based on raw and rank-transformed data fail. Nonparametric regression
attempts to find models that are local in the approximation to the relationship between y and

multiple X, 'S, and, as a result, are better at capturing complex nonlinear relationships than models
obtained with traditional linear regression or rank regression. Nonparametric regression models

can be constructed in a stepwise manner with (i) incremental changes in R? values with the
addition of successive variables to the model providing an indication of variable importance and
(i1) a p-value (e.g., 0.02) used to determine a stopping point in the stepwise procedure (Sect. 4,
Ref. [97]). As an example, the 10, 000 yr pressure results in Figure 4.9a are analyzed with a
stepwise implementation of the following nonparametric regression procedures (Table 4.6): (i)
locally weighted regression (commonly known as LOESS; see Sect. 3.3.1 and Table 2, Ref. [97]),
(i1) generalized additive models (GAMs; see Sect. 3.3.2 and Table 3, Ref. [97]), (iii) projection
pursuit regression (PP_REG; see Sect. 3.3.3 and Table 4, Ref. [97], and (iv) recursive partitioning
regression (RP_REG; see Sect. 3.3.4 and Table 5, Ref. [97]). For comparison, stepwise results are
also presented in Table 4.6 for stepwise implementations of (i) linear regression (LIN_REG), (ii)
rank regression (RANK REG), (iii) quadratic regression (QUAD REG; i.e., linear regression with
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the original variables, their squares, and binary products being the candidates for inclusion in the
regression model; see Sect. 4.2 and Table 1, Ref. [97]), and (iv) a technique to be discussed later
designated the SRD/RCC test. Brief descriptions of QUAD REG, LOESS, GAMs, PP REG and
RP REG are presented after the next paragraph.

Table 4.6 Nonparametric Sensitivity Analyses for Pressure (WAS PRES) at 10,000 yr under
Disturbed (i.e., E2) Conditions (Figure 4.9a) (adapted from Table 9, Ref. [21]).

Variable® ‘ R ‘ af ‘ p-Val! ‘ Variable ‘ e ‘ daf ‘ p-Val ‘ Variable ‘ I’ ‘ af ‘ p-Val
Pressure, Disturbed (i.e., E2) Conditions at 10,000 yr (Figure 9a)
LIN_REG RANK_REG QUAD_REG
HALPRM 0.1410 | 1.0 0.0000 | HALPRM 0.1289 | 1.0 0.0000 | BHPRM 0.6098 | 2.0 0.0000
ANHPRM 0.1999 | 1.0 0.0000 | ANHPRM 0.1866 | 1.0 0.0000 | HALPRM 0.7006 | 3.0 0.0000
HALPOR 0.2203 1.0 0.0057 | HALPOR 0.2049 | 1.0 0.0094 | ANHPRM 0.7902 | 4.0 0.0000
LOESS PP_REG HALPOR 0.8291 | 5.0 0.0000
BHPRM 0.6625 | 8.8 0.0000 | BHPRM 0.6646 | 9.0 0.0000 | ANHBCVGP 0.8400 | 6.0 0.0023
ANHPRM 0.7321 12.8 0.0000 | ANHPRM 0.7603 10.7 0.0000 | WGRCOR 0.8532 | 7.0 0.0013
HALPRM 0.7894 | 10.5 0.0000 | HALPRM 0.8440 | 9.8 0.0000 | SHRBRSAT 0.8654 | 8.0 0.0030
ANHBCVGP 0.8286 | 28.9 0.0058 | HALPOR 0.8965 10.4 0.0000 RP_REG
GAM SRD/RCC TEST BHPRM 0.7163 | 17.0 0.0000
BHPRM 0.6654 | 10.0 0.0000 | BHPRM NA 4.0 0.0000 | HALPRM 0.8474 | 15.0 0.0000
ANHPRM 0.7555 | 4.0 0.0000 | HALPRM NA 4.0 0.0000 | ANHPRM 0.8894 | -9.0 0.0000
HALPRM 0.8242 | 2.0 0.0000 | ANHPRM NA 4.0 0.0001 | ANRGSSAT 0.9726 | 81.0 0.0000
HALPOR 0.8590 | 2.0 0.0000 | SHPRMDRZ NA 4.0 0.0150
2 Variables listed in order of selection.
b Cumulative R? value with entry of each variable into model.
¢ Incremental degrees of freedom with entry of each variable into model for all cases except
SRD/RCC test; df fixed at 4.0 for all variables for SRD/RCC test.
4" p-value for model with addition of each new variable. Stepwise procedure terminates at a p-value of 0.02.
¢ NA indicates that result is not applicable.

As examination of Table 4.6 shows, the LIN REG and RANK REG techniques perform very
poorly as indicated by their R* values. In contrast, QUAD REG and the four nonparametric
regression procedures are able to capture most of the uncertainty in the variable under
consideration and provide consistent rankings of the variables that contribute to this uncertainty.

Each of the traditional regression approaches (i.e., LIN REG, RANK REG and QUAD_REG)
can be implemented the same way with a forward stepwise selection procedure and a p-value
criterion of a = 0.02 (Table 4.3). The forward selection procedure with QUAD_ REG requires
some additional explanation as there are many ways to structure this procedure to incorporate
variable interactions and squares. The approach taken to obtain the QUAD REG results in Table
4.6 is to consider a variable, its square, and all two-way interactions at each step of the selection
procedure. Thus, if X, is the first variable selected, then the corresponding model is of the form

P=pB+BF+ B 4.6.12)
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Then, if 322 is the second variable selected, the corresponding model is of the form

y= ﬂAo + ﬂ’\lil + Bziz + :Blzilxz + IBA“'%IZ + ﬂAzzfczzv (4.6.13)
and so on (see Sect. 4.2 and Table 1, Ref. [97]).

The LOESS technique is based on the assumption that the relationship between y and X is of the
form

y=f(x)=a(x)+p(x)x, (4.6.14)

where B(X) =[5, (X),3,(X), ....B,y(X)] and X = [x,x,, ...,an]T. In turn, an approximate
relationship of the form

P=F(x)=a(x)+B(x)x (4.6.15)

is sought with LOESS. The quantities ¢(x) and f}(x) for a given value of X are defined to be the
values for oo and B = [f,, 5,,..., B,y ] that minimize the sum

3

nS _x. 2
Y (a+Bx, - 3,) 1—(%} o000 (1 X%, ), (4.6.16)

i=1

where (i) d. (x) is the distance to the »™ nearest neighbor of X in nX-dimensional Euclidean space,
(1) Zp0.4 (xy (| X =X; ||) equals 1 if [[x —X;l| < d, (X) and equals 0 otherwise, and (iii) the individual
independent variables (i.e., x;,x,, ...,X,y ) are normalized to mean zero and standard deviation

one so that the value of the norm ||~|| is not dominated by the units used for these variables. The
determination of o and B is straightforward with the use of appropriate matrix techniques (p. 139,
Ref. [98]). As a reminder, (i) in the first step of a stepwise analysis with LOAS, the model in Eq.
(4.6.15) is constructed for each of the uncertain variables under consideration and the variable x;

that contributes the most to the uncertainty in y is selected, (ii) in the second step, the model in Eq.
(4.6.15) is constructed for X; and each of the remaining uncertain variables and the variable X, is

selected for which x; and X, contribute the most to the uncertainty in y, and (iii) the process

continues in this manner until no additional variables are identified that contribute significantly to
the uncertainty in y. An algorithm for stepwise variable selection with LOESS is described in Sect.
4.3 and Table 2 of Ref. [97].

For GAMs, the function f(X) is assumed to have the form
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f(x)= %fi (x): (4.6.17)

j=

where the f, are arbitrary functions that will be determined as part of the analysis process. In

turn, the observed values for y are assumed to be of the form
vi=r(x)=>f(x). (4.6.18)

Given initial estimates £,, f;, ..., ];nX for f,, fir.... f,x »anestimate f, for f, can be obtained

through use of the relationship

y, —'f:fj(xij);ﬁ(x“) (4.6.19)

fori=1,2,...,nS. In particular, a scatterplot smoother (e.g., LOESS with only one inependent
variable) can be used to smooth the partial residuals on the left hand side of Eq. (4.6.19) across |

. This produces an estimate | for | defined across the range of values for I. Given this estimate for

f, the estimate f, for f2 can be refined in the same manner across the range of values for X, with

f], fg , ﬂ, ..» Jox - This procedure then continues and repetitively cycles through the variables.

The cycling continues until convergence is achieved. The result is f i defined at X, X0 jres Xyg

forj=1, 2, ..., nX. An algorithm for stepwise variable selection with GAMs is described in Sect.
4.4 and Table 3 of Ref. [97]. Additional detail on GAMs is available elsewhere (pp. 90 — 91, Ref.
[99]; pp. 300 — 302, Ref. [100]).

The PP_REG procedure involves both dimension reduction and additive modeling and is based
on the assumption that f{(X) has the form

nD
F(x)=> g (ax), (4.6.20)

s=1
where o, =[a,,c,,,....a,, ], @, and o, are orthogonal for s#7, X = [x,x,, ...,x,,]", a.X
corresponds to a linear combination of the elements of X, and g, is an arbitrary function. Values
for g, a and nD are determined as part of the analysis procedure. The expression in Eq. (4.6.20)

is an additive model with the quantities a X replacing the elements x; of X as the independent

variables. Further, this expression involves a reduction in dimension as #D is usually smaller than
nX. The entities a,, a,, ..., &,, and g,,¢,,...,g,, are estimated as part of the construction

process. This is accomplished by first estimating a,and g,. Specifically, &, and g, are defined

to be the values for a and g, that minimize the sum

i[y,- SACIIE (4.6.21)
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where o € R™, |jaf| =1, and g, is the outcome of using a scatterplot smoother (e.g., LOESS) on
the points [y,ax,], i =1, 2, ..., nS. Once @, and g, are estimated, the partial residuals
y,—g(@x,),i=1,2,...,nS, are used to obtain &, and g,. Specifically, &, and g, are defined

to be the values for a and g, that minimize the sum

nS

Y[y - & (aux,) - g, (ox, )]}2, (4.6.22)

i=l1

where o € R™, |laf| = 1, and g, is the outcome of using a scatterplot smoother on the points
[y, —g,(&,X,),ax,],i=1,2, ..., nS. This process continues until no appreciable improvement

based on a relative error criterion is observed. An algorithm for stepwise variable selection with
PP _REG is described in Sect. 4.5 and Table 4 of Ref. [97]. Additional details on PP_REG is
available elsewhere ([101]; pp. 389-392, Ref. [102]).

The RP_REG procedure is based on splitting the data into subgroups where observations
within each subgroup are more homogeneous than they are over the set of all observations. Then,
f(x) is estimated with linear regression models defined for each subgroup. Specifically, f(X) is
estimated by

F(x)=2(a +Bx)1,(x), (4.6.23)

where (i) A ,s =1, 2, ..., nP, designate the subgroups into which the data are partitioned, (ii)
y=a, +B, X is the least squares approximation to y associated with 4, and (iii) /, is the indicator
function such / (x) =1 if X is associated with A and / (X)=0 otherwise. The subgroups A , s
=1, 2, ..., nP, are developed algorithmically from the observations [X,,y,], i =1, 2, ..., nS.

Additional details of RP_REG are discussed in Sect. 3.3.4 of Ref. [97] and an algorithm for
stepwise variable selection with RP_REG is described in Sect. 4.6 and Table 5 of Ref. [97]. Closely
related to RP_REG are tree-based sensitivity analyses that search for relationships between y and
multiple x's by successively subdividing the sample elements X; on the basis of observed effects

of individual x's on y [103; 104].

An additional use of nonparametric regression models in sampling-based sensitivity analysis
is to first fit a nonparametric regression model to the sampled results and then use this model in a
Sobol’ variance decomposition ([105]; see Sect. 6.13, Ref. [23] and Refs. [106-111] for details on
Sobol’ variance decomposition). Nonparametric regression models can also be effective in
sensitivity analyses that involve categorical variables (i.e., epistemically uncertain analysis inputs
with discrete distributions) [112].

Additional information, background references and examples with respect to the use of
nonparametric regression procedures in sensitivity analysis is available in Refs. [97; 105; 113].
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4.6.9 Squared Differences of Ranks

The SRD/RCC test is the result of combining a test for nonrandomness in the relationship
between an independent and a dependent variable called the squared rank differences (SRD) test
with the Spearman rank correlation coefficient (RCC) [114]. The SRD component of the test is
based on the statistic

0, =Y (r, 1)+ (4.6.24)

where r,;,i=1,2, ..., nS, is the rank of y obtained with the sample element in which x; has rank

i. Under the null hypothesis of no relationship between x, and y, the quantity

s, ={o,~[ns(ns*-1)/6]} /{\ns" e} (4.6.25)

approximately follows a standard normal distribution for nS > 40. Thus, a p-value p . indicative

of the strength of the nonlinear relationship between x; and y can be obtained from Q..

Specifically, p,. is the probability that a value Q ;> O, would occur due to chance if there was

no relationship between x; and y.

The RCC component of the test is based on the rank (i.e., Spearman) correlation coefficient

nS

> [r(x)-(nS+1)/2][r(3,) - (nS +1)/2]

re(x,,y)= B (4.6.26)

{i[r( )-(ns+1)/2] } {Z[r ~(ns+1)/2] }W

i=1

where r(x,) and r(y,) are the ranks associated x; and y for sample element ;. Under the null
hypothesis of no rank correlation between x; and y, the quantity rc(x,, y) has a known distribution
(Table 10, Ref. [95]). Thus, a p-value p, indicative of the strength of the monotonic relationship

between x; and y can be obtained from rc(x;,y).

The SRD/RCC test is obtained from combining the p-values p, and p, to obtain the statistic

2 ==2|In(p,)+In(p,)), (4.6.27)

which has a chi-square distribution with four degrees of freedom. The p-value associated with y;
constitutes the SRD/RCC test for the strength of the relationship between x; and y.
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Results obtained with SRD/RCC test are illustrated in Table 4.6. Like the nonparametric
regression procedures, the SRD/RCC test is able to identify the nonlinear effect associated with
BHPRM for the result in Figure 4.9a, which is completely missed with the linear regression
procedures with raw and rank-transformed data.

Additional information: A detailed description of the SRD/RCC test and the determination of
the associated p-value is available in the original article [114].

4.6.10 Tests for Patterns Based on Distance Measures

Tests based on distance measures consider relationships within the scatterplot for y, and x;

such as the distribution of distances between nearest neighbors and provide a way to identify
nonrandom relationships between y, and x;. A positive feature of these tests is the avoidance of

the problem of defining an appropriate grid as is the case with grid-based methods. However, some
initial tests indicate that these tests may not be as effective as the grid-base techniques illustrated
in Table 4.5 (see Sect. 6.11, Ref. [23]).

Additional information: Sect. 6.11, Ref. [23]; Refs. [115-118].

4.6.11 Two-Dimensional Kolmogorov-Smirnov Test

The two-dimensional Kolmogorov-Smirnov test [119-121] provides another way to test for
nonrandom patterns in the scatterplot for y, and x; that does not require the imposition of a grid

(Sect. 6.10, Ref. [23]). However, some initial tests indicate that this test may not be as effective as
the grid-base techniques illustrated in Table 4.5 (see Sect. 6.10, Ref. [23]).

Additional information: Sect. 6.10, Ref. [23]; Refs. [119-121].

4.6.12 Top-Down Concordance with Replicated Samples

This procedure uses the top-down coefficient of concordance to assess the consistency of
results obtained in independent analyses. Possible applications include assessing the agreement of
sensitivity analysis results obtained in (i) the analysis of the same sampled input with different
sensitivity analysis procedures and (ii) the analysis of replicated sets of sampled input with the
same sensitivity analysis procedure. In such analyses, the top-down coefficient is used to identify
important variables by seeking variables with similar rankings across all replicates.

Additional information: Sect. 6.12, Ref. [23]; Refs. [39; 122].
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4.7 Concluding Observations

Latin hypercube sampling in conjunction with examination of scatterplots, stepwise regression
analysis with raw and rank-transformed data, and PCCs determined with raw and rank-transformed
data is a successful and widely used approach to sensitivity analysis (e.g., [13-20]). However, this
approach performs poorly when nonmonotonic relationships between sampled and calculated
variables are present. As indicated in this presentation, there are a number of additional sensitivity
analysis procedures that can be effective in the presence of nonmonotonic relationships between
sampled and calculated variables. Of these, stepwise nonparametric regression analysis can be very
effective, and it is anticipated that this approach to sensitivity analysis will experience greater use
in the future when nonmonotonic relationships between sampled and calculated variables are
present.

Verification of implementation correctness is an essential part of any analysis (e.g., [123-130]).
Sampling-based uncertainty and sensitivity analysis can play an important role in analysis
verification in two ways. First, the extensive running of the computational implementation of an
analysis required to propagate the sample needed for uncertainty and sensitivity analysis entails a
systematic exercising of analysis programming and numerics. This can reveal errors by a run
failure or the production of results that are obviously incorrect. Second, sensitivity analysis can
reveal errors by the demonstration that some input variables have effects that they should not have.
Unless a well-tested analysis structure is under consideration, the first run of a sampling-based
sensitivity analysis may reveal one or more errors and thus planning should allow for rerunning
the analysis one or more times as the identified problems are fixed.

Definition of uncertainty distributions is the crucial first step in a sampling-based uncertainty
and sensitivity analysis. As often emphasized, for analyses that will support import important
decisions it is important to avoid uncertainty characterizations that are conservative (i.e., that will
overemphasize negative analysis outcomes) or in some other way lead to inappropriate analysis
outcomes (e.g., [131-135]). The appropriate goal in characterizing the uncertainty in analysis
inputs should be to be neither deliberatively optimistic nor deliberatively pessimistic in this
characterization while being honest about the uncertainty that is present.

As done in this chapter, probability is the most widely used mathematical structure for the
representation of epistemic uncertainty in uncertainty and sensitivity analyses. However, a number
of additional structures for the representation of epistemic uncertainty in the presence of limited
information have been developed, including interval analysis, evidence theory and possibility
theory (e.g., [136-145]). At present, procedures for sensitivity analysis in the context of these
newer uncertainty representations are not extensively developed. As an example, an approach to
sensitivity analysis in the context of evidence theory is illustrated in Refs. [146; 147].

This chapter has concentrated on a single model with the presence of only epistemic
uncertainty. Many real-world analyses are more challenging as multiple linked models are
involved and the effects and implications of both aleatory uncertainty and epistemic uncertainty
must be assessed. Such analyses require an appropriate conceptual structure and a computational
implementation that is consistent with this structure if informative uncertainty and sensitivity
analysis results are to be obtained (e.g., [4; 148-150]). Examples of analyses of this type include
the NUREG-1150 analyses performed to assess the safety of representative nuclear power plants
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in the United States [55-60], the compliance certification analysis for the Waste Isolation Pilot
Plant [38], and a performance assessment for the proposed high-level radioactive waste repository
at Yucca Mountain, Nevada [85].

Additional information on both sampling-based approaches to uncertainty and sensitivity
analysis and other approaches to uncertainty and sensitivity analysis (e.g., differential analysis and
variance decomposition) is available in a number of publications [151-166]. In addition,
sensitivity analysis procedures based on variance decomposition are discussed in Chapter 5 and
Appendices B and C.
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5. VARIANCE-BASED PROCEDURES FOR UNCERTAINTY AND
SENSITIVITY ANALYSIS

5.1 Introduction

This chapter provides an introduction to variance-based procedures for uncertainty and
sensitivity analysis. The goal of these methods is to provide a decomposition of the output or
response variance in terms of the effect and variance of individual input parameters. For example,
an analysis could show that the effect and variance in input x1 contributed 15% of the output
variance while the effect and variance in x2 contributed 48% of the output variance. Variance-based
analysis is a form of sensitivity analysis. It also highlights which inputs merit spending more effort
on uncertainty characterization to improve the estimation of output variance. Variance-based
sensitivity analysis can also be used to identify which inputs are insignificant in terms of
contributing to the output variance, thus helping simplify an uncertainty analysis. Variance-based
methods were not used in the WIPP and YM performance assessments. Their usage has become
popular in the past two decades due to computational and algorithmic improvements. GDSA
Framework will incorporate the use of variance-based procedures.

The following topics are considered in this chapter: differential analysis (Sect. 5.2), Sobol’
variance decomposition (Sect. 5.3), variance decompositions based on polynomial chaos
expansions (Sect. 5.4), and variance decomposition based on Fourier series (Sect. 5.5). In addition,
Sobol’ variance decomposition and polynomial chaos expansions are described in more detail in
Appendices B and C.

5-1



Status Report on Uncertainty Quantification and Sensitivity Analysis Tools in GDSA Framework
September 2019

5.2 Differential Analysis

Differential analysis is based on using a Taylor series to approximate the model under
consideration. Once constructed, this series is used as a surrogate for the original model in
uncertainty and sensitivity analyses. The following description of differential analysis is a lightly
edited adaptation of Sect. 2.1 of Ref. [1].

For notational convenience, it is assumed that the model under consideration can be
represented by a function of the form

y=f(x,%p,0,x,) = f(X), (5.2.1)

where y is the model prediction and X =[x,X,,...,X, ] is the input to the model. The output variable

y is assumed to be single valued to keep the notation from becoming unwieldy although, in
practice, there is usually more than one predicted variable of interest.

A differential analysis involves four steps. In the first step, base values, ranges and distributions
are selected for the input variables X;,i =1,2,...,n,in Eq. (5.2.1). The base values can be represented
by the vector

Xo = [X105>X505---5X,,0 (5.2.2)
and form the point about which the Taylor series will be developed. The ranges and distributions
will be used later in the analysis when the effects on the output variable y of perturbations away

from x, are investigated.

In the second step, a Taylor series approximation to y is developed. If the series is restricted to
first order terms, the approximation has the form

y(X) = J’(xo)+2|: A 0)}[ o — Xy | (5.2.3)

l

If first and second order terms are used, the approximation becomes

82
P(X) 2 y(x0)+z{f( 0)] [x —x0 ]+ ZZ{ axézo)} _xl.o][xj—xjo]. (5.2.4)

X ll]l

Higher order expansions are also possible if / has the necessary partial derivatives. In concept, the
order of the approximation should be determined by the curvature of the surface y = f(x). In
practice, determination of an appropriate order can be difficult. Evaluation of the partial derivatives
in Eqgs. (5.2.3) and (5.2.4) is usually the most computationally demanding part of a differential
analysis.
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In the third step, variance propagation techniques are used to estimate the uncertainty in y. If
the approximation in Eq. (5.2.3) is used, the expected value and variance of y can be estimated by

— X0 ] = ¥(X) (5.2.5)

E(y) = J’(xo)"‘Z{af(XO)} [xi

l

and

101 S0 v+ S 3 T IO ey 52

X i=1 j=lI i ]

where E, V' and Cov denote expected value, variance and covariance, respectively, and X, is

assumed to equal E(X;). If the X; are uncorrelated, the variance decomposition in Eq. (5.2.6)

reduces to

V()= er( 0)} V(x). (5.2.7)

If the approximation in Eq. (5.2.4) is used, the X; are uncorrelated, and fourth order and higher

order terms are ignored in the representation for V(y), the representations for expected value and
variance are

E(y) = y(Xo)+2Z' ;(XO)]V( ) (5.2.8)

i=1 xl

and

2
"9 "1 9 0
V(y)= Z{%} Vix)+ Z{ fa(;O)M f(x())}@ (X)) (5.2.9)
i1 P

2
i i 5xl-

where £4;(X;) denotes the third central moment for ¥;. As correlations between the X; and higher

order terms are added, approximations to the expected value and variance for y rapidly become
very complicated [2-4]. Together, E(y) and V(y) provide a representation for the uncertainty in y

that results from the uncertainty in the X;. It is also possible to obtain a representation for the

uncertainty in y by using the approximation in Eq. (5.2.3) or (5.2.4) and letting the X; vary over

their ranges.

5-3



Status Report on Uncertainty Quantification and Sensitivity Analysis Tools in GDSA Framework
September 2019

In the fourth and final step, the Taylor series approximations are used to estimate the
importance of the individual X; in contributing to the uncertainty in y. Fractional contributions to

variance can be estimated from the expressions in Egs. (5.2.7) and (5.2.9) and provide one means
of measuring variable importance. If the representation for y in Eq. (5.2.3) is used, then the

contribution of X; to the variance of y can be estimated with the ratio

aof (%)
OX,

1

2
] Vix)/V(y), (5.2.10)

where V(y) is defined in Eq. (5.2.7). Similarly, if the representation for y in Eq. (5.2.4) is used,
then the contribution of X; to the variance of y can be estimated with the ratio

2 2
{8f(x0)} , (xi){af(xo)ﬂa J;(Xo)} 1)V (), (5.2.11)
ox; x; 0 x;

where V(y) is defined in Eq. (5.2.9). The fractional contributions to variance shown in Egs. (5.2.10)
and (5.2.11) can be used to order the X; with respect to their contribution to the uncertainty in y.

This ordering involves the actual effects of the X;, as measured by their partial derivatives, and the
effects of the distributions assigned to theX;, as measured by ¥(X;) and £(X;).
Another way of measuring variable importance is by normalizing the partial derivatives in the

first order Taylor series approximation to y in Eq. (5.2.3). Specifically, this approximation can be
restated in the following two forms:

Y0~ y(x) _ < {af(xo) 4y Mx,-—xio} (5.2.12)
y(xo) - i=1 axi y(xO) Xio
and
Y(X) —y(X) _ | F (%) SD(x;) || X; — X (5.2.13)
SD(y) S| o SD(») || SD(x) [

where SD is used to denote standard deviation and it is assumed that there is no problem with
division by zero. The relation in Eq. (5.2.7) is used to provide an estimate for SD(y). The
normalized coefficients (i.e., derivatives)

I (Xy) X - of (Xy) SD(x;)
ox;,  y(Xg) ox;  SD(y)

1 1

(5.2.14)
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provide related, but different, measures of the effect of individual X;on y. The coefficients from
Eq. (5.2.12) measure the effect on y that results from perturbing each ¥; by a fixed fraction of its
base value X;,. Thus, these coefficients can be used to compare the individual X; based on the
effects of perturbing each X; by the same fraction of its base value. The coefficients from Eq.
(5.2.13) measure the effect on y that results from perturbing each X; by a fixed fraction of its
standard deviation SD(X; ). Thus, these coefficients can be used to compare the individual X; based
on the effects of perturbing each X; by the same fraction of its standard deviation. Further, the sign

of the coefficient indicates whether X; and y tend to move in the same direction or in opposite
directions. The absolute values of these coefficients can be used to rank the relative importance of
the individual X;. A ranking based on the coefficients from Eq. (5.2.13) includes the effects of
distribution assumptions while a ranking based on the coefficients from Eq. (5.2.12) does not.

As a reminder, the individual derivatives 0f (X,)/0x; by themselves are not very useful as a
means to compare the effects on y of the individual  because value of 0f (X;)/ 0, is determined in

part by the units in which J is defined. Thus, the “normalized” derivatives in Eq. (5.2.14) provide

more meaningful representations of the effects of individual variables than the partial derivatives
from which they are derived. Specifically, the normalizations in Eq. (5.2.14) remove the effects of

the units specified for the individual X;.

As noted earlier, the largest effort in a differential analysis is usually the determination of the
partial derivatives in Egs. (5.2.3) and (5.2.4). Because of this, a number of specialized techniques
have been developed to facilitate the calculation of these derivatives. Included in these are adjoint
techniques [5-10], Green’s function techniques [11-13], and the GRESS/ADGEN compiler [14-
18]. Adjoint and Green’s function techniques can provide significant computational savings in the
calculation of partial derivatives but can be very tedious and time consuming to implement because
they require detailed manipulations involving the equations that define the model under
consideration. The GRESS/ADGEN compiler was developed to avoid the human cost associated
with these manipulations by performing the necessary manipulations directly from the FORTRAN
code that implements the model. However, the basic ideas in differential analysis remain the same
regardless of the procedure used to calculate the necessary partial derivatives.

As indicated, the determination of the needed derivatives for a Taylor series expansion for a
complex model can be a significant numerical challenge. In general, the needed derivatives are not
obtained by simple differentiations but rather are obtained by appropriate numerical procedures as
will be illustrated by the following example.

For this example, the quantity of interest y(z,X,) is defined by the differential equation

dy(t,x,)/dt = fTt,%,, ¥(t,X,)], (0,X,) = g(X,) for 0<¢ (5.2.15)
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with X, =[X,y,X,,-..,X,,] corresponding to the base value for a vector X=[X,X,,....X ] of

epistemically uncertain quantities. In turn, the desire is to approximate y(t,X,) with the Taylor
series

Oox

i

y(t,X) = y(t,x0)+i{m}[xi —x,.O], (5.2.16)

which requires determination of the derivatives 0y(t,X,)/ 0, .

For this example, the desired derivatives can be obtained as solutions to appropriately defined
differential equations. The starting point in development of the indicated equations is to
differentiate the expressions in Eq. (5.2.15) to obtain the relationships

8[dy(t,%,) / dr]/ &x, = 8{ fTt, X, (6, %o)]} / &x, and B[ y(0,%,)]/ &x, = 3[g(x,)]/ &% (5.2.17)

Next, for the first equality in the preceding equation, a change in the order of differentiation
produces

d[ay(t,xo) / axl-]/dt = a[dy(t, Xg)/ dt] | 8%
= a{f[taxod’(t:xo)]} / Ox;

5.2.18
=[0{ /1t %0, y(t. X1}/ 0x; |[0x; / &, ]+ [ D f1t. %o, (2. %)} / By |[Ov(t. %) / 0x; ] ( )
= 0{ f1t X0, y(t,X)]} / Ox; +[ { f1t. %o, (t,X0)]} / By |[Ov(t, %) / O, ],

with the third equality following from the relationship
04 fTe,u(x),v(x)1} / ax =[ 0{ fTe,u(x), v(x)]} / Bu |[u(x) / ox] 21
+[0{fTe,u(x),v(x)1}/ v |[v(x) / éx] G219
in which ¢ is a vector of constants. Specifically,
C =[X05eesX; 1,05 X110+ %, ] @0 u(x) =u(x;) = x; (5.2.20)

when the derivative in Eq. (5.2.19) is used to obtain the third equality in Eq. (5.2.18).

The following system of 2 differential equations
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dy(tsxo) / dt = f[tﬂxOJy(t')XO)] Wlth y(OJXO) = g(xo),
d[oy(t, %)/ &x; ]/ dt = 8 f1t, %, ¥(t,%)]} / Ox;
+[ 0 f1t.%0, ¥t %)} / 0y |[0y(t,%,) / ;]
with ay(0,%,)/ dx; =3[ g(X,)]/ ox,

(5.2.21)

for 0 <¢ defining y(¢,X,) and 0y(t,X,)/ Ox; results from combining the differential equations in
Egs. (5.2.15) and (5.2.18). Approximations to }(f,X,) are obtained by numerically solving Eq.

(5.2.15). Similarly, approximations to 0y(#,X,)/ OX; can be obtained by simultaneously solving
the system of 2 equations in Eq. (5.2.21).

Solving the system of 2 equations in Eq. (5.2.21) yields approximations to }(,X,) and

oy(t,X,)/ Ox;. However, because the vector X =[X;,X,,...,x | of epistemically uncertain quantities
0 i 1542 n P Y q

has n elements, obtaining the Taylor series in Eq. (5.2.16) requires solving the system of 2
equations in Eq. (5.2.21) n times. This has the potential to be very computationally demanding.
The computational demands become significantly greater when the single differential equation in

Eq. (5.2.15) is replaced by a system of m differential equations defining y; (¢,X,) for j=1,2,...,m.

In this case, construction of Taylor series approximations of the form in Eq. (5.2.16) for the
solutions of the indicated system of m differential equations would require the solution of »
systems 2m differential equations.

To avoid the computational cost of solving multiple systems of differential equations,
computational procedures have been developed to solve the original differential equation or system
of differential equations only once and then use the resultant solutions in conjunction with
appropriate integration procedures to obtain the desired derivatives with respect to the elements of

X =[x,%,,...,X,]. For notational simplicity, these procedures are illustrated below with the
differential equation in Eq. (5.2.15) replaced by a system of 2 differential equations.

The system of 2 differential equations used for illustration can be written as

i{yl(taxo)}_{ﬁ[t>x0>J’1(taxo)a)’z(taxo)]} with {%(Ooxo)}:{gl(xo)

— } (5.2.22)
dr fz[t»xo’yl(t:xo)a)b(t’xo)] 1,(0,%) 2,(Xy)

¥, (t,%y)

Similarly, the system of 2 differential equations defining partials with respect to X; can be written
as
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i[@yl (t,xo)/axl} _ of [t,xo,y1 (t,X0), ¥, (t,xo)]/fixl.
dt| Oy, (1,%g) / Ox; of [t,XO,yl(t,Xo),yz(t,XO)]/8x,-
Oy [1:%05 21 (6,%0), 12 (6,%0) ]/ By O [1. X0, 21 (%), 1 (£,%)]/ O |:ayl(t9x0)/8xi:|
0 [£. %0, 11 (X0 ), 12 (6% ]/ Ay Oy [1 X0, 21 (6,%0), ¥2 (8, %0)]/ Oy, || D9, (£,%0) / O,

0g;(Xy) / Ox;
0g, (%) / Ox; |

) o (0,x,)/ Ox;
with
0y, (0,x,)/ Ox;
(5.2.23)

The needed partial derivatives to approximate y,(¢,X,) and ¥, (¢,X,) with Taylor series can be
obtained by solving the system of 4 equations in Egs. (5.2.22) and (5.2.23) n times.

An alternative and potentially less computationally intensive way to obtain the needed partial
derivatives is to solve the system of 2 equations in Eq. (5.2.22) once and then use the resultant

solutions for Y;(t,X,) and »,(#,X,) in an integration procedure to obtain 0y, (¢,X,)/0x; and

0y, (t,X,)/ Ox; . This is accomplished by taking advantage of the fact that Eq. (5.2.23) is a linear
differential equation of the form

dw, (t)/dt =u, (l‘)+M(t)Wl- (t) with v, =w.(0), (5.2.24)
with
Wl(t) _ {ayl(l;XO) / axi jl’ ui(t) - |:af1 [t’xoayl(t’xo)’yz(t>XO)]/axi :|’ (5225)
oy, (t,X,)/ Ox; of, [t, Xo, V, (6,X0), ¥, (2, XO)] / Ox;
M _{afl [t,XO,yl(t,XO),yz(t,XO)]/5y1 o, [t,xo,yl(t,xo),yz(t,xo)]/6‘y2}
(0= , (5.2.26)
o [t,Xo,yl(t,Xo),yg(t,XO)]/5y1 of [taXOa)ﬁ(t»Xo)aJ’z(t:xo)]/ayz
V,' _ W,- (O) _ |:ay1 (O,xo)/ﬁxl. j| - |:5g1 (XO) / axi :| (5227)
0y,(0,X,) / ox; 0g,(X,)/ ox;

Given that the solution to the equation in Eq. (5.2.23) has been determined, the solution to the
equation in Eq. (5.2.24) is given by

W, (t) = f[[l ~M(z)dz |, (0) + jﬂi[[l ~M(z)dz u,(s)ds, (5.2.28)

where

5-8



Status Report on Uncertainty Quantification and Sensitivity Analysis Tools in GDSA Framework
September 2019

0

H[I —M(z')dr]

t

= Alti_rllon[l—M(tj)Atj] for t =1, <t, <--<t,=0 and At,=t,~t,, (5.2.29)
J j=

1
:A1t1_IEOH[I+M(tj)Atj] for 0=t,<t,<--<t,=t and At,=t,—1 .
J j=n

and | is the 2x2 identity matrix. The quantity defined in the preceding equation (i.e.,
0

H[I —M(r)dr]) is known as the product integral from ¢ to 0 and is analogous to a sum integral

t
except that, as indicated in Eq. (5.2.29), it is defined as a limit of products rather than as limit of
sums [19].

Once the initial equation in Eq. (5.2.22) is solved, the matrix M(z) and associated product

integral can be determined and the desired partial derivatives 0y,(¢,X,)/0x; and 0Oy,(t,X,)/0x,
obtained by numerically evaluating the sum integral in Eq. (5.2.28). In general, this is an efficient
way to obtain 0y, (¢,X,)/ 0x; and 0y, (#,X,)/ Ox, because (i) Eq. (5.2.22) has to be solved only once
and (i1) numerical evaluation of the expression in Eq. (5.2.28) less computationally demanding
than solving Egs. (5.2.22) and (5.2.23) for each ..

At present, differential analysis is of more historical interest than current computational
interest. This is the case because analyses based on Taylor series are inherently local. When the

function f(X;,X,,...,X,) under consideration is nonlinear and the variables X;,X,,...,X, have wide

ranges, analyses based on Taylor series expansions are unlikely to provide meaningful results.
Taylor series analyses are most likely to be useful when only small perturbations of the variables

X;,Xy,...,X, from their base values are under consideration.

Additional information on differential analysis is available in a number of publications (e.g.,
[20-29]).
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5.3 Sobol’ Variance Decomposition

The Sobol’ variance decomposition of a function f'(X) is based on a representation of f'(X)

by a sum of orthogonal functions as described in Refs. [30; 31]. As the notation for this
decomposition becomes rather cumbersome and tends to obscure the nature of the decomposition

when X = [xl,xz,...,xn]is a vector of arbitrary length n, the decomposition will be initially

described for X =[x, X,,X;].

As required for the Sobol’ decomposition, the epistemically uncertain variables X;, X, and X;
are assumed to be independent; further, the uncertainty in X, X, and X; is characterized by the
probability spaces (Xl ,Xl,ml), (Xz,Xz,mz) and (X3,X3,m3) with associated density functions
di(x,), dy(x;) and ds(x;).

For X=[x,X,,X;], the Sobol’ variance decomposition is based on the following representation

for f(x):
SX) = Jo+ fi(x) + [00)+ f306) + fia(x,x5) + 1300, %3) + f23(%;,%3)

(5.3.1)
+ 123 (X1, %55 X3),
where
Jo =E[Lf(X)]
= [ [ ] /sy ) () (3,)dly (3 )by (53.2)
A A

= [ f0d(X)dx with X =2, x X, xX; and d(X) = dy(x;)dy(x,)d; (x)),
X

is the expected value for f(x)and the functions f,(x,), f5(X,),..., f13(%,X,,X;) are orthogonal. In

the context of the present example, two functions g and / defined on X' = &, x X, x X} are said to
be orthogonal if

(g.h) = [ g(OR(X)d (X)dx
X
= [ [ [ 8030303135 .3, )dy () (3, ) (3 )iy i (5.3.3)
X X, X,

=0,

where <g,h> is the commonly used notation for the inner product of g and % defined by the

preceding integrals.
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As examples, f,(X,), f5(X5), f123(X,,X,,X;) in Eq. (5.3.1) are defined by

Si(q) =E[f (x| x)]-f, for x, € &)

= | [ SO1x)d; (), () s, = £ (5.3.4)
X, X,

= [ [ 100 ) () ()b, =
X, X,

S (%) = E[f () | x, %0 1= f1(x) = f,(x) = fo for (x;,x,) € X} x &,
= | £ 2,%)d, (e ), - i (6) = F(5) - £y (5.3.5)
X}

= J-f(xl,xz,x3)d3(x3)dx3 = fi(x) = ()= fos
A

S (X, %5,63) = E[f (X) [ 1,00 5 1= fo = £1(x) = () — f5(%3)
= S (x5, 5) = fi3 (%, %5) = fa3 (x5, %3)
for (x,x,,x;)e X =X x&, x&; (5.3.6)
= f(x,%.) = fo = /i(q) — (%) — f5(x3)
— N2 (0, %) = i3 (X1, x3) = fr3 (x5, X5).

and the remaining functions in Eq. (5.3.1) are defined similarly. In addition to being orthogonal as
can be shown by evaluating the integrals defined in Eq. (5.3.3) for pairs of the functions

S0, £3(x9)sees f123 (%1, %,, X3) , these functions also have the two following important properties:
(1) their use in Eq. (5.3.1) results in the indicated equality to f(x)as can be shown by simply
summing these functions, and (ii) expected values of

E[fi(x)]=E[fo(x,))] =+ = E[ f 155 (%, %,,%,)] =0 (5.3.7)
hold as can be shown by evaluation of the integrals that define the indicated expected values.

Given the preceding properties of the functions f,(x,), f,(X,),..., fi,3(X,,X,,X;) , the following
fundamental property of Sobol’ variance decomposition can be established with

(818299 871 = [ (3)s 550 )s v fias (3152, % )] (5.3.8)

used for notational compactness:
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V() = [L£ 0= £,Pd(x)dx
= ([~ fo S~ 1)
= Zg,-,zgi>

i=1 i=1

7

DA (5.3.9)

i=l j=1

7

= z<g[,gi> from Eq. (3.24)
i=1

7

6 Z(gz _E(g,-),g,- _E(g,)>
= VU + V(L) + V() + V() + V() + V() + Vi),

with (1) Equality 1 following from the definition of variance, (ii) Equality 2 following from the
definition of inner product in Eq. (5.3.3),(iii) Equality 3 following from Egs. (5.3.1) and (5.3.8),
(iv) Equality 4 following from the properties of an inner product, (v) Equality 5 following from
the orthogonality of the functions f,(x,), f,(x,),..., f1,3(X,,X,,x;) , (vi) Equality 6 following from
Eqs.(5.3.7) and (5.3.8), and (iv) Equality 7 following from Eqgs. (5.3.8) and the definitions of
variance for the functions f,(x,), f5(X,),..., f123 (%, %5, ;) .

Division of both sides of Eq. (5.3.9) by V(f) yields

1=8,+8,+8,+8,+8;+8; +S,;, (5.3.10)
with
S, =V(f)/V(f) for i=12,3, (5.3.11)
S, =V(/f;)/V(f) for 1<i<j<3, (5.3.12)
S = V(i) V(). (5.3.13)

The terms on the right-hand side of Eq. (5.3.10) equal the fractions of the variance V(f) of f that
can be accounted for by f,, f,,..., f;; and can be used as measures of sensitivity. An additional
measure of sensitivity is given by

SlT = [V(f1)+V(fn)"'v(ﬁs)"'v(fm)]/v(f)

(5.3.14)
= Sl +Slz + S13 ¥ S1239
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which measures the effect on V(f) of X, and all interactions of X, with X, and X, . Corresponding
measures S,, and S;; for X, and X; are defined analogously. However, there is overlap in the

effects measured by S,,, S,; and 5.

Completing an analysis for the sensitivity measures in Eqs. (5.3.11)-(5.3.14) requires
representing the integrals that define the variances V(f,), V(f,),..., V(f,;) in configurations that

are amenable to numerical approximation. Without going into details which are available in App.
B, (i) the following representations

V() = VIEF () | x I}

? (5.3.15)
= 1 ] ]/ ooy 13l () (sl |l (), = /7
V(fi) = VEEF (0 | %, 5,1} = V() = V(f)
=[] [j f(xl,xz,x3)d3(x3)dx3} d, (x,)d, (x,)dx,dx, (5.3.16)

~fi =V(H)-V(h),
V(fiu) = VD=V + V(L) + V(L) + V() + V(1) + V() (5.3.17)

exist for V(f,), V(f,,) and V(f,;), and (i1) similar representations exist for V(f,),V(f;),
V(f;) and V(f,;). Due to the complexity of the function (i.e., model) f in most analyses, the
integrals defining E(f), V(f) and V(f,),V(f,),..., V(f,5;) are usually approximated with sampling-
based procedures.

The material contained in this section on uncertainty and sensitivity procedures based on
Sobol” variance decomposition is presented in more detail for functions of the form f(x;,X,,%;)

and f(X,X,,...,X,) in App. B. Further, additional information on these procedures is available in
a number of publications (e.g., [30-39]).
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5.4 Polynomial Chaos Variance Decomposition

The polynomial chaos approach to uncertainty and sensitivity analysis is based on the use
of sets of orthonormal polynomials to obtain functional representations that can be used to obtain

variance decompositions. As a descriptive example, a function f(x)is used, with (i) X =[x,,X,, ;]
, (i1) the epistemically uncertain variables ;, X, and X; assumed to be independent, and (iii) the
uncertainty in X;, X, and X, characterized by the probability spaces (X,,X,m,), (X,,X,,m,)
and (X;,X,,m,) with X, =[x,,X,] and associated density functions d,(x,), d,(x,)andd;(x;).

Further, each uncertain variable X,,i =1,2,3, is assumed to have an associated set
P ={p,(x):p,(x)1s a polynomial of degree d forx, e X andd =0,1,2,...} ~ (5.4.1)
of orthonormal polynomials with inner products defined by

<pir(xi)apis (xi)> = _[pir (xi)pis (xi)di (xi)dxi for 7= {05172539""} and (I",S) eIx1
X

B 1if r=s
o if r#s.

As a reminder, the second equality in Eq. (5.4.2) is simply a statement of what it means for the

(5.4.2)

polynomials in the set 7 to be orthonormal with respect to the inner product defined in the first

equality in Eq. (5.4.2). Examples of possible definitions for the set P are shown in conjunction
with Tables C.1 and C.2 of App. C.

As a consequence of the orthonormality of the polynomials contained in 7}, P, and F, the
multivariable polynomials contained in the set

P ={p.(X): s (X) = Py, (X)) P2 (X)) P3, (x3) fOr py,. (%)) € R, pys (x,) € P,

(5.4.3)
py(x3)eB, and (r,s,t) e I, =1 xI xT1}

are also orthonormal for the inner product
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(Prst 005 Doy 00) = [ Pt (0,0, 0 (X)X fOr (r,5,0), (u,v,w) € T, = Tx T x T
X

= J. I J. P (X)) Do (%) P3, (X3) X Py, (X)) Pay, (%) P3,, (363 )5 (X3, (X)) (X )dxy Ay g

X X X
= [ P 01, (), (3 x [ pay (5303, (%5 )y (3 )y (5.4.4)
X X

X I D3 (%3) p3,, (X3)d5 (x5 )dx;
&

IxIx1=1 if p,,(X) = p,..(X), 1.e.; all integrals = 1 from normality
o if D, (X) # p,,..,(X), 1.e., at least one integral = 0 from orthogonality.

The last equality in Eq. (5.4.4) establishes that the multivariable polynomials contained in the
set P defined in Eq. (5.4.3) are orthonormal with respect to the indicated inner product.

The core idea in the polynomial chaos approach to variance decomposition is to represent f(X)
by

)= D P (X) for T =T xIxT

(r,s,t)el'3

= z Crst P1r (X)) Pas (X)) P3, (3) (5.4.5)
(r,s,t)el'3

= j;) + Z crstplr ('xl )pzs ('x2 )p3[ (x3 )5
(r,5,£)#(0,0,0)eT>

where (i) C,y; is an appropriately determined coefficient as indicated in Eqgs. (5.4.8) - (5.4.10), and
(ii) the summation notation (r,s,t) # (0,0,0) e 7 3 in the last equality indicates that the summation

is over all (r,s,t) e I° except (0,0,0). Specifically, the variance V(f) of f is given by
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V(N =E([f0-E(N )
= [[£ 0= £, T d(x)dx

X
= [ 20 (xdx— £
X
= (0, f(0) - /¢
- < Z Crst Prst (X), Z Crgt Dyt (X)> - f02 (5.4.6)

(r,s,t)el'3 (r,s,t)eI3

= Z Z Crst Cuvw <prst (X), Puvw (X)> - f()2

(r,s,t)eI3 (u,v,w)eI3

2 2
= 2 Crst — f 0

(r,s,0)eT’

_ 2
- z Crst >

(r,8,6)#(0,0,0)eZ°

with (1) the next to last equality following from the equalities

1 for (r,s,t)=(u,v,w)

(Pyst (X); Py (X)) = { (5.4.7)

0 for (r,s,t) # (u,v,w)

and (ii) the final equality following from the equality ¢,y = f, as shown in Eq. (5.4.9).

The coefficients C,; in Egs. (5.4.5) and (5.4.6) are defined by

(Pt 00, £ (0)) = [ Py (X (X)d (X)X
X

(u,v,w)el'3

= J. Prst (X)L Z Corow Porvw (X)J d(x)dx
X

= Z cuvw I prst (x)puvw (X)d(X)dx (548)

(u,v,W)EI3 X

= Z Cow <Pm (X), Puvw (X)>

(u,v,w)eI3

= Cy <prst (X), Prsi (X)>
C

— Yrsto
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with the final equality following from the equalities in Eq. (5.4.7). For (r,s,t) =(0,0,0), the
corresponding orthonormal polynomial of degree 0 is Py (X) =1 with an associated coefficient

Copo defined by
e = (Pag 00, S X)) = [ oo 0 S (00X = [ F QX =E[f(¥)] = fy.  (5.4.9)

As shown in Eq. (5.4.8), the remaining coefficients are defined by

€ = | D, (KF () (X)X, (5.4.10)

X

with the indicated integral requiring numerical evaluation with quadrature or sampling-based
methods. An alternate evaluation procedure based on regression analysis techniques is described
in Sect. C.7 of App. C.

The variances defined in Egs. (5.3.15) -(5.3.17) for fi(x), f,(xy), f3(%3), fi,(x,x,),
Si3(x,%3), fo3(x,,X;) and fi53(%;,%,,%;) can also be represented by appropriate sums of subsets
of the squared coefficients cfst in the representation for V(f) in Eq. (5.4.6). The representation for

V( fl) is considered first. To start, fl (xl) can be represented by
fi(xl) = zcrplr (xl) = zcrplr (xl) = Zcrooplr (xl ): (541 1)
r=0 r=l1 r=1

where (i) p,.(X,), r=0,1,2,3,..., correspond to the set of orthonormal polynomials defined in
conjunction with Eq. (5.4.1) for the variable X, and (ii) » rather than d is used to represent the
degree of the polynomial p;,(%;) to match with notational use of 7, s and  to represent the degrees

of the polynomials p,.(X,), p,,(x,) and p;,(X;) in Eq. (5.4.5) and elsewhere. Specifically,
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C, = <P1r (x,), fi (xl )>
= [ P ()i (), (),
X

= [ 2, G| [ [ £330 (), (0 ey d, = £ |l (),

X X A5

(5.4.12)
= [ P, () £,00d 00X = 3 [ py, (), (3 )by,
Xo for =0 from fo—;o =0
= j P (x) f,(X)d(X)dx for >0 from j P, (x)d, (x)dx; =0
= c,:O in the notation of Eq. (5.4.5). ’
In turn,
V() = (i B0, /i~ E(D)
= <ic 0. (x), ic, plr(x1)> from Eq. (5.4.11) and E(f;) = 0
= S e (P () (5:4.13)

N
Il
s

s=

c

s) :
- from orthonormality

[
[Ms

~
Il
nLT

2
Cr00>

[Ms

~
Il
=

with the final equality following from Eq. (5.4.12). Thus, the variance V(f;) of f,(X;) can be

obtained from a sum of squared coefficients obtained in a polynomial expansion of f(X;,X,,X;).

Similarly,
fr(xy) = Z Coso P25 (X,) and V(f,) = Z CSSO > (5.4.14)
s=1 s=1
S3(x3) = ZCOOtp3z(x3) and V(f;) :ZC(%ON (5.4.15)
=1 =1
S (x5 x) = Z z CroP1r (X)) Pag (x;) and V(fyy) = Z Z e (5.4.16)
=1 g=l r=1 s=l1
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Jis (X, %) = chrOtplr (%) p;,(x3) and V(f;;) = chfot’ (5.4.17)

r=l =l r=1 t=1

Fs(X22) = D D Cou P2, (%) 5, (x) and V(£) =" D co.,, (5.4.18)

s=1 t=1 s=1 t=1

and

0

123(xl,x2,x3 z Zcrstplr(xl)pZS(x2)p3t(’x3) and V(flzs)zzzchsz- (5.4.19)

o
r=0 s=0 t=0 r=1 s=1 t=1

The polynomial chaos variance decomposition of f(X,,%,,X;)is based on the equality

2
V(f) :] Z crst
(r,5,)%(0,0,0)eZ?

o0

= ZCVOO +Zco 0 +zcom +chrzso
s=1

r=l1

+chr20r +ZZC§S, +ZZZcfS,

r=1 t=I s=1 t=I r=1 s=1 t=I

= VD + V(L) + V(L) + V() + V(i) + V(o) + V(i)

8

(5.4.20)

with (i) Equality 1 obtained from Eq. (5.4.6), (ii) Equality 2 obtained by a rearrangement of the
summation in Equality 1, and (ii1) Equality 3 obtained from the variances defined in Egs. (5.4.13)
-(5.4.19). In turn, as previously discussed in connection with Egs. (5.3.10)-(5.3.14), division of
both sides of Eq. (5.4.20) by V(f) yields

1= 8 +8,+8,+8, + 85+ 85+ 8,5, (5.4.21)
with

S =V(£)/V(f) for i=1,2,3

Zcro(,/\/(f) for i=1

5 . (5.4.22)
= ZCOSO/V(f) for i=2
s=1

ZCSOZ IV(f) for i=3,
t=1
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S; =V(f;)/ V(f) for 1<i<j<3

o0

D> era V() for (i) =(1,2)

r=

L
©
R

” 5.4.23
D ¢ I V(f) for G, j)=(1,3) ( :
=1

Il
NgE

\
I
—

0

g V() for (i,))=(2,3),

1 t=1

M

©
Il

Sis = V(i) I V(O =23, 1 V(f) (5.4.24)
r=1 s=I1 t=1
and
viH= >, <, (5.4.25)

(,5,6)#(0,0,0)eT

as previously indicated in Eq. (5.4.6). The terms on the right-hand side of Eq. (5.3.10) equal the
fractions of the variance V(f) of f that can be accounted for by f, f5,..., f;; and can be used as
measures of sensitivity. An additional measure of sensitivity is given by

Sir =[IVU/) + V(1) +V(i3) + V(/i123)]/ V() (5.4.26)
= Sl +S12 +S13 +S123:

which measures the effect on V(f) of X; and all interactions of X; with X, and X5.

Corresponding measures S,; and S3; for X, and X5 are defined analogously.

In computational practice, the infinite series of coefficients in Egs. (5.4.22)-(5.4.25) used in
the determination of the indicated sensitivity measures must be truncated as discussed in Sect. C.7
of App. C. Once series are truncated, the remaining coefficients must be approximated by either
numerically evaluating their defining integrals (e.g., with sampling-based procedures) or with a
regression-based procedure described in Sect. C.7 of App. C.

The material contained in this section on uncertainty and sensitivity procedures based on
polynomial chaos expansions of functions is presented in more detail for functions of the form

f (xl,xz,x3) and f (x[,x2,...,xn) in App. C. Further, additional information on these procedures is
available in a number of publications (e.g., [40-56]).
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5.5 Fourier Amplitude Sensitivity Test (FAST)

The FAST approach to uncertainty and sensitivity analysis is based on performing a numerical
calculation to obtain the expected value and variance of a model prediction. The basis of this
calculation is a transformation that converts a multidimensional integral over all the uncertain
model inputs to a one-dimensional integral. Further, a decomposition of the Fourier series
representation of the model is used to obtain the fractional contributions of the individual input
variables to the variance of the model prediction. As before, the model under consideration is
assumed to be a function of the form shown in Eq. (5.2.1).

An analysis based on the FAST approach involves four steps. In the first step, ranges and
distributions are developed for the elements X of the vector

X=[x,%,...X, ] (5.5.1)

of uncertain model inputs. The outcome of this step is a set X’ of possible values for X and a density
function

dx)=]]d,(x) (5.5.2)
i=l
that characterizes the distribution of the possible values for X within X, where d,(X;,) is the density

function for the distribution characterizing the epistemic uncertainty associated with X;.

Once d(X) and X are known, the expected value and variance for y = f(x,,x,,...,x,) = f(X)
are defined by

E(y) =] f(0d(x)x (5.5.3)
and
V()= LF00-EF d(x)dx (5.54)

The preceding integrals are multidimensional and, in real analyses, can potentially be difficult to
evaluate. This leads to the second step in the FAST approach.

In the second step, the multidimensional integral in Eq. (5.5.3) is converted to a one
dimensional integral by the definition of a suitable space filling curve in X (i.e., a search curve that

comes close to all variable combinations in X). The indicated curve is formally defined by space
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filling curves for the individual variables X; and their associated density functions d;(x;) and

sample spaces X . Specifically, the space filling curve for X; is defined by
x;(s) = g;[u;(s)] with u,(s) = G;[sin(®,s)], (5.5.5)

with (i) u;(s) = G,[sin(@;s)] defined to provide a systematic pattern of movements that are
consistent with the distribution characterized by the density function d;(x;) and associated sample
space & (i.e., a curve that comes close to each value forX;in X’), (ii) @, an appropriately chosen
integer, and (iii) g;[#;(s)] defined to assure that the movements defined by ,(s) = G,[sin(;s)]

match with the values for X; in the sample space X; for 0<s<27.

As developed in Ref. [57] and elaborated on in conjunction with Eq. (2.6) of Ref. [58], the
function G; can be defined by the solution of the differential equation

(1 2 )1/2 d.(G,) dG; (x)

=1 with G,(0)=0. (5.5.6)

With a suitable definition of the integer @;, u;(s) = G.[sin(@;s)] can be used in the definition a

search curve for A; and the associated density function d;(x;) for 0<s <27 .
As a simple example, if X; has a uniform distribution on X; =[a,b], then
d(x)=1/(b—a) and G,(x,)=(b—a)sin”' (x,)/ 7 (5.5.7)
In turn, because the range of sin_l[sin(a)l.s)] is [~z /2,7 /2], the range of
G;[sin(®w;s)] = (b—a) sin”! [sin(w;s)]/ 7w is [-(b—a)/2,(b—a)/2]. (5.5.8)
Thus, to have G.[sin(@;s)] used to define a path that covers the range X; =[a,b] of x;, the function
&ilu; ()] = g {Gi[sin(w;s)]} (5.5.9)

introduced in Eq. (5.5.5) is defined by

ki + G,[sin(w;s)] = G

g:A4G;[sin(w;5)]} = +(b—a) sin_l[sin(a)is)] /. (5.5.10)

As a special case,
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g:4G,[sin(w;s)]} = % + G, [sin(w;s)] = %+ sin”! [sin(w,s)]/ (5.5.11)

if the density function d;(X;) corresponds to a uniform distribution on [0, 1].

The following is an interesting possibility that merits investigation for the case when d,(x;,)
corresponds to an arbitrary distribution (e.g., normal, triangular, log uniform, ...) with an
associated cumulative distribution function CDE. (xl-) . Then, it may be possible to define g, and

Gi by

x,(s) = g AG,[sin(w,5)]}
= CDF ' {G [sin(®,5)]} (5.5.12)

= CDF"' {% +sin"'[sin(ws)]/ ﬂ}

with G, defined for a uniform distribution on [0, 1] as indicated in Eq. (5.5.11). If this is a
mathematically correct procedure, its use may be simpler than using Eq. (5.5.6) in conjunction
with the density function d,(x;) to define g; and G,.

The integers col.,i =1,2,...,n,need to be selected so that there is effectively little relationship
(i.e., interference) between the individual curves generated with use of the integers @; . To avoid
the indicated interference, the ®,'s need to be defined so that an individual @; cannot be closely
approximated by a linear combination of other @,'s (e.g., @5 = @ + @, or possibly ®; =@, +®,).
An arbitrary sequence @,Q,,...,&,, of integers is said to be of order M, an integer, if

m m
21;-05- #0 for #, r,,..., 1, integers and Z| r|<M+1. (5.5.13)

1 m

i=l1 i=1
Further, a sequence of integers @;,I = 1,2,...,n,is said to be free of, or to avoid, interferences
through order M provided every subset {@;,,,...,2,, } of {@,®,,...,0,} of size m < M is of order

M. Definition of @;,®,,...,®, to be free of interferences through an appropriately chosen order M
effectively eliminates interference between the individual curves generated with use of the integers
o, .

The definition of integer sequences @, ®,,...,®, that are free of interferences through order M
is discussed in Refs.[59; 60]. In addition, Table 1 of Ref. [59] provides examples of integer
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sequences @, ,,...,0, for n=5,6,...,19 that are free of interferences through order M = 4; and
Eq. (5.1) and Table VI of Ref. [60] define and illustrate a procedure to construct integer sequences
@, 0y,...,0, for n =3,4,...,50 that are free of interferences through order M = 4.

The ultimate outcome of Step 2 is a sequence @;,i =1,2,...,n, integers and a corresponding

sequence g;[G;(sin @:5)],i =1,2,...,n, of functions such that

E(y) =] /(0d(x)dx
1 2 . v ‘
= g.[o /&[G, (sin &y5)], g,[G, (sin @,5)],...,g,[G, (sin @,9)][ds  (5.5.14)
= E(y).

The second integral, which is one dimensional, is easier to evaluate than the first integral, which
is multidimensional. In essence, construction of the @, and G, has converted f from a function

of n variables (i.e., the elements X; of X) to function of one variable (i.e., s).

In the third step, the one-dimensional representation for fis used to estimate the expected value
and variance of y. This provides a representation of the uncertainty in y that results from the

specified distributions for the ¥;. As already indicated in Eq. (5.5.14), the expected value for y can
be approximated by

1

E() =5 [, /18165 0] £2(G, (sin 0,9))....8,[G, (sin 0, 9] (55.15)

In turn, the variance of y can be approximated by
1 2= . . . 2 A
V(y) ;EJ.O {f[gl[G1 (sin @;5)], g,[G, (sin @,5s)], ..., g,[G, (sin a)ns)]]} ds—E*(y). (5.5.16)

In practice, a numerical procedure must be written to evaluate the integrals in the approximations
to £(y) and V(). Further, this procedure will require values for f, which come from evaluating the
model that predicts y.

In the fourth and final step, the sensitivity of y to the individual X;is determined on the basis

of fractional contribution to the variance of y. By using properties of the Fourier series
representation for f, it can be shown that

V(y)= i(A;f +BY), (5.5.17)
k=1
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where
4, = é Iozn /1[G (sin @5)], g,[G, (sin @,5)],..., g,[G, (sin @,s)]]cos(ks)ds (5.5.18)
and

Bk—1

= ;I()z”f [g1 [G, (sin @,5)], g,[ G, (sin @,5)],...,8,[G, (sin a)ns)]] sin(ks)ds. (5.5.19)

Further, it can also be shown that the part of the variance of y that derives from X; can be
approximated by

Vi) 2 D (A, + By (5.5.20)
k=1

where @,is the integer associated with G; in the conversion from a multidimensional integral to
a one dimensional integral in Eq. (5.5.14) as described in Ref. [58]. Then, the ratio

n/vy) (5.5.21)

gives the fractional contribution of X; to the variance of y. This ratio can be used to rank the
importance of the individual X, with respect to their impact on the uncertainty in y. In practice, the

integrals that define 4, and B, must be approximated numerically. Further, the series in Egs.
(5.5.17) and (5.5.20) must be truncated.

Additional information on the FAST approach to uncertainty and sensitivity analysis is
available in Refs. [34; 57-63].
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6. SURROGATE MODELS

A surrogate model (sometimes called meta-model, emulator, or response surface model) is an
inexpensive input-to-output mapping that can emulate the results of computationally expensive
multiphysics model and numerical simulator. Once constructed, this meta-model is relatively
inexpensive to evaluate so it is often used as a surrogate for the computational simulation model
in uncertainty propagation, sensitivity analysis, or optimization problems that may require
thousands to millions of function evaluations [ 1-4]. Surrogate models may be used in various ways
as part of geologic disposal repository assessment: they may be used as surrogates for complex
multi-physics numerical simulators (such as PFLOTRAN) and probabilistic PA simulators (such
as GDSA Framework) to perform sensitivity analysis, such as the variance-based decomposition
indices presented in Chapter 5 that require tens of thousands of function evaluations. Surrogates
may also be used as less expensive replacements for constitutive models or materials models
within larger codes, such as the preliminary work demonstrating surrogates for the Fuel Matrix
Degradation Model (FMDM) within PELOTRAN [1]. Finally, surrogates may be used in Bayesian
calibration (parameter estimation), which is also a computationally expensive task.

There are many different types of surrogate models, including polynomial regression, Gaussian
processes, neural networks, radial basis functions, splines, etc. The subsections below cover
popular types of surrogate models. There are many good overview articles that compare various
meta-model strategies [1-4;2]. Simpson et al. provide an excellent overview not just of various
statistical meta-model methods but also approaches that use low-fidelity models as surrogates for
high-fidelity models [1]. Haftka and his students developed an approach that uses ensembles of
emulators or hybrid emulators [6]. Finally, polynomial chaos expansions (PCE) have become
popular surrogate models over the past fifteen years [3;4]. These stochastic expansion methods
approximate the functional dependence of the simulation response on uncertain model parameters
by expansion in an orthogonal polynomial basis. The polynomials used are tailored to the
characterization of the uncertain input variables.

6.1 Polynomial Regression

A linear regression model f as a function of an m-dimensional input vector x € R™ is defined
as:

Fx) ~co+ X i x; (6.1.1)

Similarly, a second order polynomial regression (also called a quadratic regression model) is
defined as:

fx) =cy+ imicix + Zﬁ127§i Bey Xt (6.1.2)

To determine the coefficients of the polynomial regression model, a least-squares formulation
that minimizes the sum-of-squared error (SSE) between the surrogate model and the training data
from the simulation is typically used [5]. The SSE is the standard error metric for overdetermined
polynomial regression. It is a quadratic loss function which tends to find solutions near zero SSE
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well. Assume that a matrix of » training samples is available, where each training sample has an
input x; and a corresponding output yi. The coefficients minimize the SSE:

SSE = S, (fex) — 1) (6.13)

For general nonlinear regression problems, one needs to use optimization methods to find the
vector of coefficients ¢ which minimize the SSE. However, for linear regression models, the least
squares problem reduces to a linear solve. If the entire sample matrix of inputs is denoted as X (of
dimension #n x m) and the sample matrix of outputs as y (of dimension n x 1), the optimization
problem becomes:

¢ = rgmin

X-c—y|l?=X"1y (6.1.4)

In practice, one does not take the explicit inverse of the input sample matrix X~ to solve for
the optimal ¢ but instead use a matrix factorization such as a QR factorization. This makes the
determination of € computationally efficient. Note also that this system is typically overdetermined
meaning that the number of training points # is greater than the number of regression coefficients
m.

6.2 Gaussian Process

One popular surrogate approach is to develop an emulator that is a stationary smooth Gaussian
process [2;3;6]. The popularity of Gaussian processes is due to their ability to model complicated
functional forms and to provide an uncertainty estimate of their predicted response value at a new
input point. A Gaussian process (GP) is defined as follows: A stochastic process is a collection of
random variables {y(x) | x € X} indexed by a set X (in most cases, X is RY, where d is the number
of inputs and R is the space of real numbers). The stochastic process is defined by giving the joint
probability distribution for every finite subset of variables y(x7), ... y(xx). A Gaussian process is a
stochastic process for which any finite set of Y-variables has a joint multivariate Gaussian
distribution. A Gaussian process is fully specified by its mean function p(x) = E[y(x)] and its
covariance function K(y(x), y(x)). For an extensive tutorial on Gaussian process models, see [7].

The notation for defining a GP is as follows: x is one set of inputs of dimension d. There are
n samples, xi, for i=1...n. Each xi= {xi1,x i, .... ,xid}. X denotes the (d*n) set of all samples and
Y=y(X) is an n*/ vector of the responses from the computational simulation.

The basic steps for using a GP are:

1. Define the mean function. Often the mean is taken to be zero or a constant, but this is not
necessary. A common representation, for example, is a regression model E[y(x)] =
f(x)TB. Note that B is the d*I vector of regression coefficients.

2. Define the covariance. There are many different types of covariance functions that can be
used, such as squared exponential, Matern, cubic, etc. A common choice is the squared
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exponential function as defined in Equation 6.2.1. The full »*n covariance matrix between
all points is K.

d d
K(x,x") = exp{—ZHj (x; —x;.)z} = Hexp(-ﬁj (x; —x;.)z) (6.2.1)

This covariance function involves the product of d squared-exponential covariance
functions with different length scales § on each dimension. The form of this covariance
function captures the idea that nearby inputs have highly correlated outputs.

3. Perform the prediction calculations. Given a set of n input data points {x;, x>, ... x»} and a
set of associated observed responses or targets {yi, y2, ... yn}, the GP can predict the
response value y(x*) at a new input point x+. The prediction is represented as the sum of
the “true” response, y, plus an error term representing noise in the observational data: yi +
&i, where &i is a zero-mean Gaussian random variable with constant variance . If K is the
n*n covariance matrix with entries K(x, x’), then the distribution of the predicted response,
which is conditional on the data, is Gaussian with the following mean and variance:

Ely(x)|Y] = Ely(x)IX,Y,x,x"] = f(x)B + k(x")"[K + c*I] " [Y — Ff] (6.2.2)

Var[y(x)|Y] = k(x*, x*) — k(x*)T[K + 1] Tk (x*)

where k(x*) is the n*] vector of covariances between the n known points X and the new
data point x+. K is the nxn covariance matrix of the original data, I is the nxn identity
matrix, F is the set of basis functions for the full data set X, f is the vector of regression
coefficients, and Y is the n*/ vector of response values.

The equations for the mean and variance of the predictive distribution both require the
inversion of K, an n xn matrix. In general, this is a O(n’) operation. Also, the covariance matrix
may be near singular. Several approaches have been developed to deal both with the ill-
conditioning and with large data sets (e.g. greater than 1000 data points) [8;10].

Steps 1 — 3 give the general framework for defining a Gaussian process and using it for
prediction. However, the length scale parameters in the covariance matrix must be calculated to
perform the prediction in Steps 2 and 3. There are two main approaches. One is to use maximum
likelihood estimation, in which the likelihood function is maximized. This results in point
estimates of the covariance parameters. The other approach is to use Markov chain Monte Carlo
(MCMC) sampling to generate posterior distributions on the hyperparameters that govern the mean
and covariance function. The assumption of zero-mean GPs is often made, so the Bayesian
updating only involves hyperparameters governing the covariance function. Since these may be
quite complicated, a MCMC sampling method is usually still needed to generate the posterior.
Maximum likelihood methods are more commonly used to obtain the correlation lengths.

An example of a Gaussian process surrogate is shown in Figure 6.1. The left figure shows a
GP based on the original training data, where the black line shows the mean prediction of the GP
and the grey shaded region shows the prediction uncertainty (typically represented by

E[y(x)|X,Y] + 2,/Var[y(x*)|X, Y]).
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The right figure shows how the prediction uncertainty is reduced when additional data is added
to GP build process.
3 3
N 27

1 4 \/; 3 d \/&

-1
-2 -2
-3 -3

staffwww.dcs.shef.ac.uk /

Note the reduction in variance as more data is added

Figure 6.1 Example of a Gaussian process model mean prediction (shown in black) and uncertainty
bounds on the mean prediction (shown in grey) with three data points (left) and nine data points

(right).

6.3 Other advanced metamodels

There are other surrogates that are used in various settings. Surrogate models typically come
with various mathematical assumptions, statistical models for the handling of error, etc. A short
description of some advanced surrogates is given in the list below:

Splines are one class of surrogate models which are frequently used for data interpolation.
Splines are typically specified by piecewise polynomials that are constructed over disjoint
intervals of the inputs. The build points for splines are called “spline knots.” A commonly
used multidimensional spline is called MARS (MARS- multivariate adaptive regression
splines) [8].

Radial basis functions (RBF) are functions whose value typically depends on the distance
from a center point, called the centroid. The surrogate model approximation is constructed
as the weighted sum of individual radial basis functions [9].

Moving Least Squares (MLS) is a weighted least squares approach where the weighting is
“moved” or recalculated for every new point where a prediction is desired [10].

Artificial Neural Networks (ANN) are a machine learning approach that constructs a
network meant to mimic neurons, with input nodes, output nodes, and hidden layers of
nodes. The connections between nodes have weights associated with them, and there are
activation functions which calculate the amplitude of the response between nodes. The
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calculations of a neural network involve summing the weighted, activated nodes [11].
Neural networks have become wildly popular in the last decade for a variety of artificial
intelligence usage [12]. The usage of ANNSs as surrogate models is simply to construct an
input-output map of simulation input parameters to simulation responses.

e Random Forests are another machine learning technique that were originally used as
classifiers [13]. They are an example of a regression tree, where the input space is split
into disjoint regions by dividing the observations at a cutpoint on one variable. That is,
each branch represents the division of an input into two sets, and the leaves of the tree
represent a particular partition or region of input space. A constant (e.g., the mean of the
data in that region) is used as the surrogate approximation within that region. A random
forest is obtained from an ensemble of trees, each of which is constructed on a random
subset of inputs. They are many modifications of this basic concept.

e Non-parametric regression models involve adding a regularization term to a typical least-
squares model, typically to penalize terms in the regression that may be unimportant and
thus help perform variable selection. These include ridge regression, projection pursuit
regression, LARS (least angle regression) [14], LASSO (Least absolution shrinkage and
selection) [15], and ACOSSO (Adaptive COmponent Selection and Shrinkage Operator)
[16]. ACOSSO is based on a smoothing spline which has penalty terms both for the the
magnitude of the overall trend of each term over the domain as well as the magnitude of
the curvature or roughness over the domain. There is a tuning parameter which controls
the trade-off between the smoothness of the ACOSSO surrogate and the fidelity to the data.
Storlie et al. [17] performed a rigorous comparison of a number of these non-parametric
regression methods as applied to several challenge problems.

Analyses frequently do not have a large amount of training data on which to construct a
surrogate model. Furthermore, depending on the optimization approach used to determine the
governing parameters of the surrogate (e.g., regression coefficients, neural network weights) and
the amount of data available, there may be significant error in the surrogate model. It is very
important for users to examine the surrogate error and estimate it for prediction purposes. There
are a variety of surrogate diagnostics or metrics used to calculated “goodness of fit.” These include
root-mean-squared-error (RMSE), mean absolute error (MAE), and R-squared (the proportion of
the variance in the dependent variable (output or response) attributed to the independent variables
(inputs). Note that these metrics can only be calculated with respect to the available build data
(e.g., the training data) because they involve taking differences of the surrogate model and the
“true” data. It is good practice to hold back some of the training data and use it as testing data to
validate the surrogate model. This is often done in a framework called “cross-validation.” In
cross-validation, the training data is randomly divided into k partitions or folds (sometimes called
k-folds). Then k£ models are computed, each excluding the corresponding kth partition of the data.
Each model is evaluated at the points that were excluded in its generation and any metrics specified
above are computed with respect to the held-out data. The overall metric is then calculated by
averaging the individual metric (e.g., RMSE, MAE, or R-squared) value from each partition.

6-5



Status Report on Uncertainty Quantification and Sensitivity Analysis Tools in GDSA Framework
September 2019

Note that it is also important to understand the how the actual surrogate model for a particular
set of training data is obtained. Typically, this is done using some type of optimization. Many
surrogate models may exhibit poor-identifiability of the hyperparameter estimation (e.g., many
combinations of parameters governing the surrogate give about the same fit and same prediction
error). There are many ways to test this, such as repeating the optimization many times at different
starting points in parameter space to see how many “local minima” there are. Another approach
is to perform sensitivity analysis before surrogate construction so that unimportant parameters are
left out of the surrogate, making the surrogate estimation problem better posed. Finally, remember
that in surrogate modeling of computational simulations, typically a user can only afford a
relatively small number of training data points (e.g., the “truth data” may be 100 or 200 simulation
runs in a 5-10 dimensional parameter space). This means that the surrogate could be quite different
if another 200 data points were taken. Thus, the effects of limited data must be determined through
diagnostic metrics and cross-validation.

6.4 Polynomial Chaos Expansion

A final class of surrogate models presented are polynomial chaos expansions (PCEs). These
are presented in more mathematical detail in Appendix B, but a high-level overview is given here.
Polynomial chaos expansion methods approximate the functional dependence of the simulation
response on uncertain model parameters by expansion in an orthogonal polynomial basis. The
polynomials used are tailored to the characterization of the uncertain input variables [7;8].

Polynomial chaos expansion is a stochastic expansion method whereby the output response is
modeled as a function of the input random variables using a carefully chosen set of polynomials—
typically, Hermite polynomials. The series expansion is typically based on unit-variance
independent Gaussian random variables. Non-normal and correlated uncertain variables X in the
problem must be transformed to a space of independent zero-mean and unit-variance Gaussian
random variables, u (standard normal variables). The Nataf and Rosenblatt transformations [18;19]
are used to transform the uncertain variables to standard normal variables. Then the expansion is
formulated in terms of Hermite polynomials as functions of the Gaussian random variables. The
goal of a PCE analysis is to determine the unknown coefficients of the Hermite polynomials in the
expansion. For other distributions, the polynomials are usually chosen according to the Weiner-
Askey scheme that provides an orthogonal basis with respect to the probability density function
for the input random variables [20].

There are a variety of approaches for generating the sample points, but typically tensor product
grids or sparse grids are used. Structured sampling schemes typically result in more accurate
estimates of the coefficients of the polynomials than random sampling does, but this depends on
the order of the polynomials needed to resolve the uncertainty in the response functions [21].

One advantage of stochastic expansion methods is that the moments of the expansion (e.g., the
mean or variance of the response) can be written analytically, along with analytic formulations of
the derivatives of these moments with respect to the uncertain variables. This feature can be
exploited in design optimization under uncertainty problems [22] or epistemic uncertainty
problems [23]. A disadvantage of polynomial chaos is that the tensor product grids upon which
they are often constructed do not scale well, especially as the number of variables and the
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polynomial order increases. Recent research in adaptive methods and sparse methods is addressing
this limitation [24].

The propagation of input uncertainty through a model using PCE consists of the following
steps: (1) input uncertainties are transformed in terms of a set of uncorrelated random variables;
(2) a functional form such as Hermite polynomials is assumed; and (3) the parameters of the
functional approximation are determined.

The general polynomial chaos expansion for a response R has the form:

R=aoBo+ Y aiBi(&,)+ Y Y aii,Ba(&, &) + ...

i1=1 11=112=1

(6.4.1)

where each B term represents an orthogonal polynomial that is a function of a number of the
uncertain inputs &i. The number of random variables and the order of the expansion are unbounded
prior to truncation. This expression is usually written in terms of the order-based indexing:

R= W (6).
j;% i©) (6.4.2)

where there is a one-to-one correspondence between aiii2 in Eq. 6.4.1 and o; in Eq. 6.4.2, and
between Bn(&i1 , &2 , ..., &n) in Eq. 6.4.1 and yj(&) in Eq. 6.4.2. Each yj(§) is a multivariate
polynomial that involves products of the one-dimensional polynomials. In practice, both the
number of random variables and the order of the expansion are truncated yielding an expansion of
the form:

i=0 e (6.4.3)

If a total-order polynomial is constructed (e.g., a total order of 2 would involve terms whose
exponents are less than or equal to 2, such as x/%, x2* , and x;x2 but not x;%x>?), the total number of
terms N in a polynomial chaos expansion of arbitrary order p for a response function involving »
uncertain input variables is given by: (n + p)!/n! p!. If an isotropic tensor product expansion is
used with order p in each dimension, (p+1)" sample points must be used. If the order p of the
expansion captures the behavior of the true function and if the number of quadrature points taken
is sufficient to estimate the coefficient terms, polynomial chaos methods will give very accurate
results for the output statistics of the response.
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7. SHALE REFERENCE CASE

In this chapter, the UQ/SA methods outlined in the previous chapters are demonstrated on a
particular generic repository model referred to as the shale (or argillite) reference case. The
reference case is notionally depicted in Figure 7.1.

— Waste Package Arglllite
= - Buffer Layer 1
RS 5. fer Layer 2 Reference Case

Concrete Liner

Stratigraphic Unit Sequence
Sandstone

Shale Host Rock
Shale/Limestone
Shale
Shale/Sandstone (aquifer) =
Shale/Sandstone E=
Limestone (aquifer) &= Access Shaft

Shale

Sandstone (aquifer) ] Operations Drift
Limestone (aquifer) E=

Emplacement Drifts

Figure 7.1 Shale Reference Case

GDSA Framework is used for these simulations. The sampling methods used in Dakota are
Latin Hypercube sampling (presented in Chapter 4) and incremental LHS (to augment LHS
samples with additional samples that also form a Latin design) as well as variance-based indices
(presented in Chapter 5). The variance-based indices are calculated with two different surrogates:
Gaussian processes and polynomial chaos expansions. Further, the results of the analysis with and
without a log-transformation of the response quantity (maximum concentration of the radioactive
isotope iodine-129 ('?°I) at various observation points in the model domain) are compared. It is
found that log-transforming the data is very important in obtaining reliable sensitivity estimates
for this case. This chapter is meant to demonstrate a practical workflow using UQ/SA methods
within the GDSA Framework.

7.1 Shale Reference Case Description

GDSA Framework simulations of the generic shale reference case [1] assume a mined
repository for commercial spent nuclear fuel in a thick unit of a low-permeability shale or
argillaceous formation. A thin limestone aquifer lies below the shale and a sandstone aquifer lies
above the shale. A second sandstone aquifer lies at depth. A pressure gradient drives regional flow
from west to east (left to right). Figure 7.2 shows a 2-dimensional vertical cross section of the
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three-dimensional model domain, in which the repository is visible as a series of drift cross-
sections toward the left side of the model domain. The model domain contains 6,925,936 cells.

Simulations assume a thick low-permeability shale with aquifers (potential paths to the
biosphere) above and below the host rock. Epistemic uncertain inputs include properties of the
engineered and natural systems. The output variables of interest, maximum '?°I concentrations
(independent of time) at observation points in the aquifers, vary over several orders of magnitude.

Figure 7.2 2-D cross section of 3-D model domain showing aquifer observation points (pink dots).
From top to bottom and left to right: sand obsl, sand obs2, sand obs3, lime obsl, lime obs2,
lime obs3.

Multi-physics simulations on the 7-million-cell grid are run in an HPC environment with the
PFLOTRAN component of GDSA Framework. Each one-million-year simulation took
approximately three hours to complete using 512 processor cores per simulation. Physical-
chemical processes accounted for in the simulations include waste package degradation, waste
form dissolution, radionuclide sorption, solubility-controlled precipitation and dissolution,
radioactive decay and ingrowth in all phases (aqueous, adsorbed, precipitated), coupled heat and
fluid flow, and radionuclide transport via advection and diffusion. Simulations included 18
radionuclides.

Two hundred realizations were generated by sampling ten input parameters (Table 7.1) using
Dakota’s incremental Latin hypercube sampling (LHS) capability and an initial sample size of 50.
The concentration of '*I as a function of time was recorded at three locations in the upper
sandstone and three locations in the limestone (Figure 7.3). The maximum '?°I concentrations
(regardless of time) at each of these six observation points are the output variables for the
sensitivity analysis.

Two of the sampled parameters are linear distribution coefficients (Kas) for neptunium sorption
in various media. However, no further discussion of 2’Np transport is included because Np
concentration at the observation points remain very close to the numerically-imposed background
concentration of 1072 mol/L in all simulations.
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Table 7.1 Sampled inputs for the shale reference case.

Figure 7.3 %I concentration versus time for 200 realizations at four aquifer observation points.
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7.1.1 Incremental LHS

As described in Chapter 4.3, LHS is a sampling method in which the range of each input
variable is divided into segments of equal probability, and a value is randomly selected from each
segment [2]. Values thus chosen for each input variable are randomly combined to create vectors
of inputs. LHS generally produces more stable estimates and results in faster convergence of
statistics than Monte Carlo sampling. Dakota’s incremental LHS method incorporates the existing
LHS sample into a subsequent LHS sample of twice the size [3]. Thus, with an initial sample size
of 50, the 200 realizations provide three LHS samples of size 50, 100, and 200 for sensitivity
analysis.

7.1.2Variance Decomposition/Sensitivity Indices

Variance-based global sensitivity analyses (i.e., calculations of sensitivity indices) conducted
with Dakota on this case use polynomial chaos expansion and Gaussian process surrogate models
[4]. Results of analyses conducted with raw output concentrations and with log-transformed
output concentrations were compared. Using log-transformed concentrations results in larger
sensitivity indices for more influential input variables, smaller sensitivity indices for less
influential input variables, and more consistent values for sensitivity indices between methods
(PCE and GP) and between analyses repeated with samples of different sizes.

The details of the variance-based based sensitivity indices are described in Chapter 5.
Sensitivity indices are a measure of the fraction of the variance in the output due to the variance
in uncertain inputs. Due to the large number of simulations required to calculate sensitivity
indices, surrogate models are often employed—see Chapter 6. Two such approaches were
employed in this analysis. In both cases, some number of realizations must be run with the original
simulation code in order to derive the surrogate model describing the response of the output
variable of interest to the sampled input variables. In the first approach, the surrogate model is then
evaluated m(d+2) times, where m is the number of samples and d is the number of sampled inputs,
to find the main and total sensitivity indices [5]. In the second approach, a surrogate model is
chosen from which sensitivity indices can be analytically calculated, eliminating the need for
multiple evaluations of the surrogate. For the shale reference case, the first approach is
demonstrated using Gaussian process surrogate models [6], and the second approach using
polynomial chaos expansion [7]. Gaussian processes and polynomial chaos expansion are
described in more detail in Chapter 6.

7.1.2.1 Variance-based decomposition with Gaussian processes

Gaussian process surrogate models were fit to the data using global optimization (least squares
regression), a quadratic polynomial as the trend function, and a stationary isotropic squared
exponential covariance function. The resulting surrogate model (the mean of the Gaussian process)
and a sample size (m) of 10,000 was used to estimate main and total sensitivity indices.

7.1.2.2 Variance-based decomposition with Polynomial Chaos Expansion

PCEs were generated using orthogonal matching pursuit and 10-fold cross validation to select
the order of the expansion (up to a user-specified maximum of 4™ order) that resulted in the
smallest cross validation error.
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Because maximum '®I concentrations are consistently very small (< 10~'3 mol/L) at some
observation points, the PCE method sometimes failed to return sensitivity indices due to
“negligible variance.” To overcome this problem, concentrations were multiplied by a factor of
10'3, which enabled the PCE method to return sensitivity indices. Increasing the scaling factor to
10?° (1/[background %I concentration]), resulted in sensitivity indices within approximately 1%
of those calculated using the smaller scaling factor. Scaling the concentrations was not necessary
when working with log-transformed values.

7.1.3 Results

Sensitivity indices calculated for maximum '*’I concentration (scaled by 10! for the PCE
method) and log-transformed maximum '*° concentration at two points in the upper sandstone
aquifer and two points in the limestone aquifer are plotted in Figure 7.4 and Figure 7.5,
respectively. Main sensitivity indices are indicated with hatch marks and plotted on top of total
sensitivity indices. Regardless of method (PCE or GP) and sample size (50, 100, or 200), calculated
sensitivity indices indicate that maximum '*°I concentration at all observation points is sensitive
to the porosity of the shale host rock (pShale). At the observation points furthest from the
repository (sand_obs3 and lime obs3), maximum '?°I concentration is also strongly influenced by
the permeability of the aquifer (kSand and kLime, respectively). The same conclusions can be
drawn on the basis of logio[maximum '*’I concentration].

However, the sensitivity indices calculated on the basis of maximum '*’I concentration and log
maximum '*I concentration differ in the additional conclusions that might be drawn from them
and in the stability of their values. In particular, sensitivity indices calculated using log-
transformed concentrations indicate greater sensitivity to fewer input variables than sensitivity
indices calculated using untransformed (raw if using the GP method, or linearly scaled if using the
PCE method) concentrations. Sensitivity indices of more influential input variables are generally
larger (and those of less influential input variables are generally smaller) when calculated using
log-transformed concentrations than when calculated using raw/scaled concentrations. This pattern
holds true at sand obsl, where use of the log transform increases the total sensitivity index for
pShale from approximately 0.7 to almost 1 and decreases the total sensitivity index for rateWP
from approximately 0.2 to 0.02 (Figure 7.4); and at lime obsl, where use of the log transform
increases the total sensitivity index for pShale by approximately 0.1 and decreases the total
sensitivity index for rateSNF by approximately 0.1 (Figure 7.5). Additionally, sensitivity indices
calculated using log-transformed concentrations indicate less sensitivity to interactions between
input variables than sensitivity indices calculated using raw/scaled concentrations, i.e., main
sensitivity indices calculated using log-transformed concentrations sum to a larger number (and
account for a larger fraction of the variance in the output) than main sensitivity indices calculated
using raw/scaled concentrations (Table 7.2).

Use of the log transform results in greater stability among sensitivity indices calculated with
different sample sizes and different methods. Three sample sizes (50, 100, 200) and two methods
(PCE and GP) result in 6 estimates for each sensitivity index — the standard deviation of these 6
values can be taken as a measure of stability. At sand obs3 (Figure 7.6), sensitivity indices
calculated using raw/scaled concentrations have standard deviations up to 0.14, while those
calculated using log-transformed concentrations have standard deviations approximately one order
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of magnitude smaller (< 0.014). The comparison is similar at the other observation points (not

shown).
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Table 7.2 Fraction of variance due to sum of main effects.

sand_obs1 sand_obs3 lime_obs1 | lime_obs3

without log transform

GP 200 0.79 0.46 0.82 0.68

PCE 200 0.79 0.37 0.87 0.68

with log transform

GP 200 1.00 0.84 0.96 0.99
PCE 200 1.00 0.86 1.00 0.99
sand_obs3 sand_obs3 (log transform)

! Mean Total SI
EE Mean Main SI 'f‘(&

mmm Mean Total SI
B Mean Main SI
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Figure 7.6 Mean sensitivity indices and standard deviation (error bars) at sand_obs3.

TR

At sand_obs3, approximately 80% of the realizations result in maximum '?°I concentrations
two orders of magnitude (or more) less than the largest value (Figure 7.7). Surrogate models built
across an output range of several orders of magnitude are strongly influenced by the largest values,
and accuracy of such surrogates at the low end of the output range tends to be poor. Use of log-
transformed concentrations increases the contribution of smaller concentrations to both the
variance of the output and the fit of the surrogate models used to calculate variance. The small
standard deviations achieved for sensitivity indices calculated using log-transformed
concentrations suggests that for the shale reference case, a sample size of 50 is sufficiently large
to reliably estimate sensitivity indices if log-transformed concentrations are used. The large
standard deviations (and lack of a trend with increasing sample size) obtained using raw or linearly
scaled concentrations indicate that a sample size of 200 may not be large enough to reliably
estimate sensitivity indices if raw/scaled concentrations are used.

Sensitivity indices calculated using raw or linearly scaled concentrations identify sensitivity to
input variables and variable interactions that the log-transformed results do not. This result
suggests that the combination of uncertain inputs contributing to variance at the upper end of the
concentration range is somewhat different than the combination that controls the order-of-
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magnitude differences over the entire range of output concentrations. To better quantify the
contribution of uncertain inputs to output variance at the upper end of the concentration range,
more realizations that result in high maximum '?°I concentration are necessary. Importance
sampling, a sampling method designed to preferentially sample regions of an input sample space
that result in an outcome of interest, may be one means of achieving increased sample density in
the region that results in high '?°I concentration without significantly increasing the overall
computational cost of the analysis, and will be explored in subsequent work.
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Figure 7.7 Maximum '*°I concentration at sand obs3 plotted against pShale, kSand, rateWP, and
rateSNF on log scale (top) and linear scale (bottom).

Probabilistic simulations of a generic commercial SNF repository in shale provide a test case
for applying and comparing sensitivity analysis methods available in GDSA Framework.
Sensitivity indices measuring the contribution of uncertain inputs to variance in the output (either
maximum '?I concentration or log maximum '?°I concentration) were calculated with Dakota
using polynomial chaos expansion and Gaussian process surrogate models. Using log-transformed
concentration results in larger sensitivity indices for more influential input variables, smaller
sensitivity indices for less influential input variables, and more consistent estimates of sensitivity
indices between methods (PCE and GP) and between analyses repeated with samples of different
sizes. However, sensitivity indices calculated using raw (or linearly scaled) concentrations identify
sensitivity to input variables and variable interactions that the log-transformed results do not,
perhaps because sensitivity indices calculated using raw concentrations discriminate amongst
influences contributing to variance at the upper end of the concentration range. Importance
sampling may provide a means of more accurately quantifying the sensitivity of the highest '*I
concentrations to uncertain inputs without unduly increasing the computational expense of the
analysis.
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8. CRYSTALLINE REFERENCE CASE

For a nuclear waste repository located in crystalline rock, a major source of uncertainty in
performance assessment is the spatial heterogeneity of potential fracture flow paths through the
host rock. Conceptually, a long-lived radionuclide released from a waste package will initially
migrate through the buffer material and into the surrounding damaged rock zone (DRZ). From
there it will migrate along the DRZ until it enters a fracture that takes it farther into the host rock
where connected fractures can provide a path to a nearby fracture zone. It might then migrate along
this fracture zone and through connected fractures zones to the biosphere. Along the flow path, the
radionuclide will undergo radioactive decay and ingrowth and diffuse into and out of dead-end
pores and fractures. Additionally, depending on its properties and the environmental conditions
along the flow path, it will adsorb and desorb from colloids and immobile mineral surfaces,
chemically react with aqueous species, possibly change oxidation state, and if solubility-limited,
precipitate and dissolve.

This chapter presents three new uncertainty analyses of a reference case repository for
commercial spent nuclear fuel in fractured crystalline rock. The reference case is identical to that
in Stein et al. [1], Mariner et al. [4], and Sevougian et al. [9] except for improvements to the fracture
network implementation (described in Section 8.1.2) and the design of the uncertainty analyses.

In this report, spatial heterogeneity in fracture distribution and in waste package corrosion rate
are treated as aleatory uncertainty (random, stochastic, or irreducible uncertainty; see Chapter 3)
and uncertainties in input parameter values are treated as epistemic uncertainty (state of knowledge
uncertainty; see Chapter 3). Epistemic uncertainties include porosity and permeability of the
bentonite buffer (pBuffer and kBuffer, respectively), permeability of the DRZ (kDRZ) and of the
overlying sedimentary unit (kGlacial), and rate of spent (used) nuclear fuel dissolution (rateUNF).

Stochastic (spatial) heterogeneity in waste package corrosion rate is introduced by sampling
from a truncated log normal distribution for the base corrosion rate in a temperature-dependent
rate expression for general corrosion [4]; this log normal distribution for the (spatially distributed)
waste package corrosion rate is sampled within PFLOTRAN [6, 7]. Both the mean (meanWPrate)
and standard deviation (stdWPrate) of this log normal distribution are treated as epistemically
uncertain inputs. Stochastic (spatial) heterogeneity in fracture distribution in the host rock is
generated using DFNWorks [3], which creates random realizations of the discrete fracture network
(DFN).

Latin hypercube sampling (see Chapter 4) of epistemically uncertain inputs is performed using
Dakota [8]. All three uncertainty analyses include pBuffer, kBuffer, kDRZ, kGlacial, and rateUNF
among the epistemic uncertain inputs, and use peak '*’I concentration and '?°I breakthrough times
as the output variables of interest. The three uncertainty analyses (UA) differ in the treatment of
uncertainty in timing and in spatial heterogeneity of waste package corrosion rate, as well as the
sample size for the DFN:

1. UA 1 (Section 8.3) comprises an aleatory loop of 30 DFN realizations, and an epistemic
loop of sample size 50 for a total of 1500 simulations. The same epistemic sample is run
on all 30 DFN realizations, and the mean of the waste package corrosion rate distribution
(meanWPrate) is included as an epistemically uncertain input, but the standard deviation
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(stdWPrate) is not. Within PFLOTRAN, each simulation uses the same random seed when
sampling the waste package corrosion rate distribution, so that regardless of the mean of
the distribution (which controls overall timing of waste package breach), the order in which
waste packages breach is the same in all simulations —i.e., the location of the waste package
with the fastest corrosion rate does not vary, etc.

UA 2 (Section 8.4) consists of a single DFN realization (DFN 8 from UA 1). Epistemic
uncertain inputs include meanWPrate and stdWPrate (both of which affect the overall
timing of waste package breach); an epistemic sample size of 50 is used. Results of UA 2
are compared to results of DFN 8 in UA 1 to demonstrate the effect of uncertainty in
stdWPrate on uncertainty in model outputs.

UA 3 (Section 8.5) comprises an aleatory loop of sample size 20, and an epistemic loop of
sample size 40 for a total of 800 simulations. For each DFN realization in the aleatory loop,
a different random seed is used when sampling the waste package corrosion rate
distribution, so that the order of waste package breach associated with each DFN is
different. The same epistemic sample is run on all 20 aleatory realizations, and both
meanWPrate and stdWPrate are included as epistemically uncertain inputs. Although UA 3
does not comprise the largest number of simulations, it does encompass the largest number
of uncertainties.

Model Set-up

Model Domain

The model domain [1] is 3015-m in length, 2025-m in width, and 1260-m in height. Overlying
the host rock is a 15-m thick overburden of glacial sediments (not shown). The repository is located
at a depth of 585 m. Forty-two disposal drifts contain 80 12-PWR waste packages each (3360 12-
PWR waste packages in total). Drifts are backfilled with bentonite buffer and are surrounded by a
1.67-m thick DRZ. Within the repository grid cells are as small as 1.67-m on a side; elsewhere
grid cells are 15-m on a side. The model domain contains 4,848,260 cells; of these, approximately
2.5 million are the smaller cells in and around the repository that allow representation of individual
waste packages with surrounding buffer materials. Additional information on the grid and
dimensions may be found [1] available for download at https://pa.sandia.gov.
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Figure 8.1 Cut-away of DFN 1 realization mapped to porous medium grid, showing the full
repository and the far half of the model domain.

8.1.2 Discrete Fracture Networks

As described by Mariner et al. [4], the representation of fractured crystalline rock in the GDSA
reference case is based on the well-characterized, sparsely fractured metagranite at Forsmark,
Sweden [2]. At Forsmark, large-scale mappable features of concentrated brittle and/or ductile
deformation (termed “deformation zones”) bound volumes of relatively undeformed rock. Each
volume of relatively undeformed rock (termed a “fracture domain”) is sparsely fractured, and the
fractures within each can be described in terms of a number of “fracture sets,” distinguished from
each other on the basis of fracture orientation. At Forsmark six fracture domains are defined, each
containing five fracture sets. As appropriate, three depth zones are defined (<200 m below sea
level (mbsl), 200-400 mbsl, and >400 mbsl) in order to account for the decrease in fracture density
and fracture transmissivity with depth. Each fracture set within a particular fracture domain and
depth zone is described using a 3-dimensional Fisher distribution to describe the orientation of
fracture poles in space, a truncated power-law distribution for fracture radii, and a fracture density,
P32, which is defined as the surface area of fractures per volume of rock (m?*/m?®). For each depth
zone within a fracture domain, a relationship is given between fracture radius and fracture
transmissivity.

The crystalline host-rock reference case analyzed here [4], based on the Forsmark data set,
contains 5 deterministic fracture zones and three depth intervals in which fracture density of the
stochastic network decreases with increasing depth (Table 8.1). The deterministic, user-defined
fracture zones represent large, mappable features, such as faults, and are common to all
realizations. There are three subvertical fracture zones (Figure 8.1, in gray) and two fracture zones
with a dip of approximately 30 degrees (in red). The stochastic discrete fracture networks, two-
dimensional planes distributed in the three-dimensional model domain, are generated using
DFNWorks [3], and mapped to the equivalent continuous porous medium domain using
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mapDFN.py, a code that approximates hydraulic fracture properties by calculating and assigning
permeability and porosity on a cell-by-cell basis [1].

The fracture set properties and deterministic fracture zones employed in this study provided
sufficient fracture connectedness such that each DFN realization resulted in direct fracture
pathways from the repository to the top boundary. The existence of connected fracture pathways
was determined by computer code.

Table 8.1 Parameters used to generate discrete fracture networks in which fracture density
decreases with depth.

. c o Fracture
Orientation: Size: Densit
Fisher Distribution for Poles Truncated Power Law for Radii y
(Requested)
. . Max Number of
Depth (m) / !\I'/Ir(:;rcli miine K o ?/Il(nm?adlus Radius rx fractures in
Fracture Set 9 ¢ (m) 1 km3
0-200 /NS 90° 0.0° 22 2.5 30 500 184
0-200/ EW 180° 0.0° 22 2.7 30 500 274
0-200/ HZ 360° 90.0° 10 2.4 30 500 2217
200-400 /NS | 90° 0.0° 22 25 30 500 357
200-400/ EW | 180° 0.0° 22 2.7 30 500 296
200-400/HZ | 360° 90.0° 10 24 30 500 1290
>400 / NS 90° 0.0° 22 25 30 500 236
>400 / EW 180° 0.0° 22 2.7 30 500 140
>400 / HZ 360° 90.0° 10 2.4 30 500 576

8.1.3 Waste Package Corrosion Model

The waste package corrosion model implemented in PFLOTRAN (Mariner et al. [4], Section 3.2.1)
calculates normalized thickness of the waste package wall at each time step as a function of a base
waste package corrosion rate, a canister material constant, and temperature. Waste package breach
occurs when the normalized thickness reaches zero. The normalized thickness is initialized to 1,
and is reduced at each time step as a function of the effective waste package corrosion rate Rey,

lestrrits)
Reff = R e \333.15 T(tx) (8'1)

where R is the base corrosion rate at 60°C, T is the local temperature (in Kelvin), and C is the
canister material constant. This equation assumes that reaction rates are a function of temperature
as described by the Arrhenius equation. Assuming waste package corrosion occurs via general
corrosion, R represents the normalized general corrosion rate at 60°C in units of 1/T (i.e., units of
L/T normalized by the thickness of the waste package wall).
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PFLOTRAN assigns a base normalized general corrosion rate (R) for each waste package by
sampling on a truncated log normal distribution whose mean, standard deviation, and upper
truncation limit may be treated as epistemic uncertain inputs sampled by Dakota [8]. The mean of
the distribution is sampled in all three uncertainty analyses (UA 1, UA 2, and UA 3) over the range
—5.5 to —4.5 log units. In UA 1, a constant standard deviation of 0.5 log units is used; in UA 2 the
standard deviation is sampled over the range 0 to 0.5 log units; and in UA 3 it is sampled over the
range 0.15 to 0.4 log units. All three uncertainty analyses use a constant upper truncation limit of
—3.5 log units. A mean of —5 log units results in a mean waste package breach time of 100,000
years if waste packages are held at a constant temperature of 60 °C.

8.1.4 Initial and Boundary Conditions

Initial conditions specified are pressure, temperature, and radionuclide concentrations. Initial
pressures and temperatures throughout the model domain are calculated by applying a liquid flux
of 0 m/s and an energy flux of 60 mW/m? to the base of the domain and holding temperature (10°C)
and pressure (approximately atmospheric) constant at the top of the domain and allowing the
simulation to run to 10° years. Pressure at the top of the domain decreases from west (left) to east
(right) with a head gradient of —0.0013 (m/m). This technique results in initial conditions that
represent a geothermal temperature gradient and hydrostatic pressure gradient in the vertical
direction, and a horizontal pressure gradient that drives flow from west to east.

The initial concentration of '?I in all cells is 102> mol/L. A non-zero value is necessary,
because PFLOTRAN transport equations are formulated in terms of the log of concentration. A
concentration of 1072 mol/L is approximately 60 atoms of '*°I per liter of water.

At all six faces of the model domain, pressures and temperatures are held constant at initial
values. Concentration of '?°I is held at the initial concentration at inflow boundaries. At outflow
boundaries, the concentration gradient is set to zero.

8.1.5 Observation Points

Concentrations of '*’I are monitored at observation points located on the vertical plane that
intersects the midline of the repository [1]. Each observation point is located at the top of the
crystalline host rock (just beneath the sedimentary overburden) within a deterministic fracture
zone.

8.1.6 Timestep Size

During the development of the study, oscillations in '?’I concentrations were found at
observation points which could impact estimates of '*’I breakthrough times. An analysis was
conducted to identify the cause of the oscillations and determine how the effect could be minimized
in future studies.

The strategy for this analysis was to focus on a single observation point from one epistemic
realization that showed many oscillations. The only change made to the subsequent realizations
was in respect to the maximum timestep size, which started at 5,000, decreased down to 500, and
ended at 50 years. Observation Point 8 (Obs_8) was chosen for the analysis because results showed
a high number of oscillations throughout many of the realizations. Oscillations were thought to be
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caused by the maximum timestep value. To test this, the maximum timestep size was iteratively
reduced and the sequence of results for Observation Point 8 were compared.

The I concentration oscillations become less frequent with smaller timesteps but this
timestep reduction resulted in an increase of computational time. The maximum timestep size for
the initial sensitivity study that resulted in oscillations was set to 5,000 years. By decreasing the
maximum timestep size down, first to 500 and then to 50 years, oscillations became less frequent
and more concentrated towards the beginning of the simulation. With a maximum timestep size of
5000 years, oscillations are present between 120,000 to 220,000 years and occur in the range of
10722 to 10~* mol/L. With a maximum timestep size of 500 years, oscillations are present
between 118,000 to 148,500 years and occurred in the range of 10722 to 10718 mol/L. With a
maximum timestep size of 50 years, no oscillations occurred. The computational time needed for
the 5,000-year maximum timestep was 1 hour 27 minutes; this increased to 2 hours 13 minutes for
the 500-year maximum timestep, and 7 hours 20 minutes for the 50-year maximum timestep. These
results are shown in Figure 8.2 for one simulation, where peak '*’I concentration at Observation
Point 8 is plotted against time. Regions of the figure highlighted in red exhibit the discontinuous
behavior. Results in this region would be misleading if a concentration threshold less than 1074
mol/L were used as a measure of breakthrough. However, as a point of reference, assuming the
RBI1 dose ingestion model (2 L/day of drinking water) discussed by Mariner et al. [10, Sec. 4.3],
this concentration level corresponds to a dose of only about 7 x 10~ mSv/yr, which is very low.

| Decreasing Maximum Timestep Size >
MAXIMUM_TIMESTEP of 5,000y MAXIMUM_TIMESTEP of 500y MAXIMUM_TIMESTEP of 50y
a.) Observation point “Obs_8" b.) Observation point “Obs_8" c.) Observation point “Obs_8"
10”7 107 107
10° 10° 10,
s10 =10 =10 .
L 5100 319
S ig'” 9 ig'” N1o0Y
=107 £ 101 =107
102 el 102 102
107, 107 107
10°0° w1075 0 10°
Time (years) Time (years) Time (years)
Computer Time: 1 hrs 27 min Computer Time: 2 hrs 13 min Computer Time: 7 hrs 20 min
| Increasing Computer Time >
//'
Large timestep sizes may lead to Larger timesteps may be acceptable
misleading results for breakthrough for larger thresholds (= 10712 [M])

times at low thresholds (10712) - and peak concentrations

)

Figure 8.2 Peak '*°I concentration at Observation Point 8 plotted against time with decreasing
maximum timestep size and increasing computer time (left to right).

A maximum timestep size of 5,000 years can be used for uncertainty and sensitivity analyses
on peak concentration, since peak concentrations occur later in the simulation period than

8-6



Status Report on Uncertainty Quantification and Sensitivity Analysis Tools in GDSA Framework
September 2019

oscillations occur (i.e., the green region in Figure 8.2). Similarly, breakthrough time for
concentrations greater than 10712 mol/L tend to occur where there are no oscillations, depending
on the observation point. Using the 5,000-year maximum timestep size and limiting the quantities
of interest to those that are not sensitive to discontinuities saves about 6 hours of computer time
per realization when compared to runs having a maximum timestep size of 50 years. Thus, a
maximum timestep of 5000 years is used in all analyses.

8.2 Sampling Strategy

8.2.1 Uncertainty in Shape of the Distribution

PFLOTRAN assigns a base normalized general corrosion rate (R) for each waste package by
sampling on a truncated log normal distribution. In this study, the mean and standard deviation of
the distribution are treated as epistemically uncertain inputs. Figure 8.3 schematically represents
the effect of varying the mean of the distribution and varying the mean and standard deviation of
the distribution. When only the mean is uncertain (left), the distributions on corrosion rate are the
same shape and width (neglecting the upper truncation limit) and are just shifted left or right. When
both the mean and standard deviation are epistemically uncertainty, the result is both a shifting of
the distribution left and right and a variation in the height and width of the distribution. UA 1
varies only the mean of the distribution. UA 2 and UA 3 vary both the mean and the standard
deviation.

Uncertain mean

Uncertain mean a ?nd standall'd deviationl
04f ' ! '
3.5
0351
3 -
03r
0251 251
2 )
& 3
$ 0.2 s 2
(=] (=)

-10 -8 6 -4 2 0 ]
Waste Package Degradation Rate Waste Package Degradation Rate

Figure 8.3 Comparison of waste package corrosion rate distribution shapes.

8.2.2 Uncertainty in Spatial Location of Waste Package Breach

The value of the random seed used to initiate sampling on the distribution of normalized
general corrosion rate affects the spatial location of the waste package with the largest corrosion
rate, the second largest, etc.
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If the same random seed is used for multiple simulations, then the order in which waste
packages breach will be the same even when the timing (controlled by the mean and standard
deviation of the distribution) is different. A notional example of this situation is shown in Figure
8.4. In the example, each realization of the epistemic uncertain inputs has its own mean waste
package corrosion rate, and the corrosion rates for five waste packages are sampled from the
distribution with that mean. The corrosion rates are denoted WP; where the subscript t denotes
the location (a, b, ¢, d, or e) of the waste package in the repository. Notice that for both realizations,
the waste package in location a has the highest corrosion rate, the waste package in location ¢ has
the next highest waste package corrosion rate, etc. Therefore, the waste package breach times are
different between simulations, but the breach orders are the same with respect to location within
the repository for every simulation. In UA 1, this holds true across DFNs and for each epistemic
realization within a DFN and removes any spatial variation in waste package breach order that
might be expected.

-

T T T

Simulationj

o
©
T

WP ]
a

Simulationk

Cumulative Probability

o o © © o ©

w s o [+>] ~ 2]
: . : :

o
N}

01

Waste Package Corrosion Rate

Figure 8.4 Notional example of waste package corrosion rate sampling

If a different random seed is used for different simulations, then the order in which waste
packages breach will be different. This strategy was used in UA 3, in which a different random
seed was associated with each DFN. A notional example of this is shown in Figure 8.5. The waste
package order between the two simulations is different; in simulation j, the order is c, b, a and in
simulation k, the order is c, a, b. This strategy effectively incorporates spatial uncertainty at the
aleatory level in UA 3.
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Figure 8.5 Notional example of waste package corrosion rate location assignment randomized at
the aleatory level.

8.3 Uncertainty Analysis 1 (UA 1)

UA 1 comprises an aleatory loop of 30 DFN realizations, and an epistemic loop of sample size
50 for a total of 1500 simulations. The same epistemic sample is run on all 30 DFN realizations,
and the mean of the truncated log normal distribution for waste package corrosion rate is included
as an epistemically uncertain input. Epistemically uncertain inputs and their distributions are listed
in Table 8.2. Within PFLOTRAN, each simulation uses the same random seed when sampling the
waste package corrosion rate distribution, so that regardless of the mean of the distribution (which
controls overall timing of waste package breach), the order in which waste packages breach is the
same in all simulations — i.e., the location of the waste package with the fastest corrosion rate does
not vary, etc. Output variables of interest are maximum '?°I concentration and breakthrough time
of 1?°I at each of the four observation points in Figure 8.1. Breakthrough time is defined as the
time at which %I concentration surpasses 10! mol/L.

Repeating the epistemic samples allows explicit separation of effects from the epistemic
parameters and effects from the DFN. This comes at the cost of covering less of the epistemic
sample space, so overall uncertainties may not accurately reflect the total uncertainty induced by
epistemic parameters. For full quantification of uncertainty, larger sample sizes may be desired.

8.3.1 Results

Figure 8.6 shows the '?’I concentration contours at 300 years for one of the epistemic
realizations of DFN 1. Several waste packages have breached by 300 years, and radionuclide
transport through the host rock is dominated by fracture flow.
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Table 8.2 Epistemic uncertainty distributions propagated in crystalline reference case UA 1.

Input Description Range Units | Distribution

rateUNF Fractional dissolution rate of spent 10 — 106 yr log uniform
(used) nuclear fuel

kGlacial Glacial till permeability 1016 — 1018 m?2 log uniform

pBuffer Buffer porosity 0.3-0.5 - uniform

kDRZ DRZ permeability 1071° - 1016 m? log uniform

kBuffer Buffer permeability 1020 — 1017 m? log uniform
Mean of the truncated log normal

meanWPrate | distribution on base normalized -5.5—(-4.5) yr uniform
general corrosion rate (R)

Figure 8.6 %I concentration contours for DFN 1 at 300 years for one epistemic realization in UA
1, showing the full repository and the far half of the model domain.

The four horsetail plots in Figure 8.7 show '?°I concentration as a function of time at
Observation Points 4 and 8 for all epistemic realizations on two DFNs (DFN 1 and DFN 8).
Propagation of the epistemic uncertainty distributions listed in Table 8.2 is responsible for the
variation observed for a given DFN. Because the same values of rateUNF, kGlacial, pBuffer,
kDRZ, kBuffer, and meanWPrate were used for each DFN, differences between the DFN 1 and
DFN 8 '?I concentrations reflect the effects of the DFN structure, i.e., differences in the
distribution of fractures among realizations of the DFN. At Observation Point 4, '*°I concentrations
decrease after the initial increase. This occurs for both DFNs but is more pronounced and occurs
between a larger range of times than in DFN 8. At Observation Point 8, the breakthrough threshold
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concentration of 1071 mol/L is surpassed around 1000 yr in many simulations on DFN 1; whereas
this concentration is not surpassed until several tens of thousands of years on DFN 8. At
Observation Point 8, peak concentrations occur around 40,000 yr on both DFNSs, but are almost an
order of magnitude higher on DFN 1 than DFN 8. These differences show that the aleatory
uncertainty (DFN realization) has an appreciable effect on key quantities of interest like
breakthrough time and peak concentration.

Median '?°I concentration versus time at Observation Point 4 for all 30 of the DFNs is shown
in Figure 8.8. Differences between the DFNs show that aleatory uncertainty (differences in the
location, size, and orientation of fractures) will have a non-negligible effect on quantities of interest
like breakthrough time or peak concentration.

8_6 DFN 1: Observation Point "Obs 8"
8 : : . ]
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by = 1035
N o 1053]
N N 1055
. = 10,57
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10° 10° 10° 10° 10°
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10° DFN 8: Observation Point "Obs 4" 10° DFN 8: Observation Point "Obs 8"
1 9| 1 -9
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Figure 8.7 %I concentration versus time at Observation Points 4 and 8 in DFN 1 and DFN 8 in
UA 1.

8-11



Status Report on Uncertainty Quantification and Sensitivity Analysis Tools in GDSA Framework
September 2019

5
10 T T T — DFN 1
— DFN 2
Smm— DFN 3
DFN 4
DFN 5
DFN 6
DFN 7
DFN 8
DFN S
DFN 10
DFN 11
— DFN 12
" DFN 13
DFN 14
DFN 15
DFN 16
DFN 17
[ DFN 18

10-10 L

1-129 [M]

10-15 L

S— DFN 19
S DFN 20
— DFN 21
S— DFN 22
— DFN 23
— DFN 24
— DFN 25
— DFN 26
S DFN 27
— DFN 28
— DFN 29
DFN 30

1020 1

102 10% 10° 108
Time (years)

Figure 8.8 Median %I concentration over time taken over the epistemic realizations for each DFN
at Observation Point 4 in UA 1.

The effect of aleatory uncertainty (DFN realization) is further demonstrated by comparing the
full set of epistemic realizations between DFNs. A comparison for DFNs 9 and 13 is shown in
Figure 8.9. These specific DFNs are chosen for comparison to highlight difference; some DFNs
have more similar '?°I concentrations to each other. The '?°I concentration curves for the epistemic
realizations (i.e. individual simulations) within DFN 9 and DFN 13 have similar shapes, but the
behavior differs between DFNs. The earliest increase in concentration for DFN 9 is on the order
of thousands of years, whereas the earliest increase for DFN 13 is on the order of hundreds of
years. Similarly, the peak concentrations differ by orders of magnitude. The difference in '*’I
concentrations between the DFNs is representative of the effects of DFN uncertainty (i.e.,
differences in the distribution of fractures among realizations of the DFN). The difference in '*I
concentrations for a single DFN are representative of the effects of epistemic uncertainty.
However, there is clearly less variability between the %I concentrations for DFN 9 than for DFN
13. This is because the epistemic and aleatory uncertainties interact.
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Figure 8.9 Comparison of '’I concentrations for DFN 9 and DFN 13 at Observation Point 2 in
UA 1.

The effects of both aleatory uncertainty and epistemic uncertainty on quantities of interest can
be visualized by calculating the estimated cumulative distribution functions (ECDF) for
quantitities of interest over the epistemic realizations, resulting in an ECDF for each DFN. This
was done for the breakthrough time for Observation Points 4 and 8 in Figure 8.10. The two types
of uncertainty are represented by shape and spread of the curves (epistemic) and in the variation
between curves (aleatory). The variation between the CDFs shows the effect of the DFN on
breakthrough time. The earliest median breakthrough time across all DFNs is at less than 1000
years, and the latest median breakthrough time is at approximately 10,000 years at Observation
Point 4. At Observation Point 8, median breakthrough times across all DFNs are shifted to values
between a few thousand years and a few tens of thousands of years. Variation in breakthrough time
due to epistemic uncertainties in slightly smaller. At Observation Point 4, differences in
breakthrough time among epistemic realizations on the same DFN are generally less than one order
of magnitude; at Observation Point 8, differences among epistemic realizations are about one order
of magnitude.
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Figure 8.10 Cumulative occurrence of '*’I breakthrough (>107!° mol/L) at Observation Points 4
(left) and 8 (right) for all DFNs in UA 1.
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8.3.2 Sensitivity Analysis for UA 1

The results of UA 1 suggest that there may be interaction effects between epistemically
uncertain parameters and the DFN. There appears to be a significant interaction effect between the
DFN and the mean waste package corrosion rate (meanWPrate). This interaction can be seen in
Figure 8.11. The color scale indicates a relationship between waste package corrosion rate and
peak '?°I concentrations that is generally evident for most, but not all, DFNs. The DFNs also differ
in the magnitude and spread of peak '*°I concentrations.
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Figure 8.11 Interaction between mean waste package corrosion rate and DFN with respect to peak

1291 concentrations in UA 1.

The conjoint influence of DFN and waste package corrosion rate on '?°I concentration may be
further complicated by spatial uncertainty in waste package corrosion rate. In UA 1, waste package
corrosion rates were assigned to repository locations in the same order within each realization.
There should be spatial uncertainty in the waste package corrosion rates, however, and this
uncertainty is incorporated in UA 3 (Section 8.5).

8.4 Uncertainty Analysis 2 (UA 2)

UA 2 consists of a single DFN realization (DFN 8 from UA 1). Epistemically uncertain inputs
include meanWPrate and stdWPrate (both of which affect the overall timing of waste package
breach); a sample size of 50 is used. Epistemically uncertain inputs and their distributions are listed
in Table 8.3. Results of UA 2 are compared to results of DFN 8 in UA 1 in order to demonstrate
the effect of uncertainty in stdWPrate on uncertainty in maximum concentration and breakthrough
time of 1%°I.

8.4.1 Results

Concentrations of '?°I versus time at Observation Points 4 and 8 are shown in Figure 8.12 (top).
The comparable results from UA 1 (Section 8.3) are duplicated on the same scale in the figure
(bottom). Notably, the peak concentration over all realizations did not change as a result of
including epistemic uncertainty in the standard deviation of the waste package corrosion rate. The
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impact of including epistemic uncertainty in the standard deviation is seen in the increased
variation in timing. For both DFNS, the range of times at which the initial increase in '*°I occurs

is at least an order of magnitude wider than it was when the standard deviation was fixed.

Table 8.3 Epistemic uncertainty distributions propagated in crystalline reference case UA 2.

Input Description Range Units | Distribution

rateUNF Fractional dissolution rate of spent 106 — 106 yr log uniform
(used) nuclear fuel

kGlacial Glacial till permeability 1016 — 1013 m? log uniform

pBuffer Buffer porosity 0.3-0.5 - uniform

kDRZ DRZ permeability 10719 - 1016 m? log uniform

kBuffer Buffer permeability 1020 — 107 m? log uniform
Mean of the truncated log normal

meanWPrate | distribution on base normalized -5.5 - (-4.5) yr uniform
general corrosion rate (R)

stdWPrate Standard de\_nat_lon_of the truncated 0-05 ) uniform
log normal distribution

Variable Standard Deviation
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Figure 8.12 '%I concentration versus time showing the effect of changing the standard deviation
from fixed (top) to variable (bottom) at Observations Points 4 (left) and 8 (right).
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The cumulative occurrence of '?°I breakthrough greater than 1071° mol/L for Observation
Points 4 and 8 are shown in Figure 8.13. The breakthrough at Observation Point 4 occurs more
often (and earlier) than that at Observation Point 8. This is due to the location of these observation
points relative to the repository. Observation Point 4 is closest to the repository, while Observation
Point 8 is farther downgradient from the repository (see Figure 8.1).
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Figure 8.13 Cumulative occurrence of '?°I breakthrough (>107'° mol/L) at Observation Points 4
(left) and 8 (right) for DFN 8 in UA 2.

8.4.2 Sensitivity Analysis for UA 2

A sensitivity analysis for UA 2 was performed using polynomial chaos expansion (see Sections
0 and 6.4) in Dakota to estimate Sobol’ sensitivity indices. The results for main effects and total
effects for peak %I concentration at the five observation points are shown in Figure 8.14. Recall
that the main effect to a parameter is the proportion of the variance in the quantity of interest that
it accounts for alone. The total effect is the sum of the main effect and any proportion of the
variance in the output accounted for by higher order relationships between parameters. In general,
the waste package corrosion rate distribution parameters (meanWPrate, stdWPrate) have the most
effect on uncertainty in peak '?°I concentrations. The kGlacial and rateUNF parameters also appear
to have a significant main effect though this does not hold for all observation points. The kDRZ
parameter has a total sensitivity index of about 0.2 at Observation Point 4 but has a small main
effect (<0.05), which suggests that its effect may be due to interactions. The rateUNF, stdWPrate,
and meanWPrate parameters also have noticeably larger total effects than main effect, indicating
interaction effects.
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Figure 8.14 Main and total effect sensitivity indices for peak concentration of '*°I in UA 2.

As an example, consider Observation Point 4. The only parameters that appear to have an
important main effect on uncertainty in peak concentration of '?°I are meanWPrate and stdWPrate.
These parameters have higher total sensitivity indices and all other parameters have total indices
less than 0.2. This suggests there is an interaction effect between meanWPrate and stdWPrate, and
some interactions with kDRZ and rateUNF. Figure 8.15 shows the mean of the waste package
corrosion rate distribution plotted against the standard deviation of that distribution at Observation
Point 4. The points are colored by the magnitude of the peak '?°I concentration. This plot shows
that higher peak concentrations tend to occur when the mean and standard deviation are both high.
This makes sense because the highest corrosion rates, and thus the highest number of breached
containers, will be sampled when the corrosion rate distribution is centered at a high value and the
standard deviation is large enough to allow samples significantly higher than the mean.
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Figure 8.15 Interaction plot for meanWPrate, stdWPrate, and peak '*°I

Observation Point 4 in UA 2.
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A similar type of interaction effect on peak '*’I concentration can be seen in Figure 8.16 and
Figure 8.17. Higher peak concentrations appear to occur mostly when corrosion rate parameters
are high and kDRZ is high, or when the corrosion rate parameters are high and kGlacial is low.

However, the pattern is weak and may require more investigation.

-16
® * * . b L4 ——% ]
e ®e LN o %]
i ® ® e o ° 1
L 0 » ..oﬂ bl
e 1Y . % .
a s°* Ll I @
. °®
107TE o @ o0 -® o & ]
N s * o " i
@ . L — |
- S e o ° |
[S ° . .' - d ® o -
= . ° ° .
@ 'y ° . °
= o. S ° * . S
18| @ ®e o . »
1o = * i
o0 L ® e .
L] L] s9 ]
e % oo .o =
LA s ° e * o °]
o—* . . ® i . 1
9 ® . ° . 5 ™ o ® L] L]
10719 Py @ o,
5.5 &
meanWPrate

-16 &
10 = = * — =
¢« ® L .
o o%
od ® Pt .
= ° i °
. o7, :
) ° o\ g—a®
. ¢ . . @
° ° ®e °
107E * o ** o0
°
E .. " * ° " ® n‘ L)
& L o e @ . o @
E s % e o 0 80
= ) . e ° o ° o
a ® % N o ’: &
° L % ® ©
1078 By =0 e ®
o 0 . ° ®
°® o o &
° L ) % ° ® 4
.. e ° L] L4 °
b ® e @ . @ N
4 .’\ p: . o
® ° L
107° > . -
0 0.1 0.2 0.3 04 0.5
stdWPrate

S
&

S
]

Peak 1-129 Concentration

Observation Point 4

Figure 8.16 Interaction plots for meanWPrate, stdWPrate, kDRZ, and peak '*’I concentration at

Observation Point 4 in UA 2.

-13
10 —— bd e o = . .Q.
o - o & - °
® L
e ® . * ¢ ® L °
o® Se 3
0o % o il °
° S *-—9 * ®
R
14 ¢ % s .0.0 Py
107 | e e L O
_ = s, e 0.0 _
) " ¢ o - ° 8
(&) & ® o ° ° o
o s ® & @ ° 5 )
O] . ®, o . ® o2 0}
k> . 2 . LAY - x
L] L ]
10— wge o« o =99
et e o, o
® < ° 3 S
oo | o 3 ®
» ° a * w2 s
A ° ® ool
® 9 P ‘.
e LA
10718 °
5.5 5 -4.5
meanWPrate

10-13

[ wT L
P - & ®e o0
e ) = ' 4 i &
@ 0o ©
L4 ° ® o4
° °® ° e.
°, d e ]
e ° o, €
e . ® -
® °e e ° °
qo 14 ke LY ° ® =
a ° L § 0 s
e P L s e
° ..o oo ¢ % "
s e *°% . ® e e
= . o ® ¢
™ ® L 4 °
e e, © e L " ®
-15 P o LAY A 'Y [ ]
1077 F . . o ® o 4
® e oy © %
s . s ] .
e e °
L) ° - °
0o, . 36
) e * . '
e °e ® e
10718 - = e ¥ ! . ®
0 0.1 0.2 0.3 0.4 0.5
stdWPrate

S,
3

S
b

Peak I-129 Concentration

Figure 8.17 Interaction plots for meanWPrate, stdWPrate, kGlacial, and peak '*°I concentration

at Observation Point 4 in UA 2.

The effect of kGlacial also appears nonlinear, depending on the observation point, as shown in
Figure 8.18. For kGlacial values between 10716 and 107>, the peak '*’I concentration appears to
decrease as kGlacial increases at Observation Point 8 (right), whereas for other values of kGlacial,
the peak '*’I concentration appears to increase with kGlacial. However, a similar trend is not
apparent at Observation Point 4 (left).
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Figure 8.18 Peak '?°I concentration versus kGlacial at Observation Points 4 (left) and 8 (right) in

UA 2.

Sensitivity analysis for UA 2 was also performed for breakthrough time, with breakthrough
defined as the time at which the concentration exceeds a threshold. Results were generated for
multiple thresholds, but only results from 1071° M are presented in Figure 8.19. As in the
sensitivity results for peak concentration, the waste package corrosion rate parameters appear to
have a significant interaction effect. This effect on breakthrough time is shown in Figure 8.20 for
both 10712 mol/L and 107° mol/L thresholds and appears stronger than the interaction effect on
peak concentration (Figure 8.17). When both the mean and standard deviation of the corrosion rate
distribution are low, the corrosion rates sampled within the simulation are also low, and hence

breakthrough generally occurs later in time.
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Figure 8.19 Main and total effect sensitivity indices for breakthrough time with a 1071%mol/L

threshold in UA 2.

The results from the sensitivity analysis on breakthrough time are generally consistent across
observation points, with main and total effects indices for the corrosion rate distribution parameters

dominating all of the other uncertain parameters.
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Figure 8.20 Interaction plot for meanWPrate, stdWPrate, and breakthrough time at a threshold of
10712 mol/L (left) and 10~ 1%mol/L (right) at Observation Point 4 in UA 2.

The UA 2 study was designed to test the effects of changing the treatment of uncertainty for
the waste package corrosion rate distribution. The sensitivity analysis results show that
breakthrough time and peak '?°I concentrations are sensitive to the corrosion rate distribution. This
sensitivity is due to main effects from the mean and the standard deviation and due to the conjoint
influence of these parameters together defining the corrosion rate distribution. Peak '*°I
concentrations are high when the corrosion rate distribution is centered at a high mean value and
has a large standard deviation. The breakthrough time is earlier when the corrosion rate distribution
parameters support sampling of high corrosion rates, and breakthrough occurs later when the
corrosion rate distribution is centered at a low value with a small standard deviation.

8.5 Uncertainty Analysis 3 (UA 3)

UA 3 comprises an aleatory loop of sample size 20, and an epistemic loop of sample size 40 for a
total of 800 simulations. For each DFN realization in the aleatory loop, a different random seed is
used when sampling the normalized general corrosion rate distribution, so that the order of waste
package breach associated with each DFN is different. The same epistemic sample is run on all 20
aleatory realizations, and both meanWPrate and stdWPrate are included as epistemically uncertain
inputs. Although UA 3 does not comprise the largest number of simulations, it does encompass
the largest number of uncertainties. Output variables of interest are maximum '?°I concentration
and breakthrough time of '?’I at each of the four observation points in Figure 8.1. Breakthrough
time is defined as the time at which *’I concentration surpasses 10~ mol/L.

A subset of the DFNs used in the UA 1 study were used here in the UA 3 study. The
epistemically uncertain parameters and their distributions are listed in Table 8.4. The range of the
distribution on kGlacial and on stdWPrate are smaller than the ranges of these distributions in UA
2. This change will decrease the contribution of these epistemically uncertain inputs to the
uncertainty in the output variables.

As in UA 1, repeating the epistemic samples allows explicit separation of effects from the
epistemic uncertainty and effects from the aleatory uncertainty (the DFN and the spatial

8-20

Threshold 107°[M]



Status Report on Uncertainty Quantification and Sensitivity Analysis Tools in GDSA Framework
September 2019

distribution of base normalized general corrosion rate) but comes at the cost of covering less of
the epistemic sample space.

Table 8.4 Epistemic uncertainty distributions propagated in crystalline reference case UA 3.

Input Description Range Units Distribution

rateUNF Fractional dissolution rate of spent 106 — 106 yr log uniform
(used) nuclear fuel

kGlacial Glacial till permeability 107151018 m? log uniform

pBuffer Buffer porosity 0.3-0.5 - uniform

kDRZ DRZ permeability 1019 - 1016 m? log uniform

kBuffer Buffer permeability 1020 — 1017 m? log uniform
Mean of the truncated log normal

meanWPrate | distribution on base normalized -5.5 - (-4.5) yrt uniform
general corrosion rate (R)

stdWPrate Standard de\./lat.lon.of the truncated 0.15— 0.4 ) uniform
log normal distribution

8.5.1 Results

The four horsetail plots in Figure 8.21 show '?’I concentration as a function of time at
Observation Points 4 and 8 for all epistemic realizations on two DFNs (DFN 1 and DFN 8).
Propagation of the epistemic uncertainty distributions listed in Table 8.4 is responsible for the
variation observed for a given DFN. As in UA 1, because the same epistemic samples were used
for each DFN, differences between the DFN 1 and DFN 8 '?° concentrations reflect the effects of
aleatory uncertainty, i.e., the DFN structure plus spatial uncertainty in the waste package corrosion
rates. At Observation Point 4, '*° concentrations decrease after the initial increase. This occurs for
both DFNs but is more pronounced and occurs between a larger range of times than in DFN 8.
Similarly, all of the simulations see an increased '*’I concentration at Observation Point 4 by
10,000 years in DFN 1, but there are simulations that do not see an increased '*° concentration
until closer to 100,000 years in DFN 8. At Observation Point 8, the range of times over which '*°I
concentrations increase is wider for DFN 1 than for DFN 8, and the peak concentrations are about
an order of magnitude higher. These differences suggest that the aleatory uncertainty will have an
appreciable effect on key quantities of interest like breakthrough time and peak concentration.

The effects of epistemic and aleatory uncertainty are also visualized by calculating the
empirical cumulative distribution functions for quantities of interest over the epistemic
realizations, resulting in an ECDF for each DFN. This was done for the breakthrough time at
Observation Points 4 and 8 in Figure 8.22. The variation between the CDFs shows the effect of
the DFN and spatial uncertainty on breakthrough timing. The earliest median breakthrough time
is around 10,000 years, and the latest median breakthrough time is at over 1,000,000 years for both
observation points. The epistemic uncertainties account for the spread in breakthrough times for a
single DFN. Heuristically, these are comparable; the variation between ECDFs is around two
orders of magnitude and the domain of any single ECDF covers about two orders of magnitude,
though there are differences between observation points. In UA 1, differences in breakthrough
time due to aleatory uncertainty were generally larger than differences due to epistemic
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uncertainty. In UA 3, neither type of uncertainty dominates the other, and the relative contributions
from each type of uncertainty can be different depending on the observation point.
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Figure 8.21 Comparison of '?°I concentration as a function of time at Observation Points 4 (left)

Time (years)

and 8 (right) for DFN 1 and DFN 8 in UA 3.
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(left) and 8 (right) for all DFNs in UA 3.
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A similar analysis can be made on the basis of Figure 8.23 for peak '*’I concentrations. The
median peak concentration varies by as much as three orders of magnitude between DFNs; and
peak concentration varies by as much as three orders of magnitude within a single DFN. In UA 3,
aleatory uncertainty (DFN realization and spatial uncertainty in waste package corrosion rate)
seems roughly equally as important as epistemic uncertainty in driving uncertainty in both the
breakthrough and peak concentration quantities of interest.
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Figure 8.23 ECDFs for peak concentration at Observation Points 4 (left) and 8 (right) for all DFNs
in UA 3.

8.5.2 Sensitivity Analysis for UA 3

A full sensitivity analysis has not been performed on the simulations for UA 3. However, some
insights can be gained from simple scatter plots. The plot in Figure 8.24 shows the combined effect
of the waste package corrosion rate parameters on breakthrough time for DFN 8 at Observation
Point 8. The plot shows the same trend as Figure 8.20. The same trend occurs for the other DFNs
at each observation point, indicating that the introduction of the aleatory uncertainties did not
remove the sensitivity of breakthrough to uncertainty in the waste package corrosion rate
distribution.

Figure 8.25 shows the effects of each of the waste package corrosion rate parameters separately
on the breakthrough time. Across most DFNs, the low values of either parameter are generally
associated with later breakthrough times and higher values of either parameter are generally
associated with earlier breakthrough times.

This effect can be contrasted with the other epistemic parameters, plotted in Figure 8.26. The
relationship between each of these parameters and breakthrough time is less distinct than that for
the corrosion rate parameters.

The interaction effect of the waste package corrosion rate parameters on the peak concentration
is shown in Figure 8.27 for DFN 8 at Observation Point 4. This is consistent with the result from
the UA 2 (Figure 8.15), showing that high values of the corrosion rate parameters are associated
with larger peak concentrations.
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Figure 8.27 Interaction plot for meanWPrate, stdWPrate, and peak '?°I concentration at
Observation Point 4 for DFN 8 in UA 3.

In UA 3, both aleatory and epistemic uncertainties are significant and neither dominates the
overall uncertainty in quantities of interest (breakthrough time; peak concentration). Initial
sensitivity results show that of the epistemically uncertain inputs, the parameters defining the
normalized general corrosion rate distribution have the most influence on breakthrough time and
peak concentration. This conclusion is supported by the more extensive sensitivity analysis
performed for UA 2.

8.6 Conclusions for Crystalline Reference Case UA

Three new uncertainty analyses performed for a reference case repository for commercial spent
nuclear fuel in fractured crystalline host rock indicate that both aleatory uncertainty associated
with spatial heterogeneity and epistemic uncertainty associated with waste package corrosion rates
contribute significantly to uncertainties in output variables of interest including peak
concentrations and breakthrough times of '*I at several observation points in the model domain.
With a constant and relatively large standard deviation for the distribution of normalized general
corrosion rates (as in UA 1), aleatory uncertainty associated with stochastically-generated DFNs
has a larger influence on uncertainty in quantities of interest than does epistemic uncertainty
associated with waste package corrosion rate. However, when the standard deviation of the
corrosion rate distribution is included as an epistemically uncertain parameter, as in UA 3,
epistemic uncertainty has as large an influence on the output as aleatory uncertainty. A sensitivity
analysis performed across epistemically uncertain inputs on a single DFN realization (UA 2)
confirms the contribution of uncertainties in mean and standard deviation of the corrosion rate
distribution to uncertainty in the output.

Fracture distribution was treated as an aleatory uncertainty because it is assumed that the
uncertainty associated with heterogeneous fracture distribution in the subsurface cannot be
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reduced. However, it may be possible to reduce uncertainty associated with spatial heterogeneity
by avoiding emplacement of waste packages at locations where connected fractures intersect the
repository.

When site-specific data is available and design choices are made, the state of knowledge
regarding uncertainty in the waste package corrosion rate can be improved through well-designed
experimental work aimed at measuring corrosion rates and understanding corrosion processes in
the site-specific system.
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9. EXPLORATION OF NEW UQ/SA DEVELOPMENTS

There have been many exciting developments in the fields of uncertainty quantification and
sensitivity analysis the past twenty years. One is the development of many types of surrogates or
metamodels, which are presented in Chapter 6. These have allowed more advanced UQ/SA
methods to be used which could not be used previously because of the thousands of function
evaluations they require. The use of Sobol’ variance-decomposition to perform sensitivity analysis
(presented in Chapter 5) has been enabled by surrogate model development.

Additionally, the last two decades have seen a large increase in the use of Bayesian methods
to perform parameter calibration. The posterior parameter distributions generated as part of
Bayesian calibration can be used to perform forward uncertainty propagation. Finally, there are
some new research areas outlined below. These include dimension reduction methods which
address functional decomposition of time series data; the CUSUNORO sensitivity approach;
importance sampling; Bayesian methods; and multi-fidelity approaches. This chapter provides a
brief introduction to these topics. It is our goal to investigate and understand these methods with
respect to their application to GDSA in the coming years.

9.1 Dimension reduction

There are a variety of methods which take “functional” or “field” data that involves a response
as a function of time and/or spatial location and reduces it in some manner. The idea of creating
surrogate representations as part of temporal or spatial field data is addressed in some detail in [1-
5]. These methods are very applicable to GDSA, because many geologic disposal safety
assessments involve prediction of various radionuclide quantiies as a function of time and/or
location. These radionuclide quantities are often correlated with each other (e.g., the concentration
of 1?°I at a particular location at 5000 years is correlated with the concentration at that location at
6000 years. See Figure 7.3 for example data).

One classical approach to reducing the dimension of functional data is principal components
analysis (PCA). To understand the basics, first assume that an LHS sample has been run to
compute the functional or field responses. For notation purposes, there are d input parameters, N
samples, and the field length is L. This will result in a set of field responses which can be put into
a matrix X of dimension N*L. For example, for 100 samples of a 1000 length field, X is 100*1000.

To perform a PCA on the field responses, one first centers the mean of each column of X. That
is, take X and subtract the mean of that column from each value in that column. PCA is then
performed on the mean-corrected X. This ensures the columns have a sample mean of zero which
simplifies the variance calculations.

The idea in PCA is to construct a linear representation of variable values to highlight the
variance present in the data. To find the first principal component, define fi as a linear combination
of variable values: f; = Zle Bjx;j = X;B. Then, find the set of (L*1) coefficients B4 such that

. F2
the linear combination f;; = X;f4 has the largest possible mean square (defined as %) subject

to the constraint that the ||1]|> = 1. The optimal 8; when applied to all observations will result
in a vector Y1 of dimension N*1: Y; = Xf;. This vector identifies the strongest and most
important modes of variation. The process is repeated with subsequent steps to determine the sets
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of coefficients B, B3 _that define the second, third, and subsequent coefficient vectors. The
coefficient vectors are called “loadings or “factor loadings™ and the Y vectors are called “factor
scores” or “principal component scores.”

In summary, PCA results in a system:
Y= XB (9.1.1)

To calculate the coefficients f8, it is necessary to calculate the eigenvectors of the covariance matrix
of X. That is, calculate the matrix:

xTx
N

V= (9.1.2)

Then, perform a Singular Value Decomposition (SVD) on the covariance matrix V to obtain the
eigenvectors. Typically, the process is only carried out until the M principal components are
identified that account for a certain percentage of the variance. The first eigenvector (with the
largest eigenvalue) of V corresponds to 81, the second eigenvector of V corresponds to 5, etc.
Note that the full B can be of dimension L*L but typically is smaller, L*M. Also, note that to
perform a prediction in the original space, the loadings and factor scores are used. Equation 9.1.3,
derived from Equation 9.1.1, uses the fact that the inverse of an orthogonal matrix is its transpose:

X=vYypT (9.1.3)

“Functional Data Analysis” by J.O. Ramsay and B.W. Silverman, Springer, 2005 is an
excellent reference for PCA on functional data (fPCA). This book goes into more treatment of
methods with functional data (e.g., treating the covariance matrix of the data as a function of time),
but essentially the data is being treated as discretized values and thus can be used in a standard
PCA.

Finally, note that PCA is not just a way to obtain efficient representations of the original data
as given by the product of the M most significant factor scores times the loadings as presented in
Equation 9.1.3. One can also use the PCA as a way to generate new predictions. This is done by
creating a predictive model which involves summing the eigenvectors but treating their
coefficients (the factor scores) as uncertain variables which are functions of the original uncertain
parameters used to generate the sample matrix X.

More specifically: one can construct Gaussian process surrogates for the factor scores of the
M principal components. The GP surrogates will be function of the uncertain inputs. The idea is
that PCA has just been performed on (for example) the covariance matrix of 100 samples.
Typically, those 100 samples will be generated by sampling over some d uncertain input
parameters u, so there should be a mapping from u to the field data, specifically to the loading
coefficients and the factor scores. The goal is to create a surrogate model so that one can predict
a new time series or set of field data for parameter values u that are not in the particular sample
of 100. A prediction is given as:
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Xprea = GP1(WP1 + GP, (WP, + - GPy (W) By + 1y (9.1.4)

where the estimate of each factor score is a GP that is a function of the d uncertain input parameters,
denoted u. To obtain the data to estimate the GPs, there are (for example) 100 samples of Y and
a corresponding 100 samples of u, so GP; is a surrogate for Y(u). Note that py is the mean that
was originally subtracted from the original data matrix X. Equation 9.1.4 is a generalization of
Equation 9.1.3 in the case of new inputs uew.

The process used to build such a surrogate model has been refined specifically for uncertainty
quantification of functional data. The concept developed by Tucker et. al. is to use fPCA twice to
build the surrogate: once to characterize the horizontal uncertainty and once to characterize the
vertical uncertainty. The resulting probabilistic models on horizontal and vertical uncertainty are
combined to build the surrogate.

As in the general PCA case, the functions being modeled are aligned to the mean before
application of PCA. Alignment to the mean is performed using warping functions (e.g., time-
warping for time series data). Each function has an associated warping function that stretches and
shrinks portions of the function with respect to the abscissa to minimize a measure of distance to
the mean. Because this warping function removes horizontal uncertainty, its form characterizes
the uncertainty it has removed. fPCA is applied to induce a probabilistic model on the warping
functions to account for horizontal uncertainty. fPCA is applied separately to the aligned functions
to induce a probabilistic model that characterizes the vertical uncertainty.

The details involved in this construction ensure that each step is invertible. The probabilistic
models and vertical and horizontal uncertainty can be sampled separately to predict a new set of
warping functions and aligned functions, which together define a new prediction for the
population.

One of the primary benefits of this construction is that separating uncertainty and aligning to
the Karcher mean rather than a cross-sectional mean prevents oscillations in functions from
cancelling each other out. A notional example is provided in Figure 9.1. The population of
functions being modeled have horizontal uncertainty that results in a cross-sectional mean that
loses the maxima and minima characteristics of the entire population. This mean is not
representative. The Karcher mean, however, is less affected and maintains a shape more consistent
with the population.

In general, these dimension reduction methods which construct functional approximations can
be directly applied to GDSA applications which involve time-series output. For example, many
geologic disposal safety assessments involve prediction of various radionuclide quantiies as a
function of time and/or location. Although the output of one simulation may involve predictions
of a radionuclide at 10,000 time points, there is often correlated information in this vector of
timepoints (e.g., a function over time) which is well-suited to dimension reduction.
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Figure 9.1 Notional example of the Karcher mean used in some functional data analysis methods
(from [5]).

9.2 CUSUNORO

CUSUNORO, for “cumulative sums of normalized reordered output”, is a basis for
investigating sensitivity analysis of model output to inputs (Chapter 4, section 4.6) and presenting
aggregate results graphically, proposed in Plischke [6]. It is an adaptation of Pearson’s correlation
ratio as a variance-based sensitivity indicator as well as the graphical presentation of sensitivity
analysis results with “contribution to the sample mean”, or CSM plots proposed in Bolado-Lavin,
et al. [7]. The relevance of this strategy for GDSA is in determining whether a reduction in the
dimension of the input space, via sensitivity analysis identification of important or unimportant
inputs, is possible while still maintaining response distribution accuracy or adequacy of surrogate
models based on a reduced input space.

For description of the CUSUNORO approach, a single response variable y(X) at input vector
X =[xy, X, ..., X,x], With nX components is assumed and nS responses {y;, i=1,...nS} are available
for a set of inputs {X; = [x;, Xy ..., X,x;], i=1,..nS}. Although a judicially selected set of
calculation points {X;} as described in Chapter 4 is warranted, the description or implementation
of the CUSONORO approach does not depend on this. Further, it is assumed the responses {y:}
are raw calculations, not result of any surrogate or meta-model, although further development
might consider some alternative interim assumptions of model forms for exploring various
mappings [X;,Y¥(X,)],i=1,2, ..., nS, including use of more than a single input at a time.

It is also useful to assume that the scale of individual inputs, say the jth input {x;;, i=1,...nS},
are the same and in the interval [0,1]. If this is not the case, then normalized inputs can be achieved
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in various ways, for example by associating values of the input with ranks scaled by nS, creating
equally spaced indices associated with the jth input. Plischke [6] considered additional options:
scaled Chebychev points and an optimized partition layout. For purposes here, assume the inputs
are in the unit intervals, so consequently all plots of response against input may overlay on [0,1]
for visual comparison.

Ordering of the jth input imposes an associated ordering on the responses, {y;, i=1,...nS} and
it is this ordering for a particular input, or input combination, that is relevant in the ‘reordered
output’ concept of CUSUNORO and the basis for cumulative sums of the responses. Specifically,
if p(i;j) is the index of the ith ordered value of the jth input x;i of {x, i=1,...nS} then Vo),
i=1,...nS is a reordering of the response that corresponds to the rank orderlng Xj@, i=1,...nS.
Normalization of responses is achieved by centering the responses and dividing by the square root

of the sum of squared deviances of the responses from their mean: ssy = Z?zsl(yi —vy.)%. The

scaled cumulative sum of responses associated with x;q) is the i-left cumulative sum of normalized
ordered responses, further divided by the square root of the sample size nS (as an adjustment for
sample size):

N 1 ‘
z(i;)) = Wzkzl(}’p(k;j) -y.) 9.2.1)

Associating z(0; j) = 0 and noting z(nS; j) = 0, the plot z(i; j) versus xj is referred to as the
CUSUNORO curve and provides a visual comparison of the relative influence of different inputs
on an output (response), similar in spirit with the contribution to the mean, CSM concept. A similar
development is possible to define contribution to the sample variance (CSV):

. 1 i 2
esv(i; ) = 75 k=1 (Voiip) — ¥-) (9-2.2)

Again, csv(0;j) = 0 and csv(nS;j) = 1isnoted. Plischke [6] develops these concepts further
demonstrating a relation between Pearson’s correlation ratio and gradients of the CUSUNORO
curve and a strategy for adaptively partitioning the input range where piecewise constant values
are fit to the response.

An example of a CUSUNORUO plot for two sample sizes are shown in Figure 9.2. Both plots
use a S-parameter analytical test function where x;, x2, and x3 are the active variables:
y=5x:+5x1x2+3x3x3. Figure 9.2a was generated based on 16 samples selected as an orthogonal
array — based LHS, with a maximin distance criteria and minimum pairwise input correlation
criteria implemented, and Figure 9.2b was generated based on 100 simple random samples. It is
seen that the CUSUNORO curve for x; indicates its importance by a fairly steady decrease from
zero to a minimum then steadily increasing to zero again. The first plotted value, after the
degenerate zero, is the response value at the minimum input value differenced from the mean and
is neccesarily negative since that response value is also minimum due to the increasing relationship
of the response to input x;. This behavior is as expected of the cumulative sum differenced from
the mean of the response and correctly identifies that the response is an increasing function of the
first input, x;. In Figure 9.2a with 16 samples, that the response is also an increasing function of x:
and x3 may be harder to differentiate because the initial decline is somewhat less consistent, due
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to the impact of the interaction relationship with x; diminishing the impact of x> and the smaller
coefficient and compounding squared term in x3 diminishing its impact (due also to that the inputs
are on the interval between 0 and 1). However, CUSONORO curves for both x2 and x3 behave
similiarly to that for x; with neither crossing the zero center-line. For Figure 9.2a with 16 samples,
the remaining x4 and xs CUSONORO curves, although they deviate only somewhat less from the
zero center-line seemingly than the curves for x2 and x3, both cross the zero center-line. In Figure
9.2b with 100 samples, the ranking of the most important variables is clearer. Further investigation
is underway on the behavior and interpretation of CUSUNORO curves as a function of number of
samples and number of input parameters. It is worth noting that co-linearity in the sample of inputs
can significantly confuse interpretation of these plots, particularly for small sample sizes, although
with increasing sample size this problem is diminished.

CUSUNORO plot: 16 run DOE CUSUNORO plot 100 samples

_____

1.5
~
-

15

~
-

W, . /\- J'/\ M
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cusunoro zj,j
cusunoro zj j

00 02 04 06 08 1.0 00 02 04 0.6 08 10
xj,j=1:5 xj,j=1:5

Figure 9.2 CUSUNORO plot examples for a test function with 5 parameters. 9.2a (left): results
based on 16 samples. 9.2b (right): results based on 100 samples.

Figure 9.3 shows two CUSUNORO plots for the shale reference case described in Chapter 7.
Figure 9.3a shows the cumulative sum of normalized output for the location “sand_obs1” depicted
in Figure 7.2 and Figure 9.3b shows the cumulative sum of normalized output for the location
“sand_obs3” in Figure 7.2. These plots show that the input parameters pShale and kSand are the
most important parameters for these two locations as evidenced by their deviation from the
nominal zero line and grey ellipse area. This is consistent with the earlier sensitivity analysis that
was performed using the Sobol’ variance-based indices presented in Figure 7.4.
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9.3 Importance Sampling

Importance sampling is a biased sampling method used to sample random variables from
different densities than originally defined [8;9]. These importance sampling densities are
constructed to pick “important” values of input random variables to improve the estimation of a
statistical response of interest, such as a mean or probability of failure of a response from a
simulation model. The use of biased input sampling densities will result in biased estimators if
they are applied directly to the simulation results. However, the simulation results are weighted to
correct for the use of the importance sampling densities, and this ensures that the importance
sampling estimators are unbiased. Conceptually, importance sampling is very attractive: for
example, when one wants to generate more samples in a failure region when estimating failure
probabilities. In practice, however, importance sampling can be challenging to implement
efficiently, especially in a general framework that will allow solutions for many classes of
problems.

Importance sampling is often explained through integration. Accurate computation of high-
dimensional integrals is common to many engineering and scientific applications. Monte Carlo
methods have been commonly used for many years to approximation the expectation of functions
of random variables by using the sample mean. That is, when calculating the expectation:

E(r(X)) = J.r(x)fX (x)dx (9.3.1)

where 7(X) is a response function: 7: R9>R! and Xis a multidimensional random variable having
probability density function fy, the Monte Carlo estimator of E(#(X)) is:

E (r(X)) = lir(x,. ) (9.3.2)

nio

Note that many quantities of interest can be cast as expectations, including probabilities of failure.
For calculation of failure probabilities, the probability that #(X) takes on a value in set A of interest
(defined as the failure region) can be written as:

Prob(r(X) € A) = E[l,, (r(X))] (9.3.3)
wherel,, =1 when #(X)€A and 0 when r(X)eA.

The purpose of importance sampling is to sample the random variables from a different
distribution than the original distribution of interest and use those samples to calculate an estimate
E_(r(X)), with the goal of reducing the variance in the estimate. To do this, the Monte Carlo
estimate must be weighted appropriately. If 4, (x) is the new distribution from which the random

variables will be sampled (note # must have the same support as f), the new estimate is derived as
follows:

E(r(X) = r(x)%h(x)dx =K, P(X)w} _ L1 ra)f ) x, ~ h(X) (9.3.4)
(%) n’

h(X) o h(x)
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where A(x) is called the importance sampling density, the product of the integrand and the original
density is called the importance function, and f{x)/hA(x) is called the weight function. There are
certain choices that one should make when picking /(x). The variance of the importance sampling

estimator E ,1s minimized when A(x) o |r(x)f(x)|.

Much of the work in importance sampling has been finding minimum variance estimators for
specific cases. The fundamental issue in implementing importance sampling is the choice of the
biased distribution which encourages the important regions of the input variables. If you have a
good distribution, the payoff is a much lower simulation cost, but if you choose a poor importance
sampling density, the run times could actually be longer than standard Monte Carlo (i.e., simple
random sampling) simulation. There are various measures used to calculate the goodness of the
importance sampling scheme. One is the ratio of the variance obtained by a pure Monte Carlo vs.

2
the variance of the importance sampling result: UMC/ , ; another measure is the ratio of the
IS

number of samples required by each scheme, given the same output variance (this is called
simulation gain): Nmc/Nis. In general, a good importance sampling function should be as follows:

1. h(x)> 0 whenever r(x)f(x) #0.
. h(x) should be close to being proportional to |r(x)f(x)|.
3. It should be relatively easy to generate samples from A(x) and also to calculate the density
h(x) for particular values of x.

Some standard approaches to determining /(x) including scaling, where the original random
variable X is scaled by a or linearly shifted (e.g., 4(x) = f(x-c)) to put more probability density into
a particular region (for failure probability estimation, for example). Another classical approach is
to assume that /(x) belongs to a parametric distribution family. Then, the problem is determining
the values of the parameters governing that distribution (for example, determining the mean and
variance for /(x) if & is assumed to be normal). Often these parameters are obtained by optimizing

the variance of the importance sampling estimator E ,» but this implies that one can calculate an

analytic expression or approximation for this estimator. Oh and Berger (1993)[10] used an
approach where they used a mixture distribution (a set of weighted individual distributions), where
the individual distributions were multivariate-t distributions. They then had to determine the
weights, location, and scale parameters of the ¢-distributions, which they did by numerical
minimization of the estimate of the squared variation coefficient of the weight function.

For black-box simulations that have multiple uncertain inputs which may come from a wide
variety of random input distribution types, one cannot generally assume that the importance
sampling density will be normal or have a parametric form. The main problem is how to pick
points and/or distributions around which to sample. Swiler and West investigated an adaptive
process which generated LHS samples and then used Kernel Density Estimation (KDE) to generate
an importance sampling kernel density around the points in a failure region [11]. This can be
helpful but is very dependent on the number and location of points that are in the failure region
from the initial sampling study.

A few importance sampling approaches are currently implemented in Dakota. They work in
conjunction with reliability methods, which are methods tailored at answering the question: what
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is the probability that my response will be greater than threshold T? Typically, a response greater
than T indicates a failure and often these are extremely rare events, so the probability of failure
could be only the order of 1.E-6 or less. In these situations, MC sampling to find the failure
probability is prohibitive. Optimization is used in reliability methods to find the “most probable
point” defining the boundary or interface between safe and failure regions. The theory of reliability
methods [12] relies on transforming the problem to standard normal space, so the inputs are
Gaussian. Because of this, after the most probable point is found, it is used as the mean of a
Gaussian for the importance sampling process.

To demonstrate importance sampling on a problem of interest to GDSA, 200 samples were
generated from a repository simulation where one of the radionuclides of interest is '*I
concentration. One goal is to understand what will lead to high iodine concentrations. Figure 9.4
shows the '?°I concentration at location sand obs1 from the shale simulations as a function of the
input parameters. The simulations with >’I concentrations greater than 1E-13 are highlighted.
Note that of the 200 PFLOTRAN simulations, only 21 had high concentrations. The goal is not
only in assessing the failure probability more accurately (if failure is defined as '?°I concentration
> 1E-13[M]) but also in understanding what input parameter combinations will lead to such cases.
Importance sampling is ideal for this.
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Figure 9.4 Monte Carlo sampling (200 samples) of PELOTRAN results showing >’ concentration
at location sand obsl from the shale simulations as a function of the input parameters. The
samples with concentrations greater than 1.E-13[M] are highlighted in red.
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Figure 9.5 Importance sampling based on the original 200 LHS samples of Figure 9.4. The
additional importance samples are shown in green.

Figure 9.5 shows the importance sampling points highlighted in green. There were 200 initial
points and 20 points added with importance sampling. The blue and the red points are surrogates
of the original points, where red points are in the high concentration region. Note that we did
employ surrogates for the importance sampling calculations. This study demonstrated that
importance sampling was able to determine additional, new sample points in a 10-dimensional
input space which correspond to the region of interest (in this case, '*’I concentrations greater than
1.E-13[M]). The green samples are much more strategically placed and focused on the region of
interest than 20 new random samples taken over the input domain. Given the large number of
sample inputs and the relatively small number of original samples, this study shows the potential
to perform more targeted sampling using importance sampling for GDSA applications.

9.4 Bayesian Calibration Methods

Calibration is the process of determining parameters of a model given observational data. A
common approach is to minimize the “error sum of squares” function. Assume that a model of the
response y as a function of the n-dimensional inputs x is given as:
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Y, =f(x;;0)+¢ (9.4.1)

where fis the model (e.g., a computational simulation), 0 is a vector of parameters, ¢is the random
error term. Assume that E[¢,]=0 and Varle,]=c?and ¢; are identical and independently

distributed (iid). Given observations of the response y, the goal of calibration is to find the optimal
values 0* to minimize the error sum of squares function S(0), also referred to as SSE:

SO = Y10, - f(x:00F = 2[R OF (9.4.2)

where R.(0) are the residual terms. Nonlinear least squares optimization algorithms have been
designed to exploit the structure of such a sum of squares objective function. By assuming that the
residuals R;(0) are close to zero near the solution, the Hessian matrix of second derivatives of

S(@) can be approximated using only first derivatives of R(8). The Gauss Newton algorithm is
often used [13].

The process above is often called a “deterministic” calibration: a point estimate or best
estimate of the parameters is determined (0*). However, uncertainty should be incorporated in the
parameters, including uncertainty in the test measurements, in the weighting of the objectives, and
in the model form. One approach is to start the least squares optimizer at different locations in
parameter space to see if the optimization always leads to the same answer or if there are many
local optima (e.g., many combinations of parameters which indicate that the calibration problem
is non-unique and/or poorly posed). The results from a multi-start optimization are helpful to
identify if there are many local minima but they don’t provide a distribution on the input
parameters.

Bayesian calibration is often used to generate posterior parameter distributions. Such
distributions are based on the prior parameter distributions (which must be specified based on
expert judgement and/or historical data) and a likelihood function (which represents a goodness of
fit and often involves a term such as the SSE). Bayesian calibration is expensive computationally
because one generates the posterior distribution by a sampling process called Markov Chain Monte
Carlo which generates possible samples in a sequential fashion, deciding at each point whether to
reject or accept the sample and where to go next in parameter space. Some advanced MCMC
algorithms are designed to accept every sample, which is more efficient. MCMC typically requires
hundreds of thousands of function evaluations to obtain converged estimates of the posteriors and
thus often involves the use of surrogate models. There have been many approaches to circumvent
this, including the use of parallel chains, the use of adaptive methods, etc. This section does not
go into detail, but the interested reader should review a few of the canonical references in the field
[14-18] as well as some recent examples of the application of Bayesian methods to geophysical
modeling [19-20].

In addition to generating posterior distributions of input parameters (and also posterior

distributions of response quantities obtained by evaluating the model at the posterior parameter
values), Bayesian calibration is attractive because it facilitates model selection (identification of
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the best model if there are a few candidate models) and optimal experimental design. Model
selection is a non-trivial computational task: it involves the calculation of the “model evidence”
which involves averaging the model likelihood over all possible values of the parameters for each
model. The likelihood is near zero in many portions of the parameter space which makes the
accurate calculate of the integral challenging. There are various computational tricks to calculate
model evidence [21;22].

In a Bayesian framework for optimal experimental design (OED), one identifies a set of
candidate experiments that could be run, then selects the design that maximizes the expected value
of the experiment [23;24]. To calculate this expected value, one needs to hypothesize the set of
outcomes and their associated probabilities that one would get from performing each experiment.
Then, these hypothesized outcomes are examined to see how they would change the posterior
distributions of the parameter calibrations. Depending on the utility function, if an experiment
would change or inform the posterior significantly, it is a likely candidate to be selected. Bayesian
OED is extremely expensive computationally because it involves layers of model runs and
integrals based on the results. To hypothesize model outcomes, one can use expert judgement but
typically the model itself is used.

In the context of GDSA applications, one could use optimal experimental design to help
identify which physical experiments to run to most inform one or more of the parameters. For
example, if there are four possible locations at which to drill a well and only one well can be
drilled, OED will identify which of the four is most useful to improve a parameter such as a
permeability value. Bayesian calibration can help GDSA applications by incorporating
experimental data such rock or material specimen testing into the uncertainty estimation of the
model parameters.

9.5 Multifidelity UQ Methods

The scientific computing community has endeavored to develop methods which are as efficient
as possible to perform UQ on computationally expensive simulation models. One set of
approaches is called “multilevel” and “multifidelity” UQ methods. These multifidelity UQ
techniques have gained popularity in the last decade or so when the need for UQ of high-fidelity
numerical simulations led to the design of techniques capable of containing the overall
computational burden. The main idea behind these techniques is to extract information from a
limited number of high-fidelity model realizations and complement them with a much larger
number of a set of lower fidelity evaluations. The final result is an estimator with a much lower
variance, i.e. a more accurate and reliable estimator can be obtained. These approaches typically
rely on a strong correlation between low and high-fidelity results and the use of control variates.
The mathematics behind these approaches can be found in [25-30].

Multifidelity approaches can be used in many ways in the GDSA Framework. For example, one
could have the same PLOTRAN model but have two different mesh resolutions for it: this would
be referred to as a “multilevel” study. Or, one could have two different versions of a chemistry
model such as the Fuel Matrix Degradation model, one of higher fidelity and one of lower fidelity.
Another possibility is to have two codes such as PFLOTRAN and TOUGH2 serving as the high
and low fidelity models, respectively.
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10. INTERNATIONAL ACTIVITIES AND COLLABORATION
10.1International Working Group Activities 2018-2019

As early as 2012, an international collaboration has been ongoing in the areas of uncertainty
quantification and sensitivity analysis, beginning with the formation of an informal
Technical/Scientific Working Group in 2013 (see Becker and Ulrich 2014 in Hansen et al.[12], p.
195). Originally this began through multi-nation interactions under the auspices of the
Implementing Geological Disposal of Radioactive Waste —Technology Platform (IGD-TP) of the
European Union EU. This was followed by a series of annual meetings starting with a “Workshop
on Handling Uncertainties” in September 2015 at Harwell, UK [13], followed by an “International
Workshop on Sensitivity Analysis of Final Repository Systems” in Braunschweig, Germany in
October 2016, and then by a “Quantification of Uncertainty Workshop” in August 2017 in
Albuquerque, NM, USA. It was at this latter workshop in the U.S. where more collaborative work
was initiated among the international participants and organizations, as discussed below.

A follow-on workshop in Brussels, Belgium in October 2018 [2;11] led to a more formal
establishment of this collaboration during the subsequent Integration Group for the Safety Case
(IGSC) Symposium on the Safety Case in Rotterdam, The Netherlands in October 2018. The
current uncertainty task group, now under the umbrella of the IGSC of OECD/NEA, consists of
waste management, consulting, and research organizations from several countries [4]. The task
group involves at least 10 organizations from 8 countries. A subset of these organizations—GRS
(Germany), Posiva (Finland), Radioactive Waste Management (RWM) (UK), and possibly SKB
(Sweden)—have taken interest in uncertainty quantification whereas another group of
organizations—GRS (Germany), Clausthal University of Technology (TUC) (Germany), Sandia
National Laboratories (SNL) (USA), Posiva (Finland), and SCK-CEN (Belgium)—have been
pursuing the subtopic of sensitivity analysis. Interest was also expressed at the IGSC Safety Case
Symposium 2018 by organizations in France (IRSN), Switzerland (Nagra, ENSI), and Russia
(IBRAE), who have been invited to the next annual meeting of the task group to be held at the
GRS offices in Berlin in November 2019.

An Uncertainty Quantification workshop held August 2017 in Albuquerque, USA, led to a
joint sensitivity analysis exercise effort initiated in October 2017, with participation from GRS,
Posiva, SCK-CEN, SNL, and TUC. The Sensitivity Analysis subgroup identified six test cases
ranked in order of complexity and since then has been comparing analysis methods on
progressively more complex models. The group shared results at the next working group
meeting—International SA-UQ Workshop—held in Brussels, Belgium, in 2018. The activities to
date have resulted in three conference and symposium papers: Rohlig et al. [4], Becker [10] and
Stein et al. [11] summarizing the results.

The six test cases that the Sensitivity Analysis subgroup has developed include five
performance assessment (PA) models (Problems 1-5) and one hydrogeochemical process model
describing spent nuclear fuel dissolution (Problem 6) to be used by all members of the subgroup.
The test cases are a series of models with increasing level of complexity, but they are treated as
black box models in the sense that the subgroup members were only provided with the input
parameters in the form of sampled values and corresponding outputs from probabilistic model
runs. Thus, for the purpose of these analyses, each model represents some unknown mapping from
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the parameter space to the output variable space. The participants exchanged only rough
descriptions of the systems and the parameters. In the absence of the detailed process- and
implementation-level understanding of the systems by the sensitivity analysts, the goal was to
determine how much information about the model can be derived unbiasedly from sensitivity
analysis alone [10].

Table 10.1 and Table 10.2 show the six test problems and the global sensitivity analysis
methods to be applied by various organizations, respectively.

Table 10.1 Performance assessment- and process model-based test cases.

Problem No. Case Key Features
1 GRS (Germany): * Number of realizations (n) = 4,096 (Monte Carlo
High-level Waste (HLW)/ | sampling)
Spent Nuclear Fuel (SNF) | « Time-dependent
repository in clay host rock | « 6 independent inputs
» Smooth model behavior
2 Sandia National * Case 1: n = 50 (LHS Sampling)
Laboratories (SNL) « Case 2: n = 200 (LHS Sampling) (to test convergence
(USA): of sensitivity analysis results as the sample size
Generic repository for SNF | increases)
in shale (see Chapter 7 of | « Time dependent, but sensitivity analysis performed on
this report) maximum radionuclide concentration (regardless of time)
at several spatial locations
* 10 independent inputs
* Smooth model behavior
3 SCK-CEN (Belgium): *n=1,024
Dessel Surface Low and * Quasi Monte Carlo sampling
Intermediate Level Waste | « Time dependent
(LILW) repository [5] « 22 independent input parameters, some will change at
a given point in time; material-dependent
* Non-monotonic behavior, regime change with time (i.e.,
standard sensitivity analysis methods do not sufficiently
explain model behavior)
4 GRS (Germany): » Time-dependent
Generic LILW repository in | * 20 independent inputs
a salt mine « highly non-linear behavior
5 SNL (USA): » Time-dependent
Generic repository for SNF | * 8 independent inputs plus the stochastically generated
in fractured crystalline rock | permeability field
(see Chapter 8 of this « non-monotonic behavior
report)
6 SNL (USA): *Time-dependent
Reactive transport model *13 inputs, some dependent, two are a pre-determined
describing spent nuclear function of time or some are outputs from the previous
fuel dissolution (see time step
Mariner et al. 2019, Non-linear behavior expected
Appendix A) [14]
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Table 10.2 Sensitivity analysis methods applied to test problems by various participants.

Organization Sensitivity Analysis Methods of Method Applied To
Interest
SNL (USA) Correlation, rank correlation (simple, * GRS’s HLW/SNF repository in Clay host
partial) rock problem [11]

Meta-modeling via Gaussian process * SCK-CEN’s Dessel Surface LILW
surrogate, polynomial chaos expansion | repository problem [11]
(main, total effects, and higher order

effects)
Posiva Correlation, rank correlation (simple, * SCK-CEN’s Dessel Surface LILW
(Finland) partial) repository problem [8]

Regression (simple, partial)

First order sensitivity indices with
Effective Algorithm for Computing
Global Sensitivity (EASI)

SCK.CEN Regression based measures * SCK-CEN’s Dessel Surface LILW
(Belgium) First/'Second order sensitivity indices repository problem [7]
based on its own LpTau sampler
(n=24,000)
GRS Linear, rank, and variance-based * SCK-CEN’s Dessel Surface LILW
(Germany) measures repository problem [1]
* GRS’s generic LILW repository in a salt
mine [6]
TUC Cumulative sums of normalized re- » SCK-CEN’s Dessel Surface LILW

(Germany) ordered output (CUSUNORO) curves repository problem [9]

The Sensitivity Analysis subgroup members have been independently applying their own
global sensitivity analysis methods (Table 10.2) to the Table 10.1 test cases. Two categories of
sensitivity analysis methods were being applied: (i) linear and rank regression / correlation
(Chapter 4 of this report) and (ii) variance-based methods (Chapter 5 of this report). In general,
the applications of sensitivity analysis methods focused on number of parameters, sample size(s),
model linearity, model monotonicity, continuity, or lack thereof, and parameter interactions.

Various subgroup members have applied their sensitivity analysis methods to Problem 1 and
2 and all subgroup members to Problem 3, providing a rich collection of sensitivity analysis
outputs for cross comparison in the future [1-8]. Although it was considered too early to evaluate
the exercise as a whole, several inferences were drawn from the analysis of some of the problem
cases presented in Table 10.1. Problem 2 is described in detail in Chapter 7 of this report; problem
5, which has not yet been addressed by the group, is described in Chapter 8 of this report; and
Problem 6 is described in [14].

Even with a relatively low number of runs (i.e., 50), the main sensitivities could be identified
by standard methods when combined with appropriate parameter transformations. The small
standard deviations achieved in Chapter 7 for sensitivity indices calculated using log-transformed
model output values (concentrations) suggest that for the case of generic repository in shale
(Problem 2 of Table 10.1) a sample size of 50 is sufficiently large to reliably estimate sensitivity
indices. However, large standard deviations and lack of a trend with increasing sample size were
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observed even with a sample size of 200 when raw model output values (i.e., concentrations) were
used.

SNL’s calculations using the GRS dataset (Problem 1 of Table 10.1) showed successful
application of DAKOTA to compute higher-order sensitivity indices and interactions based on
polynomial chaos expansion (PCE). Figure 10.1 shows sensitivity indices for first order (i.e.,
main) effect, second and third order interaction effects, and the total order effect using a PCE of
order 5. The figure shows the sensitivities of all six sampled paramaters, and sensitivities change
as a function of time. Successful computation of the higher order sensitivity indices is significant
because challenges were encountered when computing higher order sensitivity indices for geologic
disposal problems in the Performance Assessment Methodologies in Application (PAMINA)
exercise (2006-2009).

All participants applied various sensitivity analysis methods to compute main (first order)
sensitivity index for the Dessel Surface Low and Intermediate Level Waste (LILW) repository
problem. Figure 10.2 compares the main (first order) effects calculated with different methods by
different participants (SNL, GRS, and TUC). The results from these methods showed similar
qualitative behavior, but considerable differences in details. The group determined that some of
these differences could potentially be resolved by increasing the sample size [4].

Spiessl et al. [6] applied the Random-Sampling High Dimensional Model Representation (RS-
HDMR) meta-modeling approach in the SobolGSA software to the Generic LILW Repository in a
Salt Mine (Problem 4 of Table 10.1). They concluded that good estimates of first, second and total
order sensitivity indices can be obtained with a reasonable choice of polynomial orders for the RS-
HDMR method and number of simulations to build the meta-model. By using higher-order terms
including more polynomial coefficients to build an accurate meta-model, they were able to obtain
better estimates of the sensitivity indices. For robust estimation of the indices and also for better
system understanding, they recommended checking the sum of all indices and obtaining regression
coefficients (R?). Inclusion of more insignificant parameters resulted in noisier results. Hence, they
recommended excluding insignificant parameters to obtain reliable results, especially the second
order and total order sensitivity indices. Comparison of the first order sensitivity from RS-HDMR
with EASI and SDP methods showed that rough estimates can be obtained with all three methods
at the sample sizes of more than 1,000. RS-HDMR and EASI required similar computation time
whereas SDP required at least 94% more computation time.

The planned future activities of the Sensitivity Analysis subgroup include the following:
e Apply sensitivity analysis method to Problems 6 (Table 10.1)

e Investigate further higher-order effects in sensitivity analysis [11], effects of model output
transformations, and density-based sensitivity analysis methods;

e Involve more test cases, especially to investigate the effects of sample-size effects,
dependent input parameters, non-smooth model outputs, and discontinuous outputs;

e Develop formalism and/or performance criteria for uniform evaluation of the behavior of
the algorithms used and results obtained by the participants;

e Develop sensitivity analysis guidelines.
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11. SUMMARY AND FUTURE WORK

This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package
(SF-19SN01030403) level 2 milestone — Status Report on UQ/SA Tools in GDSA Framework
(M2SF-19SN010304031). It documents and demonstrates uncertainty quantification (UQ) and
sensitivity analysis (SA) tools in the GDSA Framework in FY19, it summarizes the progress of
UQ/SA tools during the UFD and SFWST Campaigns, and it describes additional UQ/SA tools
whose future implementation would enhance the UQ/SA capability of GDSA Framework.

Development of UQ/SA tools within GDSA Framework is driven by the overarching objectives
of GDSA Framework development including: 1) enabling increasingly coupled, mechanistic multi-
physics modeling; 2) leveraging existing high-performance computing capabilities; 3) remaining
flexible enough to take advantage of future advances in hardware, software, and simulation and
analysis methods; and 4) developing in an open-source environment so that implementations are
transparent and software is freely available to stakeholders.

Objectives specific to UQ/SA development include: 1) to make available standard sampling-
based methods of uncertainty propagation, sensitivity analysis, and uncertainty quantification
typically used within U.S. nuclear waste disposal programs; 2) to enable adoption of new methods
consistent with the current standard of practice in the UQ/SA community and appropriate for high-
dimensional, highly coupled, nonlinear problems resulting from the implementation of
mechanistic multi-physics simulations; and 3) to create a consistent, common framework that
enables a user to perform a range of uncertainty and sensitivity analyses for a particular problem
or set of simulations. These are important goals for performance assessments now and in the
future.

There is a rich legacy of UQ/SA being performed in repository assessment. In this report, the
regulatory considerations have been documented along with the treatment of epistemic vs. aleatory
uncertainty and the sampling strategies used in prior analyses. New approaches being used
throughout the community have been presented, such as variance-based sensitivity indices and
surrogate models. These new approaches have been demonstrated on two reference case studies,
that of a shale and crystalline repository. Additional UQ/SA algorithms have been provided,
including methods to handle time-varying responses, new graphical sensitivity approaches, and
adaptive sampling methods such as importance sampling which can focus additional samples on
regions of interest without attempting to explore the entire parameter space with limited samples.
Advanced methods also include Bayesian calibration methods which are used to estimate posterior
parameter distributions on model parameters given experimental data (and such parameter
distributions can be then carried forward in a UQ study), and multifidelity UQ methods which
augment a small number of high-fidelity code runs with a large number of low-fidelity runs to
obtain statistics on the high-fidelity model. It is important to maintain awareness of and
collaboration with the international community. Methods used by the international community
have been described along with existing collaborations with that community. Finally, a list of
software tools implementing some of the existing and new UQ/SA methods has been provided.

Development, implementation, and demonstration of new tools and methods for uncertainty
and sensitivity analysis in GDSA Framework will maintain leadership of the repository science
community in UQ/SA methods, while also maintaining an infrastructure of proven tools.
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Geologic repository performance assessment in the U.S. involves coupled, multi-physics modeling
at high resolution, large parameter spaces, and greater use of random (stochastic) field modeling.
It requires high-performance computing and costly sample evaluations. UQ/SA methods discussed
in this report, including surrogate modeling to reduce computational expense, variance-based
sensitivity analysis to quantify importance of parameter interactions in a multi-physics system,
multi-fidelity methods, and adaptive importance sampling will enable analysis methods to keep
pace with the increasing sophistication of the physics models. GDSA Framework development
seeks to keep abreast of improvements to existing UQ/SA methods, employ new methods, and
maintain an infrastructure of proven tools that can be extended to support computationally
expensive analyses.

There are several possible avenues of future UQ/SA development, including:

Time-dependent analysis methods

Dimension reduction

Importance sampling

Surrogate models

Bayesian calibration

Estimating/generating distributions/ranges for uncertain inputs
Multifidelity UQ approaches

Model uncertainty

Density-based SA methods

O O O O 0O 0O O O O

Future work will involve development of the items above, which align with the GDSA4
Framework and the repository performance assessment needed.
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A: SOFTWARE TOOLS AND FRAMEWORKS

There are a variety of individual codes, code packages, and software frameworks or toolkits which
implement various sensitivity analysis and uncertainty quantification methods. The listing we
provide here is not a broad survey of open-source and commercial packages. Rather, it is a brief
summary of tools that Sandia has developed and some tools which we are aware of through
collaborations. References for each software tool are listed in the section describing that tool.

A.1 LHS

Sandia developed one of the first implementation of Latin Hypercube sampling in the early 1980s,
written by Ron Iman. The LHS code was written in F77. Greg Wyss and others converted it to a
Fortran90 code in the late 1990s. Subsequently, it was adopted as a sampling tool within the
Dakota software framework in 2003 by Laura Swiler. The Dakota team continues to maintain the
Fortran90 version of LHS, including making small changes to maintain compatibility with various
compilers and language updates. The following reports document the code evolution and an
associated scatterplot tool.

e Iman, R.L., Davenport, J.M., and Ziegler, D.K. (1980). “Latin Hypercube Sampling
(Program User’s Guide),” Technical Report SAND79-1473, Sandia National
Laboratories, Albuquerque, NM.

e Iman, R.L., and Shortencarier, M.J. (1984). “4 Fortran 77 Program and User’s Guide for
the Generation of Latin Hypercube and Random Samples for Use with Computer Models,”
NUREG/CR-3624, Technical Report SANDS83-2365, Sandia National Laboratories,
Albuquerque, NM.

e Swiler, L. P. and G. D. Wyss (2004). “A User’s Guide to Sandia’s Latin Hypercube
Sampling Software:  LHS Unix Library/Standalone Version.”  Technical Report
SAND2004-2439. Sandia National Laboratories, Albuquerque, NM.

e Shortencarier M.J. and J.C. Helton (1999). “4 FORTRAN 77 Program and User’s Guide
for the Statistical Analyses of Scatterplots to Identify Important Factors in Large-Scale
Simulations”. Technical Report SAND99-1058, Sandia National Laboratories,
Albuquerque, NM.

A.2 Correlation coefficients

The code to calculate simple and partial correlations for actual values (Pearson correlations) or for
ranked values (Spearman correlation) exists in Dakota. The Dakota team re-wrote the calculations
to make these as efficient as possible for large data sets with multiple inputs and outputs. The
Dakota team also improved the calculations when the partial correlation calculation becomes ill-
conditions. The original correlation code is listed in the SAND report below.

e Iman R.L., M.J. Shortencarier and J.D. Johnson (1985). 4 FORTRAN 77 Program and
User’s Guide for the Calculation of Partial Correlation and Standardized Regression
Coefficients. Technical Report NUREG/CR-4122, SANDS85-0044, Sandia National
Laboratories, Albuquerque, NM.
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A.3 Stepwise

Stepwise regression was originally performed with the STEPWISE code, written in Fortran77 and
meant to be used as a companion code using data from an LHS study. The original STEPWISE
code is no longer maintained. We now use a set of Python scripts developed by Emily Stein to
postprocess a Dakota sampling study and generate the stepwise information.

e Iman, R. (1976). “Stepwise Regression.” Technical Report SAND1976-0364. Sandia
National Laboratories, Albuquerque, NM.

e Iman R.L., JM. Davenport, E.L. Frost and M.J. Shortencarier (1980). “Stepwise
Regression with PRESS and Rank Regression (Program User’s Guide).” Technical
Report SAND79-1472, Sandia National Laboratories, Albuquerque, NM.

A.4 Dakota

Dakota is an open-source toolkit of algorithms that contains software for optimization and
uncertainty quantification (UQ). It is available at: https://dakota.sandia.gov. The main classes
of algorithms in Dakota include:
e uncertainty quantification with sampling, reliability, stochastic expansion, and epistemic
methods

e parameter estimation using nonlinear least squares or Bayesian inference
e optimization with gradient and nongradient-based methods
e sensitivity/variance analysis with design of experiments and parameter study methods.

Dakota contains the uncertainty quantification and sensitivity analysis methods typically used in
the U.S. repository program. Dakota implements Latin Hypercube Sampling (LHS) with
correlation control on input parameters. It calculates moments on responses of interest as well as
correlation matrices (simple, partial, and rank correlations) between inputs and outputs. Dakota
also contains an algorithm for performing incremental LHS which allows one to double an initial
LHS study such that the second LHS study is a Latin design and the combined initial and second
LHS studies together form a Latin hypercube design. Dakota allows nested studies to perform an
“outer loop” epistemic sampling and an “inner loop” aleatory sampling to generate ensembles of
distributions. Dakota returns table of input and output amenable to further processing and
visualization with additional tools developed within GDSA Framework or by individual user.
Additional methods that have been implemented in Python for use in GDSA Framework include
calculation of standardized regression coefficients via stepwise linear regression and calculation
of partial correlation coefficients via iterative loop.

The UQ/SA methods in Dakota have evolved as the standard of practice evolves. Over the past
ten years, the Dakota team has invested in methods which calculate the Sobol’ variance-based
sensitivity indices in an efficient manner. Currently, a Dakota user can calculate these by extensive
sampling of the simulation code, by using surrogate methods such as regression or Gaussian
process models, and by the use of polynomial chaos expansions. Dakota is an actively maintained
and developed code with formal releases issued twice per year.

e Adams, B.M., Bauman, L.E., Bohnhoff, W.J., Dalbey, K.R., Ebeida, M.S., Eddy, J.P.,
Eldred, M.S., Hough, P.D., Hu, K.T., Jakeman, J.D., Stephens, J.A., Swiler, L.P., Vigil,
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D.M., and Wildey, T.M. (2014, updated annually), "Dakota, A Multilevel Parallel Object-
Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis: Version 6.0 User’s Manual," Sandia Technical
Report SAND2014-4633. Sandia National Laboratories, Albuquerque, NM Dakota
version 6.10, 2019. https://dakota.sandia.gov

A.5 UQTk

The UQ Toolkit (UQTK) is an open source collection of libraries and tools for the quantification
of uncertainty in numerical model predictions. It offers intrusive and non-intrusive methods for
propagating input uncertainties through computational models, tools for sensitivity analysis,
methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters
from experimental data. The website is: http://www.sandia.gov/UQToolkit/

Note that Dakota is a large, integrated standalone executable which typically runs separately from
the user’s simulation code. In contrast, UQTk offers a number of “functions” or “libraries” which
can be incorporated into simulation codes more directly. UQTk has several capabilities that are
similar to Dakota but with a different implementation (Python and C++). Some focus areas
include polynomial chaos expansion, compressive sensing and regularized regression, sparse
quadrature, Karhunen-Loeve stochastic expansions, and the Sobol’ variance-based indices.

e Sargsyan, K., C. Safta, K. Chowdhary, S. Castorena, S. de Bord, B. Debusschere (2017).
“UQTk Version 3.0.3 User Manual.” Technical Report SAND2017-5747. Sandia National
Laboratories, Albuquerque, NM

A.6 Variance-based decomposition

The Sobol’ variance-based sensitivity indices can be calculated in Dakota or in UQTk.

A.7 Other non-Sandia packages

There are a plethora of software tools and libraries available today. This is not a comprehensive
list, but we wish to highlight a few:

e R: The R language is an open source statistical language which has thousands of
contributed packages which perform various functions such as regression, surrogate
construction, sensitivity analysis, etc. https://cran.r-project.org/

e UQLab: UQLab is a general purpose, MATLAB-based Uncertainty Quantification
framework developed at ETH Zurich (Switzerland). It is made of open-source scientific
modules which are smoothly connected through UQLab to carry out uncertainty
propagation through Monte Carlo sampling, sensitivity analysis, reliability analysis
(computation of rare event probabilities), build surrogate models (polynomial chaos
expansions, Kriging, low-rank tensor approximations, etc.) and more.
https://www.uqlab.com/

e Simlab: SimLab is a professional tool for model developers, scientists and professionals,
to learn, use and exploit global uncertainty and sensitivity analysis techniques. SimLab
provides a reference implementation of the most recent global sensitivity analysis
techniques. SimLab is an ongoing project since 1985. The European Research Comission
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group headed by Andrea Saltelli is a key contributor to Simlab.
https://ec.europa.eu/jrc/en/samo/simlab
MUQ: MUQ is a collection of tools for constructing models and a collection of uncertainty
quantification (UQ)—focused algorithms for working on those models. Our goal is to
provide an easy and clean way to set up and efficiently solve UQ problems. MUQ is
developed under Prof. Youssef Marzouk’s lab at MIT: http://muq.mit.edu/ (note: Prof.
Marzouk was previously a von Neumann fellow at Sandia. MUQ is partly sponsored by
the DOE QUEST SciDAC Institute). MUQ contains tools for:

o Combining many simple model components into a single sophisticated model.

o Propagating derivative information through sophisticated models.

o Integrating ordinary differential equations and differential algebraic equations (via
Sundials)
Performing Markov chain Monte Carlo (MCMC) sampling
Constructing polynomial chaos expansions (PCE)
Computing Karhunen-Loeve expansions
Building optimal transport maps
Solving nonlinear constrained optimization problems (both internally and through
NLOPT)
o Regression (including Gaussian process regression)

O O O O O

Sobol GSA: SobolGSA is general purpose GUI driven global sensitivity analysis and
metamodeling software developed by S. Kucherenko. It can be used to compute various
sensitivity measures and/or to develop metamodels. All techniques implemented in
SobolGSA make use of Quasi Monte Carlo sampling based on Sobol sequences.
SobolGSA is primarily a MATLAB based toolkit. http://www.imperial.ac.uk/process-
systems-engineering/research/free-software/sobolgsa-software/
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B. Sobol’ Procedure for Variance Decomposition

B.1 Introduction

The procedure that bears his name, Sobol’ variance decomposition, was introduced by [.M.
Sobol’ [1]. This procedure for variance decomposition and the determination of associated
variance-based sensitivity measures has become very popular. As a result, an extensive literature
exists (e.g., [1-10]).

The notation needed to describe Sobol’ variance decomposition is complicated and often
described in a very compact manner in the journal literature in order to meet the length
requirements imposed on journal publications. As a result, it can be difficult for the uninitiated to
develop an understanding of exactly what is the mathematical structure that underlies uncertainty
and sensitivity analyses based on Sobol’ variance decomposition. The purpose of this appendix is
to lead the interested reader through the details of this structure. To accomplish this, the structure
of Sobol’ variance decomposition is described separately for (i) the less complicated case
involving a function f(x,,x,,x;) of only 3 uncertain variables and (ii) the notationally more

complex case involving a function f(x;,x,,...,x,) of n uncertain variables.

The following topics are considered in this appendix: (i) Variance decomposition for
f(x;,x,,x;) 1n Sect. B.2, (i1) Approximation of variance decomposition for f(x,,x,,x;) in Sect.

B.3, (ii1) Variance decomposition for f(x;,x,,...,x,)in Sect. B.4, (iv) Approximation of variance
decomposition for f(x,x,,...,x,)in Sect. B.5, (v) Additional considerations (i.e., surrogate
models and correlated variables) in Sect. B.6.

B.2 Variance Decomposition for f(x,,x,,x;)

The Sobol’ variance decomposition of a function f(x) is based on a representation of f(X)

by a sum of orthogonal functions as described in Refs. [1; 2]. As the notation for this
decomposition becomes rather cumbersome and tends to obscure the nature of the decomposition

when X=[x,X,,...,x,]is a vector of arbitrary length n, the decomposition will be initially
described for X =[x;,x,,x;]. As required for the Sobol’ decomposition, the epistemically
uncertain variables x;, x, and x; are assumed to be independent; further, the uncertainty in x,
x, and x; is characterized by the probability spaces (X,X,,m,), (X,,X,,m,)and (X;,X;,m;)
with associated density functions d,(x;), d,(x,) and d;(x;).

For X =[x,,X,,X; ], the Sobol’ variance decomposition is based on the following representation

for f(x):
J) = fo + f1(x0)+ () + f506) + fi2(x, %) + fi3(x,x5) + fr3(x;,%3)

(B.2.1)
+ fla3 (X1, X5, %3)
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with

fo =ELf(0)]
= [ [ ] 7G50 (x3)d (%) (3 )yl

& A A

= [ F0d(0)dV with X =X, x X, <X, and d(X) = dy(x;)d, (x,)d, (x,),
X

SJi(xe)=E[f(x|x)]- f, for x, e X
= [ [ £ 2)d; () d, (x5, )y, — f

X%
= J‘ jf(xl,xz,x3)d3(x3)d2(x2)dx3dx2 — fos
%%
() =E[f(X|x,)]-f, for x, e X,
= [ [ 71 x)ds (x)d ()b = o

X A

= [ [ @050y () ()bxsdlx, =

X A

fiGs) =E[f (x| x3)]- fy for x; € A
= j If(X|X3)d2(x2)d1(x1)dx2dxl _~f0

X &

= [ [ £0q03 33, ()l (5 dxy o = f,

A &

Jio (%) =E[F () [ %, %, 1= f1(x) = f,(x,) — f Tor (x;,x,) € X} x A,
= [ SO x,3,)dy () = fi06) = fo () = f
A3

= I S (x5, d5 (x3)dxs — £, () = f,,() = o
X

Ji3(x3) = E[F (%) [ xp, x5 ] = £1(x) — f3(5) = fo for (xp,x3) € &) x &
= [ S x,x)d, (), = £(6) = f(x5) = fy
2!

= [ S (1,335 (0)dx, = £1(6) = f5(5) = o
A
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Ja3 (%, x3) =E[f (X) | x5, %3] = f5,(0) = f3(%3) = fy for (xp,x3) € X, x A,
—Jﬂum&wmm:ﬁm)ﬁm)ﬁ (B.2.8)

—Iﬂ%%&mefﬁm)ﬁm)%,

f]23(x1ax2=x3) =Bl (X) | x;,x,.05]1= fo = f1(x) = f(x5) — f3(%3)
= 2 (x5 %5) = i3 (x5 X3) = fo3(,5)
for (x,x,,%;)e X =X, x&, x X, (B.2.9)
= f(x,%.05) = fo = i () = (%) — f3(x3)
= S (0, 5) = fi3(0,5) = fo5 (x5, %5).

In the preceding equations, E denotes expected value; E[ (x| x;)] denotes the expected value of

f(x) evaluated with the i™ component of x given the fixed value x;;5 and E[f(X|x;,x;)]

denotes the expected value of f(x) evaluated with the i™ and ;™ components of x given the

fixed values x; and x,. The expected value E[f(X) | x;,x,,x;] is defined similarly, with the result
that

E[f () | %, x5 ] = 1 (1, %5,%3) (B.2.10)
in Eq. (B.2.9).

The validity of the equality in Eq. (B.2.1) follows immediately by simply summing
Jor J1(X)sees f1o3 (X1, X5, X5) , with all terms except f(x,,x,,x;) inthe definition of f,,5(x;,x,,x;)
cancelling. Specifically,

Jo+ /1) + f00)+ f505) + fio 0, %) + fi3(6,x3) + fo3 (X, X3) + f123(%, %5, X3)
= Jo+ L)+ [500)+ f305) + fia(x,x0) + fi3(x0,5) + f23(xp,%3)

+ (X0, %0%5) = fo = H1(0) = f2(x0) = f306) = fio (3, %) = fi3 (x5 x3) = fo3 (%5, %3)
= f(x,x.%3).

(B.2.11)

The expected value of f(x;), f5(x), f3(%3), fio(x,%), fiz(x,%), fo3(x,,x;) and
Ji23(X1,X%,,x;) with respect to any one of their arguments (i.e., x;, x, or x; as appropriate) is

zero. As discussed later, this property is central to establishing that the indicated functions are
orthogonal.

For f,(x,), the expected value with respect to x, is given by
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BLACOT= [| [ [ £330 0r)d, (x5, )desd, = £ i (x,)dx,

& | & A
= [ [ ] £0qx0)d5 (65)dly (53 ety (s dvyd, — [ fody () (B.2.12)
XX %,
=fo—Jo
-0,

Similarly, E[ £, (x,)]=E[ f;(x;)]=0.

For f,(x,x,), the expected value with respect to x; with x, fixed is given by

E[ 12 (%, %) | x,]= J.!J. S (x5 x5, %3)d5 () dx; ﬁ(xl)fz(XZ)fO:ldl(x])dxl

XL

= [ [ [ /Gy, x)ds (0)dy (), = [ fod (x, )dx]

Xl X} ‘/Yl

_I JiGa)d, (x)dx — _[ S ()d, (x )dx
Xl Xl

:[j If(xl,xz,x3)d3(x3)d1(x1)dx3dx1 _fo}_o_fz(xz)

!

= [,(5) = f,(xy)
=0.
(B.2.13)

Similarly, E[f;,(x,x%,) [ %], E[f;(q,%5)[x],  E[fi3(xq,x5) %], E[f3(x,,x;)[x] and
E[ f55(x,,x;) | x,] are equal to zero.

In like manner, the expected value E[ £}, (x;,X,,%3) | x,,x3] of f53(x,X,,x;) with respect to

x; with x, and x; fixed is given by
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E[ /123 (%1, X5, %3) [ X5, X3)] = I Si23 (%15 %, 263 ) (% )dxy

&

= [ [f G2 %5) — fo = i) - £.(5) = £(x3)
X

—flz(xl,xz)—f13(x1,x3)—f23(x2,x3)]d1(x1)dxl
= jﬁ23(xl,x2,x3)d1(xl)dxl —Jo=0-f2(x) = f5(x3) —0-0—fr5(x,,%;) (B.2.14)
%

= jﬁ23(x1,x2,x3)dl(xl)dxl =1 00) = [3065) = fo | = f23(35,5)
Xl

= f23 (%, %3) = fo3 (%5, %3)
=0.

Similarly, E[ f,;(x;,%,,%3) | X, %3] and E[ f,,5(x;,x,,%3) | x;,x,] are equal to zero.

Because the expected values of £,(x). /3(xy)s f5(5)s fia(3.30) s fis(as)s fos (0 %5)
and f},;(x;,x,,x;) with respect to any one of their arguments (i.e., x;, x, or x; as appropriate)

is zero, it follows immediately that the expected values of these functions with respect to all of
their arguments are also zero. Specifically,

E[f;(x,)]=0 for i=1,2,3, (B.2.15)
E[f; (x,,x;)]=0 for 1<i< j<3, (B.2.16)
E[fi (x;5x;,%,)] = 0. (B.2.17)

The preceding equalities are immediate because the expected values will always involve one or
more integrals with respect to an argument of the function under consideration.

The Sobol’ variance decomposition is based on the orthogonality of the functions on the right-
hand side of Eq. (B.2.1). In the context of the present example with probability spaces (X, X,,m,)

, (X,,X,,my), (X;,X,,my) and associated density functions d,(x;), d,(x,) and d;(x;), two
functions g and 4 defined on X' = &} x X, x & are said to be orthogonal if

(g.h) = [ g(0OhX)d (X)dx
X
= [ | axisxpx)h(x, 50, 3)d5 (365)dy (05)d, (3 )by dy (B.2.18)

X,
= 0’
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where <g,h> is the commonly used notation for the inner product of g and /4 defined by the

preceding integrals. The definition of orthogonality in Eq. (B.2.18) is a generalization of the

concept that two vectors in R? or R’ are orthogonal when their inner, or dot, product is equal to
zero. Important properties of the inner product defined in Eq. (B.2.18) include

<g,h>:<h,g>, <cg,h>:c<g,h> for ce R, (B.2.19)

and

(g.h)= <Z gi,ih,~> =23y ) for 0= 208,00, 4= D00, (B220)
i=1 i=1 j=1 i=1 j=1

A demonstration of the orthogonality of f,, f,(x;), f,(x,), /(). fia(x,%), fiz(%.%3),
Jfr3(xy,x3) and fi,5(x;,x,,x;) follows. For f,,and f,(x,),

{fos /) jfofl(xl )d (X)dx

= /o _[ J- I J1(x)d5 (x3)d, (3, )d (x; )dxy dox, dy

X A Ay

= fo EL/i(x)]
-0,

(B.2.21)

with the final equality following from the equality E[f,(x;)]=0 obtained in Eq. (B.2.12).
Similarly, <fo ) g> =0 for g corresponding to f,(x,), f3(x3), fio(x1,%), fi3(x1,%5), fo3(x5,%3)

and £ (%, %5, %;) .

For f(x) and f,(x,),
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(fi- 1) J F160) £ () (x)dx
= j [ [ A£G A (o)l (33l (36, )by (3 )by

X &y Ay

- j{jfl(xl)d (%)dx, MI Jz(xz)dz(xz)dled3(x3)dx3

X3 )

(B.2.22)
= I E[ /1 (x)] ELf; (x;)]d5 (x5 )dox;
A

= [ 00 d;(x;)dx,
X}

:0,

with the introduced zeros resulting from the equalities E[ f,(x;)] =0 and E[ f,(x,)] =0 obtained
in conjunction with Eq. (B.2.12). Similarly, < Ly g> =0 for g corresponding to [, (x;),
T, x0) 5 fis(x,X3) 5 fr3(xy,x3) and f3(x;, x5, x3) -

For fi,(x,x,) and f5;(x,,x3),
<f12»f23> = J.flz(’ﬁ s %) f23 (X, X3)d (X)dX
X

= _[ I Iﬁz(xlaxz)f23 (x5, x3)d5 (x3)d, (x;)d, (x;)dx;dx,dx,

X, Xy X,

= _[ _[ f12(xl’x2)[j 23 (%253 )5 (x3)doxs }2 (%) () 0 (B.2.23)

X &

= j _[ J12 (3153 E[ f3 (%5, %3) | x5 W, (3,)d, (3 )dx, dy

X &,

- J. Iflz(xloxz)xodz(xz)dl(xl)dx2dxl
X,

=0,

with the introduced zero resulting from the equality E[ £,;(x,,x;)| x,] =0 indicated in conjunction
with Eq. (B.2.13). Similarly, inner products <f12,f13>, <f13,f23>, <f12,f123>, <f13,f123> and

< Jo3s f123> are also equal to zero.
As indicated in conjunction with Egs. (B.2.21)-(B.2.23),
(g,h)=0 (B.2.24)
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when g and £ are two different functions from f;, f,(x;), £5(x,), f5(x3), fio(x,%), fi3(x,x3)
» Jaz(xy,x3) and  f,5(x,x,,x;) because the integral defining < g, h> will always involve an

isolated integral with respect to a single component (i.e., x,, x, or x;) of g or 4 (see Egs. (B.2.15)

-(B.2.17)). Thus, f,, fi(x), f,(x), f3(x3), fi(x,%), fi3(x,x%), f3(x,x;) and

J123(x1,x,,x;) constitute a set of orthogonal functions with respect to the inner product in Eq.
(B.2.18).

The variance decomposition for f that derives from the representation in Eq. (B.2.1) is now
considered. The variance for a function g defined for X € X" is defined by

V(g) = [[g0) - E(@)Pd(x)dx = (g~ .2 — g )- (B.2.25)
X

where =E(g) and (..., ...) is the inner product defined in Eq. (B.2.18). For notational
&o g p q

convenience, g,,g,,..., g, are used to represent f,, f,,..., f1,;. The variance V(f) of f is then given
by

V() =[S0 = £, d(x)dx
X
:<f_f0af_fo>
=( 2.8 Zg,>

i=l

(B.2.26)

Il
.M\'
M\]

Il
s

teay

Il
un

<g,,gj>

I
M-

( g;,g;) from Eq. (B.2.24)

0
N

Il
M\n

V(g:),

Il
um

with the last equality following since E(g;) =0 (see Egs. (B.2.15)-(B.2.17)). Equivalently,

V() =V + VL) + VL) + V) + V(13) + V(3) + V(fin3)s (B.2.27)
which is the desired Sobol” decomposition of V() in terms of the variances of f,, f5,..., fi23-

Variance provides a measure of the variability about the expected value, with a small variance
indicating little variability about the expected value and a large variance indicating a large
variability about the expected value (see Eq, (B.2.25)).The significance of the decomposition in
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Eq. (B.2.27) is that V(f;) provides a measure of the amount of this variability that is due solely
to x;, V(f;) provides a measure of the amount of this variability that is due to the interaction of
x; and x; after a correction has been made to remove the individual effects of x; and x,, and
V(f,,;) provides a measure of the amount of this variability that is due to interaction x;, x, and
x; after a correction has been made for the individual effects of x;, x,, x; and interactions

between pairs of these variables.

Division of both sides of Eq. (B.2.27) by V(f) yields

1=8+8, +S8;+ 8, + 813 + 853 + S35 (B.2.28)
with
S, =V(f)/V(f) for i=1,2,3, (B.2.29)
Sy =V(f;)/V(f) for 1<i<j<3, (B.2.30)
Sz = V(fi23)/ V(). (B.2.31)

The terms on the right-hand side of Eq. (B.2.28) equal the fractions of the variance V(f) of f that
can be accounted for by f,, f,,..., fi,; and can be used as measures of sensitivity. An additional

measure of sensitivity is given by

Sip =V + V(i) + V(i) + V(1)1 V()

(B.2.32)
=81 +8, + 813 + 81235

which measures the effect on V(f) of x; and all interactions of x; with x, and x;. Corresponding
measures S,, and S;; for x, and x; are defined analogously. However, there is overlap in the

effects measured by S,,, S,; and ;.

The variances V(f,),V(f,),..., V(f,3) have representations that contain integrals involving f.
As an initial example,

V(1) = {fi —E(/). f; —E(/))

=, (/i./;) from E(f;) = 0; see Eq. (B.2.12)
3 (BIF (0| 51— fo, EIf () | x,1— f;) from Eq. (B.2.3)
=, VIE[f(®) | x, ]} from E{E[f(X)|x ]} = f,.

(B.2.33)

Further, continuation from Equality 3 in the preceding equation yields
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V() = [EIFO0 | T dy (x)dx, =2 [ AE (0] x1d, (x)dx, + [ £ (x)dx,
X X, X,

B =12
= | [ [ s |00 () (r)drsdlyy | dy () —2/2 + /2 (B2.34)
X
B 2
_ I j x50, x5 | X))y (x3)d, (x,)dxydx, |, (x)dx, — f2.
A A ]

In summary,

V() = VEEF (%) | x I}
2 . (B239)
= j j If(xl,xz,x3 | x; )5 (3)d, (%, )dxsdx, | dy (x)dx — fo

LA A
Similar derivations for V(f,) and V(f;) produce the representations

V(fy) =VIEF(X) | x, ]}
? . (B236)
= _[ _[ If(xl’x25x3 | X, )d5 (x3)d, (%) )dxydx; | d, (x;)dx, — fo

XZ Xl ‘X‘?
and

V(f3)=VIEF () [ 5]}

F . (B237)
= I I If(xlaxzaxz | x3)d, (x,)dy (x)dx,dxy | dy(x5)dxs — £

R L)

Th variance V(f,,) of f, is given by



V(flz) = <f12 - E(fu)aflz - E(f12 )>
=(fp. /1) from E(f},)=0; see Eq. (B.2.16)
<E[f(x) | x5 ]= fo = fi = [, EUF (O | X0, = fo = f —f2>
from Eq. (B.2.6)
= (E[F(0) | %, %,1- fo, BIF (0 | 51,1 /)
=2(Ef (0 | x50~ fos i+ o) H( A+ fos i+ 12)

(B.2.38)
= VB () | 5,51 =2(fia + A+ s i + o)+ (hi + fos i + 1)
from E{E[f(X)|x,%,1} = fo,.BIF O | x. 5,1 foy = iy + /1 + /o
= VIEF (O | 5,1 = 2{{fi, /i + o) +{ i + fos i+ 3 (A + o i+ 1)
= VEE(X) | %, 5,1 =20+ (f, + Lo, i+ LN+ (K + o i+ 1)
= VEEF () | x, 5,1 = (f + o, /i + f3)
= VEE[/(X) | x,, %, 1 = V() = V(f3).
Further, continuation from the last equality in the preceding equation yields
V(fi2) = [ BV 0 |3, %,Fddx =2 [ LEF(X)] %, x,1d()dx+ [ f7d (x)dx
X X X
~V(/)-V(f)
= [EF (0 |5, 35, P d0dx =25 + f7 = V()= V(/3) (B.2.39)
X
= [EF (0] %, x5, P d(0dx - 77 = V()= V()
* 2
=[] { | f(xl,xz,xodg(x})dxs} dy (x%,)d, (% )dxydx, = /7 = V() =V (f>)-
X x| A
In summary,
V(i) = VIEF (0 | 5.5, 1 = V() = V()
) X (B.2.40)
= [ [| [ £ x)ds () | dy () (), d, = f57 = V() = V(o).
X 2| A,

Similar derivations for V(f,;) and V(f,;) produce the representations
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V(/fi3) = VIE () [ %, 51 = V() = V()

’ ; (B.2.41)
= [ 1 ] /)y (o) | d () () dx, = /5 = V() = V()
A XA
and
V() = VIEV (X) [ X, 531} = V(/5) = V(f3)
(B.2.42)

2
= I I{J’f(xl,xz,xgdl(xl)dxl} d, (x,)d; (x5 )dx;dx, —f02 ~V(£,)-V(f).

X X A4

In addition, a rearrangement of the first equality in Egs. (B.2.40)-(B.2.42) gives the representations

VAES () | x,x, 18 = V() + V() + V() (B.2.43)

VAELS () | x,x3 1 = V() + V(5) + V(hs) (B.2.44)
and

VAE (X) [ x5, %3} = V(f3) + V() + V() (B.2.45)

The variance V(f,,;) of f,; 1s given by



V(fm) = <f123 - E(f123 )>f123 - E(fm )>
=(fi23- fis) from E(f}5;)=0; see Eq. (B.2.17)
=<f_fo_f1_fz_fs_flz_f13_f23af_fo_f1_fz_f3_f12_f13_f23>
from Eq. (B.2.9)
=<f_fosf_fo>_2<f_f0=f1+f2+f3+f12+f13+f23>
+<f1+f2+f3+f12+f13+f23af1+f2+f3+f12+f13+f23>
ZV(f)—2<f123+f1+f2+f3+f12+f13+f23af1+f2+f3+f12+f13+f23>
+<f1+f2+f3+f12+ st fith+t A+t 13+f23>
:V(f)_2<f1239f1+f2+f3+f12+f13+f23>
_2<f1+f2+f3+ ptfatfah+th+ i+ i+ 13"‘f23>
+<f]+f2+f3+f12+f13+f23,f1+f2+f3+ 12"‘f13+f23>
:V(f)—2<f123’f1+f2+f3+ 2T 13"‘f23>
_<f1+f2+f3+fl2+ 131 S +f2+f3+f12+fl3+f23>
= V() =2%x0={(fi, )+ 0+ (fo: o)+ 0+(f3, /3) + 0+{fiz, fi2)
+0+<f13’f13>+0+<f23af23>} (B.2.40)
=V(N)=VUD+ V(L) + V(L) + V() + V(i) + V()

Thus, V(f,;) is the part of V() that cannot be accounted for by V(f,), V(f),.... V([f33)-

Given the preceding representation in Eq. (B.2.46) for V(f,,;), the sensitivity measure S,,
defined in Eq. (B.2.32) can also be represented by

Sir =V + V(1) +V(f13) + V(f123)]1/ V()
={[VUD + V(i) + V(i3]
+[VU) = VR + V(L) + V(L) + V() + V(i) + V() V)
=[V() = V(L) = V() = V(L) V),

(B.2.47)

which clearly indicates the removal of isolated effects associated with x, and x;. Similarly, S,,

and S5, have the representations

Syr =[V(H=V(H) =V() = V()] V() (B.2.48)

and

Ssr =[V(H =V = V() = Vi)l V(). (B.2.49)



B.3 Approximation of Variance Decomposition for f(x,,x,,x;)

In practice, the variances V(f), V(f,), V(/f;), ..., V(f1;) defined in Sect. A.2 must be

evaluated numerically. Due to the complexity of the function f in most real analyses, analytic
evaluation of the integrals that define these variances is unlikely to be practicable. Rather, some
type of numerical procedure will be required. Sampling-based procedures are likely candidates for
these evaluations and are now described.

The evaluation of f, = E(f) and V(f) with sampling-based procedures is straightforward. A
random or Latin hypercube sample

X, =[X5,%X05,%5, ], =1,2,...,n8, (B.3.1)

is generated from X=X, x X, x X, in consistency with the probability spaces (X},X;,m,),
(X,,X,,m,)and (X;,X;,my) and the associated density functions d,(x,), d,(x,) and d;(x;).
Then, the following approximations result:

. R nS
Jo=E()= 20 (x,)/nS = [ f(0)d(X)dx (B3.2)
s=1 X
and

V=317 s
s=1

nS

=3 f2(x,)/nS - fy (B.3.3)
s=1

= [ 2 0d(0)dx - £,
X

with the “hat” symbol used to represent an estimated quantity. When random sampling is
employed, use of nS —1 rather than nS in Eq, (B.3.3) will result in an unbiased estimate for V().

The variances V(f;), V(f,) and V(f;) can also be estimated with sampling-based

procedures. A popular approach is based on a reformulation of the integral representations for
V(f), V(f,) and V(f;) in Egs. (B.2.35)-(B.2.37). For V(f,), this reformulation is given by



r 2

V() = j J- If(xlaxzax3 )3 (x3)dy (x)dx;dx, | d(x;)dx, _fo2
A X

= J. J- S (x5, %3)d (X3 )dX55 _[ S 5%, x3)d (Xp3)dX 3 | (x;)dx, _fo2
| A | X3

=3 I J. S (x5, %3)d (X3 )dX55 j S (x5 %5, %5)d (Xp3)dX o3 | dy (x)dx, _fo2 (B.3.4)

A Ao i _/{’23 B

=4 J‘ I _[ S0 %,23) [ (34, %y 53 ) (R ) (X3 )y ()35, 3, = f7
&) Xy Xy

=s I J f(xl,xz,x3)f(xl,)22,)?3)d()~(23)d(x)d)~(23dx—foz,
X X

where (i) Equality 1 is a repeat of Eq. (B.2.35), (i1) Equality 2 is a notational restatement of
Equality 1 with Xy; = X, x Xy, Xp3 =[%,%], d(Xy3) = d5 (x,)d5(x3), dXyy = dx,doy, and [T
replaced by [~]x[~], (iii) Equality 3 involves the additional notational additions 2\?23 =X, x X,
X3 =[X,,%], d(Xy;) =d,(X,)d;(%;) and dX,; = d¥,d¥; to emphasize the that the variable pairs
(x,,x;) 1in the two inner double integrals in Equality 2 can be viewed as pairs of independent,
identically distributed variables (i.e., X,; = X,; =&, xX;; x, and %, have the same density
function; and similarly, x; and X; have the same density function ), and (iv) Equality 4 results
from combining the two multiplied double integrals over &,; and /%3 with the outer integral over

A, to produce a 5-dimensional integral of the function
F (X, X03,X03) = (3, X5,%3) (3, %5, 3) (B.3.5)

over the subset A} x X5 x Xy, = X, x X, x Xy x X, x X; of R®, and (v) Equality 5 is the result of
combining the integrals over ] and &,; into an integral over X = &} x X, x &.

For V(f,), the equivalent reformulation is

VU= [ [ F Gy ) f (Brxg, £5)d (Ri3)d (%13)d, (3y)d% s dxysdry = /57 (B3.6)

Xy X3 X3

with Xy =X =X x X, Xp3 =[x, %], X3 =[5, %], d(X3) = d (x)d;(x3),
d(X;3) =d,(X))d;(%;), dx;3 =dx,dx; and dX,; = d¥,dX;.The preceding reformulation results in
V(f,) being expressed in terms of an integral of function



Fz(x23x13=)~(13) = f(x19x2=x3)f()~clvx2:)~c3) (B.3.7)

over the subset X, x X3 x X3 = X, x X, x Xy x X, x X; of R®. Similarly,

VO = [ ] £00%0) f (8, )d (R ) (%,)dy ()d%,pdx pdvs = /77 (B.3.8)

X} XlZ ‘)EIZ

with X, =X, =X xX,,  X,=[w.x5], kp=[f5],  dXy)=d()dy(x,),
d(X,,)=d,(%)d,(%,), dx,, =dxdx, and dX,, = dX,d¥, .The preceding reformulation results in

V(f;) being expressed in terms of an integral of the function
F3(x3,X12 > )~(12) = f(xl > X ax3)f(3~51 aiz ,x3) (B.3.9)
over the subset X, x X, x X, = Xy x X, x X, x X, x X, of R°.

Given the representations in Eqs. (B.3.4), (B.3.6) and (B.3.8), the variances V(f,), V(f,) and

V(f;) can be estimated with use of a random or Latin hypercube sample
[X.o X ] = [0 %500 X5 00K » Xiig 2 K36 158 =1, 2,.., 1S, (B.3.10)

from X xX =X, xX, xX; x X x X, x Xy = X x X generated in consistency with use of the
density functions d,, d, and d; for the corresponding elements of X=[x,x,,x;] and

X =[%,%,,%]. In turn,

nS

\7(f1) = Zf(xls’x25’x3s)f(xls’£2s"i3s)/nS_fOZ :il _onzj (B.3.11)
s=1

~ 1S 72 T 72

V(.fZ); Zf(xls’x2s’x3s)f(i1s’x2s95é3s)/nS—fi) :]2 _fb ’ (B312)
s=1

and

~ B3 %27 72

V(fl%) = Zf(xls’x2s’x3s)f(5€1s95€23’x3s)/nS_f;) =[3 _fb > (B313)
s=]

with (i) the approximation f; to f, = E(f) defined in Eq. (B.3.2) and (ii) /,, 1,, I, introduced

as compact representations for the associated integral approximations.



The sampling procedure indicated in Egs. (B.3.10)-(B.3.13) requires nS evaluations of each of
the functions f(x;;,%,,,%;5,), f(%X, X, %), f(X,,%,%,) and f(X,,,x,,,X;,) for a total of 4

nS evaluations of the function f. This number of functions evaluations for X =[x,,x,,x;] can be

cut in half by making efficient use of the sample indicated in Eq. (B.3.1). Specifically, a second
sample

is :[ilAs"i2§ajé3s]9S :1,2,...,1’1S, (B314)

can be obtained by randomly rearranging the sampled values for each variable. For example, the
sequence of values X,X,,...,% ¢ for x; in the sample in Eq. (B.3.14) is simply a random

rearrangement of the sequence of values x;,x;,,..., X, , for x; in the sample in Eq. (B.3.1). Then,

the sampled values X, are reordered to produce 3 new samples:

Sy Xy, =[X 15, X0s5 X35 1,8 = L,2,..,n8, with X, =X,
Sz :izs =[f215,)~622§,£23?],S =1,2,...,I’IS, Wlth £22‘, = xz‘, (B3.15)

Sy 1 Xy =[X3145 %305, %33, 1,8 =1,2,...,n5, with X35, = x5,

Then, the sample in Eq. (B.3.1) and the samples S,, S,and §; are used in place of the sample in
Eq. (B.3.10) in the approximation of V(f,), V(f,) and V(f;):

nS A & A
V() = Zf(xls’XZS’x3s)f(ills’i123’X-BS)/nS—fz)z =1 _fozv
s=1

- (B.3.16)
= Zf(xls’x2ssx3s)f(x1s9i12s’)zl3s)/nS—.f()z = il _foza
=1
N 1S A 2
V(fy) = Zf(xls’XZS’x3s)f(x21s’x22s’x23s)/nS_fO =1, - fs
S; (B.3.17)
= Zf(xls’x2s’x3s)f(jz21s’x2S’)E23S)/nS—ﬁ)z =1, _foz
s=1
and
A 1S %9 B 72
V(f;) = Zf(xls7x2s:x3s)f(x31s,x3zs»x33s)/”S_fo =L, - f;
5= (B.3.18)

nS
= Zf(xls’x2s’x3s)f(i31s’i32s7x3s)/ns_ﬁ)z =1 _foz-

s=1
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Use of the preceding sampling procedure in the approximation of V(f;), V(f;) and V(f3)
reduces the number of required evaluations of f(x,,x,,x;) from4 nSto 2 nS. More significantly,
if n uncertain variables are under consideration and approximations for V(f;),i =1,2,...,n, are to

be determined, use of the preceding sampling procedure reduces the number of required function
evaluations from (n+1)nS to 2 nS.

The variances V(f,),V(f;;) and V(f,;) can also be estimated with sampling-based
procedures in a manner similar to that shown for V(f,), V(f,) and V(f;) in Egs. (B.3.11)-
(B.3.13). Specifically, reformulation of the final integral in Eq. (B.2.40) for V(f,) yields

V(fi2) = J J- jf(xlaxzsx3 ) (X1, %, X3)d5 (X5)d (%3)d (X, )dx;doxsdx,

X A3 X3

—fo =V -V(h)
nS
=) D S Xy, X3,) [ (s Xy, %3, ) 1S = S = V()= V(fy)
r=l1

= 1y — 12 =V - V() (B.3.19)
=4 flz _];02 _[il _J}oz}_[iz _J}oz}

=g ilz "‘fo2 -1 _jz
:6 V(fiz)s

where (1) equality 1 uses the notations &}, =X xX,, X, =[x, x,], d(X;,) =d,(x)d,(x,),
dx,, =dx,dx, and is obtained by manipulations similar to those used in Eq. (B.3.4), (i)
approximate equality 2 for the integral in equality 1 is obtained with use of the sample in Eq.
(B.3.10), (ii1) equality 3 introduces the notation il2 for the integral approximation in equality 2
and also symbolic representations of the approximations for f,, V(f,) and V(f,) defined in Egs.

(B.3.2), (B.3.11) and (B.3.12), (iv) equality 4 is obtained from equality 3 by replacing \7( f;) and
\7( />) by their representations in Egs. (B.3.11) and (B.3.12), (v) equality 5 is obtained from

equality 4 by simple algebra, and (vi) equality 6 introduces the notation \Af( /1) for the derived
sampling-based approximation for V(f,,).

Derivations similar to the preceding derivation for \7( f12) produce the following

approximations  V/( Ji3)and V(fy3) for V(f; s)and V(f53):



and

V(fi3) = J- _[ _[ S (x5, %3) f (X, %5, 33)d (X5 ) (x5 )d (X3 )dX, dx, dX

X]3 XZ A';Z

— o =V(H)-V()

nS
= Zf(xnaxzrax3r)f(x1ra’~czrax3r)/”S_foz -V -V(f)

=, J f =V -V(£) (B.3.20)
[ i J-[B - 73]
=5 13+f0 - 1_ I
=6 \A/(fn)
V()= [ [ Gy f (g )y (3 () (X3 )l dy
X23X1 X[
— fo = V()= V()
nS
= Zf('xlr’x2r’x3r)f(5€1r’x2r’x3r)/nS_f02 -V(f2)-V(f3)
r=1
= Iy~ fo V() - V(f3) (B.3.21)

4 i23 - o2 _[iz - Aoz}_[g - A02:|
= In+ts — 5, -1,
=6 \A](fz3),

with the numbered equalities in Egs. (B.3.20) and (B.3.21) matching the numbered equalities in
Eq. (B.3.19). The explanations for the equalities in Eq. (B.3.19) are also applicable to the equalities

in Egs. (B.3.20) and (B.3.21).

Sampling-based approximation of V(f,,;) is now considered. First, for consistency with the

notational use of 1;, /,,..
expressed as

. nS
V(=2 f

r=1

In turn,

" f23, it is noted that the approximation \A/( f)in Eq. (B.3.3) can be

(X1, 5 %0,5 %3, ) f (X5 %5, %3, ) / BS _f02 = f123 _foz- (B.3.22)
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V(fi23) = V() = V() + V(L) + V() + V(i) + V(fi3) + V(f3)}
= V()= V() + V(L) + V) + V() +V(fi3) + V(f3)}

{123 fo } {[ﬁ‘iﬂﬂ*’[é‘ﬁ)ﬂ*’[%‘ﬁ)ﬂ
+[]Alz*'fo I I} [113+J}02_j1_j3}+[i23+i02_i2_i3]}
{123 fo} { I +f()2_i2+f}oz_f3+f}02

240 +1, - 2yl 4l — - fR A+
0 0 23 7 Jo 2 3

(B.3.23)

- 5 & A & 5 )
—1123+11+12+[3_112_113_123_f0

=V(fi3).

Once the variance approximations V(f), \7( 1) \7( £ ...,\7( J13) are available, they can

be used to obtain approximations to the variance decomposition sensitivity measures defined in
conjunction with Eqgs. (B.2.28)-(B.2.32). For the sensitivity measure S|, defined in Eq. (B.2.32),

the resulting approximation is

Sir =[ VU + V(i) + V(i) + V(i) |1 V(1)
:{[fl—f02]+[f12+ﬁ,2—f1—1} [113+fo —&— [AJ

. r (B.3.24)

+[1123+11+12+13_112_ } 123 ~

:{j123 _i23}{ 123 fo }

Similarly, the sensitivity measures S, and S, defined in conjunction with Eq. (B.2.32) can be
approximated by

A

‘§2T —{]123 }{ 123 fo} and ‘§3T :{im I }{ 123 fo} . (B.3.25)

The results leading to the approximations for S,;,S,,and S5, in Egs. (B.3.24) and (B.3.25)
also provide a basis for the following closed from representations and approximations for S,

S,rand S5, . The representation for S, is given by
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Sir = V() = V(L) - V(H) = V(3] V()
= {13 — 13}/ V(f)

= {I [ [ 72 Gasxx;) d(x)dx

Xi XZ X}

-] f(xl,xz,x3>f<i1,xz,xg)dl(fl)dmxl)d(ng)dadxldxz}}/V(f)

X23 Xl Xl

=a j‘ J. _[ _[{fz(xl,xz,x3)—f(xl,xz,x3)f()?1,x2,x3)}dl(il)d(x)dxldx/V(f)

X & A5 &

nS
= {Z{fz (xl,,xzr,xsn—f(xlr,xz,,,x3,)f(5elr,xzr,x3r>}/nS}/V(f)

r=1

nS nS
= {Zfz(xlr,xz,,,x3,)/nS—Zf(xlr,x2r,x3r)f()7:h,,x2r,x3r)/nS}/V(f)
r=1

r=l1

=7 {j123 —f23}/V(f),

(B.3.26)

where (1) equality 1 is from Eq. (B.2.47), (i1) the expressions /,,; and [,; in equality 2 correspond

to the integrals approximated by f123 and f23 , (ii1) the two integrals in equality 3 are obtained

from Eqgs. (B.3.3) and (B.3.21) and are the integrals approximated by i123 and f23 , (1v) equality

4 is the result of combining the two integrals in equality 3 into a single integral, (v) approximant
equality 5 results from use of the sample in Eq. (B.3.10), (vi) equality 6 is the result of expressing

the single sum in equality 5 as two sums, and (vii) equality 7 results from the definitions of I 123

A

and /,; in conjunction with Egs. (B.3.22) and (B.3.21).

Similarly, the representations for S,,and S, are

Sy = [ [ [ [/ Caxnsxs) = £ (000 f (1, 8y ) dy (B)d (0%, 1V ()

Xl XZ X@ XZ
nS 5 nS
= {Z 20X, %3,) [ 1S =D f (X0, X0, %3, ) f (X5 By X3, ) nS} 1V(f)
r=1 r=1
={li ~ 13}/ V()

and
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= J. I{fz(xl,xz,x3)—f(xl,x2,x3)f(xl,x2,iS)}d3(;~c3)d(x)dj3dx/V(f)
X &

r=1

X X,

nS nS
{Z (xlr’x2r’x3r)/nS—Zf(‘xlr’x2r’x3r)f(xlr’x2r9£3r)/nS}/V(f) (B328)
={I

123 =12}/ V().
The sensitivity measures S,,, S, and S;, are often defined as
Sir =1 Ex, [ Vi (f1X.) |/ V()
= {V(N=Va, [Ex (£ 1X) [V (B.3.29)
= 1=V [Ex (F1x.) ]/ V().

with
X, x X;=4&,; for i=1 [x,,%;]7X,; for i=1
X, =X xX=X; for i=2 and x_; =1[x,x;]7X,; for i=2 (B.3.30)
X xX,=&,, for i=3 [%,,%,]7%X;, for i=3.

The equivalence of ), with the definition in equality 1 of Eq. (B.3.29) is established as follows.

First,

Vo (F 1%5) = [ (0. %03) = EL (3. X3) | %53 1)° ) (3 ),

Xl
= [ (/20 %03) = 2EL/ (3, %5) [ X3 11 (35 X3 ) + B2 LS (1, X03) | X3 1) (3 )by
= J.fz(xl’x23)d1 (x;)dx, _Ez[f(xpxzz) | Xp3] (B.3.31)

&

2
= J-fz(xlﬂxﬁ)dl(xl)dxl _LJ. f(xlax23)d1(x1)dle

= j S G X03)dy () = [ 00 X3) (B X3 )l ()l ().

X X,

The notation x; and X, is introduced in the final equality of Eq. (B.3.31) to emphasize that,
although x, and X, have the same distribution, they must be independent for the final double

integral to equal the preceding squared integral. In turn,
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Ex, [ Vi, (F 1XD) ]/ V() = [ Vi (f [X53)d(X3)dX5 / V()

XZB

= J’ { J' S2(0.%53)dy (x)dx,

X23 Xl

| jf(xl,xzs)f@a,xzz)dl<fc1>d1(xl)dxldxl}d(xn)dxﬁ IV(f)

& A

(B.3.32)

{ [ ] ] £ Gomsiood

A A Ay

- J j .[f(xl’xZ’xf%)f(ilvx27x3)d1(il)dl(xl)d(xz3)d)z1dxldxz3}/V(f)

Aoy 1 &

. SlT»

with the last equality following from a match with equality 3 in Eq. (B.3.26). Similar derivations
show that S,, and S, are also consistent with the representation for S, in equality 1 of Eq.
(B.3.29).

The equivalence of S;; with the definition in equalities 2 and 3 of Eq. (B.3.29) is established
as follows. First,

Vo, [ B (f 1%4) = Ve, ! [ £ x00)d, (x, )dxl}
Xl

2
- I [j S (s Xp3)d, (x; )dx, _fo} 3 (Xp; )Xy

XZ} X]

2
- I [J-f(xl’x23)dl(xl)dx1:| =25+ 17 a3 (X3 )dXys (B.3.33)

Ay LA

g [j [ 7 X20) G Ko 53 i 5 ]"23 (), — f7

X23 Xl Xl

- I I If(xl’xz’x3)f()~€1’x2’x3)dl (%), (x; )3 (X33 )dx; dx; dX 5 _f()2

Xy 4 &

In turn,
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1=V, [Ex (f 1) VD ={VN) = Vo, [Ex (S 1) ]/ V()

:{ [1] fz(xI,Xz,xg)d(X)deoz}

A &y Ay

{ I I J:f(xl,xz,x3)f()?1,xz,x3)a’l(5(1)dl(xl)d23(x23)d)~cldxldxz3 foz} (B.3.34)

Xys Xy A

= [ [ ] £2Garxyx,)d (x)dx

X, Xy X,

= T G £ ey ) (5l ()5 (%)

X23 Xl Xl
= SIT’

with (i) the second equality following from Egs. (B.3.3) and (B.3.33) and (ii) the last equality
following from a match with equality 3 in Eq. (B.3.26). Similar derivations show that S,, and

S,y are also consistent with the representation for S;, in equalities 2 and 3 of Eq. (B.3.29).

B.4 Variance Decomposition for f(x,,x,,...,x,)

The Sobol’ variance decomposition for a function f(x) of a vector
X=[x,%,...,%,] (B4.1)

of arbitrary length n is now considered. As before, the elements x; of X are assumed to be
independent and to have distributions defined by probability spaces (&X,X;,m;) and associated
density functions d;(x;) for i =1,2,...,n. Further,

X = I;[X d(x) = ]i[dl. (x,) and dx = li[dixi (B.4.2)

for the product probability space that derives from the n evidence spaces (X;,X;,m;).

The Sobol’ variance decomposition for f(x) is based on the following representation for

S(x):
SX)=f "'Zfi(xi)"'z z fij(xiaxj)"'z Z Z S (X%, %)
i=l i=l j=i+l i=l j=i+lk=j+1 (B-4~3)

.....

where
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fy =E(N) = [ F(0d(x)dx, (B.4.4)
X

[G) =B )= fy = [ £ x)d_ (x )%, = fo, (B4.5)
A

Ji (o x,) =BLA(X [ x,,x )] = fo — f:() =/ (x;)
= [ O] xx)d_y (X = fo = () = f(x;), (B.4.6)
Ay
f:jk(xiaxjaxk):E[f(”xiaxjaxk)]_fo_fi(xi)_fj(xj)_fk(xk)
=S (s x;) = S () = e (5%
= SO w330 R = fo = )= 6= fi) - BAD

ik

_fl'j(xi’xj) _fik(xiaxk)_fjk(xjaxk),
and so on with the notations

X, X, X

o Ay X d (X ),y (X )y (X ), Xy, dX_ X (B.4.8)

Nl'j)

indicating that (i) x;, (ii) x; and x;, and (iii) x;, x;and x,, respectively, are omitted from the

definitions of the corresponding expressions.

A general representation for the expressions in Eqs. (B.4.3)-(B.4.7) can be given with the
introductions of the following notation:

T= 1,2, s #3 (B.4.9)

U={u:0=[l,4, 00l ] With {i35 500, } € o) <y <<} (B.4.10)
ZW) ={i,iy,....1.} foru=[i,i,,....i.]e U, (B.4.11)

Xy =[x, % 5 x; ] for u=[i,i,...i, ] €U, (B.4.12)

X, =&, x X, x---x X, ] for u=[i,i,...i,]e U, (B.4.13)
dy(x,) =d, (x;)d; (x; )---d; (x; )] for u=[iy,i,,....0, ] €U, (B.4.14)
dx, =dx; dx; ---dx; for u=[i,i,,....i,] € U, (B.4.15)
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V(U): {V:v:[jl,jz,...,js]Withu:[il,l.z,...,ir]Eu,jl <j2 <"'<js,

- . (B.4.16)
§ <115 Jaseens Jot © (W)}
and
u=[k,k, ,;..,k”_,] foru= [il,iz,...:i,] eU,T) =k, ky,.nk, , }, (B.417)
ZTWNZuw=Y and Z)wIZ(u)=1L.
In turn, the representation for f(x) in Eq. (B.4.3) can be restated as
SO = o+ 2 LX) (B.4.18)
ueld
with
L) = [ L%y () dxg = fy = D f(x,)
; vev() (B.4.19)
=EL/(x[x)]-fo = 2 (%)
velV(u)
foruel.

The validity of the representation for f(x) in Egs. (B.4.3) and (B.4.18) follows by direct
verification as shown below:

fo+ D L) = fo+ D) (k) fi(x) fori=[12,...n] and X; =[x}, X,,..., X, ]

ueld veV(i)
= fot D L)+ SO fo— D fulx,) (B.4.20)
veV(i) veV(i)
= f(X)

with the substitution for f;(X;) in Equality 2 following from Eq. (B.4.19).

The expected value of

Ju(X,) = filizmir (% 5% e X ) foru=[i,i,,...i.]elU (B.4.21)

with respect to any of its components (ie., X;,X,..,X;) is zero. More formally, if

U=[i,i,,...i.]e U and i € Z(u), then
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[ A0 G = [ £ (6%, e, )y (), = 0. (B.4.22)
X, X,

This result can be established by induction for » =1,2,...,n. For r =1,

J. Ji (x;)d; (x;)dx; = J. Ju(Xy)d; (x;)dx; for u=[i]
& %

Il
—

[ £ %)y (%) dxg — fy (),

| X

1 u

SOOd)dx — [ fod; (x,)dx, (B.4.23)
&;

=

~ R

(=]

L

Il
=

The result in Eq. (B.4.22) is now assumed to be true for integers from 1 to » —1 and established
for . Specifically,

jfu(xu)di(xi)dxi =1 jl:_[ S X xy)dg (Xg)dxg — fo = Z Su(Xy) ]di(xi)dxi
X X

X- velV(u)

i u

2 I!I f(XXu)dﬁ(Xﬁ)dxﬁ}di(xi)dxi _Ifodi(xi)dxi _I Z S (Xy) :ldi(xi)dxi
u X

X | X X, | veV(u)

i

veV(w)

=3 f S (X Xy ) (X5 )dXg — fo { DX+ fu(xy) (B.4.24)
X

=4 [I f(x|xw)d\7v(x\7v)dx\7v _f() - Z f;/(xv) ]_fw(xw)
X, veV(w)

=5 fw(xw)_fw(xw)

=6 0,

with (i) Equality 1 following from the definition of f(X,) in Eq. (B.4.19), (ii) Equality 2 obtained
by splitting the single integral in Equality 1 into 3 integrals, (iii) Equality 3 obtained by introducing
W=/, /5, J,;] containing the same integers as U=[i,i,,...,i, ] except for the omission of i
and then making the substitutions

j{ | f(Xxu)dﬁ(xﬁ)dxﬁ}di(xi)dxi = [ £ x| %y ) (x5 )dxg (B.4.25)
X, Xy,

X,

i
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based on X, x X; = A,

I Jod; (x;)dx; =f, I d;(x;)dx; =f,, (B.4.26)
x, x,
and
f{ > A }di(xi)dxi = > L)+ fiu(x) (B.4.27)
X, veV(u) veV (W)

based on the induction hypothesis that Eq. (B.4.22) is true for integers from 1 to » —1, (iv) Equality
4 obtained by rearranging the terms in Equality 3, and (v) Equality 5 following from the definition
of f,(X,) in Eq. (B.4.19).

The equality
E(f,)=0 for ueld (B.4.28)

is an immediate and important consequence of the result in Eq. (B.4.24).

As for the three-dimensional case (i.e., » = 3) introduced in Sect. B.2, inner products and
orthogonality play an important role in the development of Sobol’ decomposition for arbitrary
vectors (1.e., X =[x,%,,...,X, ]).

Specifically, the inner product of functions g and / defined on X’ is defined by

(2.h) = [ 2R (X)dx, (B.4.29)
X

with X', d(x) and dx introduced in conjunction with Eq. (B.4.2). The inner product <g,h> has

the properties listed in Egs. (B.2.19) and (B.2.20). The functions g and 4 are orthogonal if
< g, h> = 0. Further, the variance V(g) is given by

V(g)={g- 82— &)
= [ 1200 - gy d(x)dx (B.4.30)
X

= [ g* (0d(x)dx - g,
X

where
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20 = EB(2) = [ g(0d (x)dx (B.431)
X

is the expected value for g.

Two functions f, and f, of the form defined in Eqs. (B.4.4)-(B.4.8) and more generally in
Eq. (B.4.19) with u=[i,i,,...,i.] and V=[},, j,,..., j,| are orthogonal if
Xy 0 X; ] and X, =[x

X, = [le i %

oy

(B.4.32)

differ in one or more elements of X =[x, x,,...,x,] as shown below. For notational convenience,

let (i) @ represent the integers contained in both U and v, (ii) b represent the integers contained
in U but not v, and (iii) € represent the integers contained in v but not U Then,

(fus Fu) = [ R, (%, )d (X)dx
X

_[ _[ fu (xu )fv (XV )d(xb+c )dxb+c ] d(xa )an

Xa _Xbﬂ'.

(B.4.33)

[ ] Aatxlx)d0x)dx, x | fv<xv>ol(xc)dxc]d<xa )dx,
X,

Xa _Xb
=0

c

o

with

Xa ’ Xb ’ Xc ’ Xb+c ’ da (xa )’ db (xb )9 dc (xc )’ db+c (xb+c )’ dax dbxb ’ ch db+cxb+c (B'4'34)

a’ c>

defined the same as in Egs. (B.4.12)-(B.4.15) and equality to zero resulting because at least one of
the two inner integrals must occur and be equal to zero due to the assumption that U and v differ

in one or more elements.

The Sobol’ variance decomposition follows from the orthogonality of the individual terms
defined in in Egs. (B.4.4)-(B.4.8) and more generally in Eq. (B.4.19). Specifically,
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VO = (- fo. f = 1o)
= <fo +qu = JosJo +qu _f0>

ueld ueld

:3<qu=2fu>

ueld ueld

= 2 2 (fus /i)

ueld veld

= 2 {fus /i)

ueld

~6 Z<fu—0,fu _0>

ueld

= 2. V()

uel

= ZV(f)+ZZV(fU)+ZZ Z V() + -+ V(i

i=l j=i+l i=1 j=i+lk=j+1

(B.4.35)

where (i) Equality 1 follows from the definition of variance in Eq. (B.4.30), (ii) Equality 2 follows
from the representation for f in Eq. (B.4.18), (iii) Equality 3 follows from f, - f, =0, (iv)

Equality 4 follows from Eq. (B.2.20), (v) Equality 5 follows from orthogonality (i.e.,
<fu,fv> =0 for u=#v;see Eq. (B.4.33)), (vi) Equality 6 introduces E(f,) =0 from Eq. (B.4.28)

, (vil) Equality 7 follows from the definition of variance in Eq. (B.4.30), and (viii) Equality 8 is a
restatement of the summation in Equality 7.

Division of both sides of Eq. (B.4.35) by V(f) yields the representation

1= 2 V(£)/ V()

ueld

(B.4.36)
—ZS +z z S, +Z z Z S+ + S
i=l j=i+l i=l j=i+lk=j+1
with

S; = fractional contribution of variable x; to V(f), (B.4.37)

S; = fractional interaction contribution of variables x; and x; to V(f), (B.4.38)

S; +8; + 5, = combined fractional individual and interaction contributions
(B.4.39)

of variables x; and x; to V(f),

and, more generally,
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Sy =V(f) /! V(f) for u=[i,i,,...,i.]
= fractional interaction contribution of variables contained in (B.4.40)

Xy =[x % ... x; 110 V(f).

In addition, the total fractional contribution of variable x; to V() is given by

Sir =28, =2 V() IV() (B.4.41)
ue7; ue7;
with
T ={uiu=[,ds0s8, L | SF LR < By <<l € s Byl H (B.4.42)

The preceding summation contains the terms in Eq. (B.4.36) that do not have a subscript i. Thus,
S, equals the fraction of V(f) due to x; and all variable interactions involving x;. The value of

S,r provides a measure of the overall effect of x; on V(f). However, the S, forall x,'s typically
do not sum to 1 because of overlapping effects (e.g., S;, appears in each of the sums defining S,
and S,;).

The variance V(f;) of f; is given by

4

= ) (B.4.43)

Il

s VAE_Lf (x| x)]},

with Equality 5 following from Equality 4 as a consequence of the equality

E {ELL/ (x| x)]} = j{ [ fox]x)d(x_)dx }xx,.)dx,-

X (B.4.44)

F(xX)d(x)dx =

Il
><'—o

Further, continuation from Equality 4 in Eq. (B.4.43) yields
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V() =(E_ (X x)]1- fo, ELLA (X1 x)]- fy)
(E_LF X x)LE LA (x| x)1) =2 (E_ LA (X X)L 1) + f7

J{E.Lrex] %)) A (x)dx, — 212 + f2
X;

1

I

(B.4.45)
2
= j[ [ rxix)d, <x~l->dx~,-] d,(x)dx; - /i
%) 2,
In turn, combining Egs. (B.4.43) and (B.4.45) produces
V(f)=V, {E~i[f(x | x; )]}
2
= [ _[ S(x[x)d_;(x_; )dx~i] d; (x;)dx; _fo2

- (B.4.46)

j FO L x) (X, x)d_ (X )d_ (x_,)d, (x,)dX_dx_dx, — f;

Il
;<"_0 Re— Re—m

il
[ FOOfGoix)d, (R )dX)dR dx— £,
X

with the final two equalities equality obtained as indicated in Eq. (B.3.4).

Similarly, the variance V(f;) of f; is given by
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V() = (fy —By () fy By ()
=2 J(;j 0 f;] >

<

s o)
<
<

(B L IX)1= o = i = [ By Lf I X)1= fo = i = 1)
s (B LA )] = fo By LF (X x)1= o)
—2(E_,LfXIX)] = fo /i + 13 )+ (S + £ S+ 1)

=6 Vi {E LA RIX)I =2(fy + i+ S Sy + 13) 4 (i + S+ 1)

= V(B U ) =207 /i + 1)+ (i + S S+ 1)+ (i + 10+ 1)

= Vi (B LA IX) 1 =2( Sy i+ 1)~ (fi+ [ i+ 1)

= Vi (B U@} =2{{f5 1) + {5 )} = {( e £ =200 1) + (151}

=10 Vi {E_; L (x| x;)1} = 2{0+ 0} = {V(£) - 2x 0+ V(£))}

=1 Vy {E_; LA (x| x)1} = V() = V(). (B.4.47)

Further, continuation from the last equality in the preceding equation yields

V() = Vi {E LA &) %)1f = V() = V()
j (B, LA x)1- By {E, LA x [ x)1 | =V -V(r)

o=

[ LX) = fy Ty (x)dx, = V() = V()

—_— R

[E L)1 d (x)dx, —2, I E_;[f (x| X)), (X, )dx;

/

&

+ [ fdy (x)dx; = V() = V()
Ay

r 72

:j J'f(x|x )d_; (X_ )X | dy ()X, —2£5 + f = V()= V(f;)

A

r 2

= [| [ roIx)d_; (x_)dx; | dy(x;)dx; = f5 = V() = V().
X

(B.4.48)

In summary, combining the final equalities in Eqgs. (B.4.47) and (B.4.48) yields
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V(fy) = Vi (B, LA XX = V() = V()
2
= | [ [ roxixd g x )dx~i]-} dy (x;)dx; = 5 =V([)=V(/))
X | X
= [ [ | £ Reyx)dy (5 )dy (% )dy (x; )d%_dx_ydx;, (B.4.49)
X X X .

= f5 =VUD =V
= [ [ FO0S @ y%)d_y (Ro)d (00K _ydx = fiF =V(£) = V().
XAy

with the final two equalities obtained as indicated in Eq. (B.3.4).

More generally, if u=[i,i,,...,i,] € U, then V(f,) is defined by
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Vi) =

2

—~

fo =By(f) fu —Eu (/)
-0, £, -0)
A

\E?

—

3

Eglf (x| x)]=fo = 2 FO)LEglf (XIx)]=fo = D fv(xv)>

veV(u) veV(u)

—

=5
veV(u)

E; [f(X’ u)]_ﬁ)’Eﬁ[f(x‘xu)]_f()>_2<Eﬁ[f(x‘xu)]_fO’ Z fv(xv)>

+< Z fv(xv)a z f;/(xv)>

veV(u) veV(u)

- V{Eﬁ[f(x|xu)]}_2<fu+ Z fv(xv)a Z fv(xv)>

veV(u) veV(u)

+< > A, D fv(xv)>

veV(u) veV(u)

= V{Eﬁ[f(x|xu)]}_2{<fu9 2 fv(Xv)>+< > L) D fv(XV)>}

veV(u) veV(u) veV(u)

+< PINACHEDY fv(xv)>

veV(u) veV(u)

=w@munnzzMAm»<zﬂm»zﬂm§ (B8.4.50)
vel(u) veV(u) velV(u)
=9 V{E [f(X ]} 2x0- Z z <fv(xv):fw(xw)>
veV(u) weV(u)

=10 V{E [f(X ]} z <fv(xv)>fv(xv)>

veV(u)
=1 V{Ea[f(x u)]} z V()

veV(u)

where (1) Equalities 2 and 3 follow from Eq. (B.4.28), (i1) Equality 4 follows from the definition
of f, in Eq. (B.4.19), (iii) Equality 6 follows from the equalities

VAEGLS (x| %1} = (BgLf (x| %,)1= fo, Balf (X[ %,)1 = fo) (B.4.51)
+ > A =Bl (x| %)= £, (B.4.52)
veV(u)
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(iv) Equalities 9 and 11 follow from Eq. (B.4.33), and (v) Equalities 5, 7, 8 and 10 follow from
standard inner product manipulations.

Further, continuation from the last equality in Eq. (B.4.50) yields

V(f) = V{E[/xIx)I}— D> V(f)

veV(u)

—j[E L x )~ E {ELFx[x)l ] = 3 V(A)

veV(u)

= j[Ea[f(Xlxu)]—fo] dy(x,)dx,— > V(£)

velV(u)

&=

[E [f(XIXu)]] dy(X,)dx, =2 f, I EgLf (xI %)k, (x,)dx,

j

+ J. ﬁ) du(xu)dxu - Z V(fv

veV(u)

Il
*'—.

Xu

o 2

= [ [ £OxI%)ds 0)dxg | dy(x)d%, =215+ f5 = > V()
XL A veV(u)

- -2

= _[ _[f(x | X,)dg(Xg)dxg | dy(x,)dx, — 5 = D V() (B.4.53)
X

veV(u)

uXG

with

Eu{ELl/0 )]} = | { [ £ %) (x)dxg }d (X, )dx,
x, (B.4.54)

= [ £(0d(x)dx =
X

in the second equality. Finally, combining the final equalities in Eqs. (B.4.50) and (B.4.53) yields

V() = VIEL/ (X[ x)] = >, V(A)

veV(u)
X,

[ 117000 g X )l (Rl (%5 )y (%, )dXgdedx, = 17 = 3 V(f,),

X, X &, veV(u)

Il

2
[ f(x | xu)dﬁ(xﬁ)dxﬁ] du(xu)dxu _ﬂ)z - Z V(f;,) (B455)

veV(u)

=

:)

with the final equality obtained as indicated in Eq. (B.3.4).
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An integral-based representation for S, is now determined. As a reminder, the notations
7 =A{12,..,n} and Z(u)={j,i,,...,i,} for u=[i,i,,...,i.] € U are introduced in Egs. (B.4.9)-
(B.4.11). The following considers variance decompositions for vectors

X, withu=[i,i,,...,i,] and X, withv=[j, j,,..., j,] (B.4.56)
with

TWUI(V)=T =1{,2,...n} and Z(u)NZ(V)=D. (B.4.57)
The purpose of the introduced vectors

Xy =[x ,% 500X ] and x, =[x, ,x x; ] (B.4.58)

u b 1222

is to divide the variables associated with X =[x,x,,...,x,] into two nonintersecting sets of
variables and then construct a variance decomposition for these two sets of variables (i.e., for X,
and X, ).

The following definitions are made to support the development of the indicated variance
decomposition:

fu(Xy) =ELf (x| x,)] - E[/(X)]
= [ £ %)d(x,)dx, ~ f;. (8459
XV

fy(x,) =E[f (x| x,)]-E[f(x)]
= [ FxIx)d(x,)d%, - i, (B.4.60)
Xu

and

zj,v(xu’xv) = E[f(x | xu’xv)]—E[f(x)]_j;(xu)_fv(xv)

(B.4.61)
= ()= fo = Ju(X) = £ (%),

with the overbars added to distinguish the functions f,(x,), f,(x,) and fu’V (X,,X,) from the
functions f;(x;), f;(x;,%;), [y (%, %;,%;), ... defined in Egs. (B.4.5)-(B.4.8) and their often used
notational representation f,(X,) as indicated in Eqs. (B.4.18) and (B.4.19).

Given the preceding definitions for f,(x,), f,(x,) and fu,v (Xy,X, ) , the following equalities
hold:
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E[f,1=E[£,1=E[£,,1=0, (B.4.62)

(Jos o) = (For Faw) = (Fus Fun) = 0 (B.4.63)
and
SO0 = fo + LX)+ fy () + fuy (Xys Xy )- (B.4.64)
In turn,
V() =V + V) + V() (B.4.65)

follows from Egs. (B.4.62)-(B.4.64).

The variance representation in Eq. (B.4.65) provides a way to obtain S;;, by assuming that u
consists only of the integer i (i.e., Z(u)={i}) and that v consists of the remaining integers
contained in Z (ie., Z(V)={j:jeZ={1,2,...,n}andj #i} and X, =X, ). Then, with the
indicated definitions for u and v,

S =(V(H=VI) V) =1=V(L) V(). (B.4.66)

The integral-based definition for V(]_‘v) is given by

V()

VfV

=
<jf(x|xv>d<x X, = f, = OIf(x X, )d (X, )dx, — f, >
X,
< [ rexIx,)dx,)x, - £, Jf(x X, )d (X, X, f0>
<If<XIx )d (x;)dx; If(xrxv>d<x )dx> 2/, <1,Jf(xxv)d(x,->dxl->+ﬁ
K &,

( [ /1% (3 )dx, j f(x] x~,-)d(xi>dx,-}(x~,-)dx~,- —2fy +fo

Xv

= || j LX) (X, 5)d(F)d (x,)d (X, )dFdx,dx_, — £
P2 A ¢

X_;
=] f(X)f(x~, %)d(%)d ()% dx - £;'.
XX, (B.4.67)
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with (i) Equality 2 obtained from the definition of fv in Eq. (B.4.60) and the equality E(f,) =0
as indicated in Eq. (B.4.62), (ii) the form of Equality 3 establishing the equality

Vo, [Ex (f %)= < [ £ )Gy, = fo, [ £ (x| %)d (), —fo>
X, %,

=<I S x| x,)d(x,)dx, — £y, I F(x|x,)d(x,)dx, —fo> (B.4.68)
X, X,

=V(£,)

(ii1) Equality 6 obtained as indicated in Eq. (B.3.4), and (iv) the remaining equalities obtained by
standard manipulations.

In turn, combining the representation for V(f) in Eq. (B.4.30) with the representation for V(]_rv)
in Eq. (B.4.67) produces

S ={VUN=VUI} V()

= {[ [ 120 (x)dx f&}
X

e N 5 (B.4.69)
| [ [ roof (. 5)d@ddtdx—£7 |/ V()
XX,

= { [ r7o0dax-| | f(x)f(xﬂ-,i»d(fi)d(x)dfc,-dx}/V(f)
X X ;El

if the integral representation for V() is retained in the numerator or

Sy =1=V(£)/ V(f)
(B.4.70)

=1- I I FOOf(x_;,%)d(E)dx)dxdx— £i7 +/V(f)
XX
if the integral representation for V(f) is removed from the numerator by division.

Another equality that provides a representation for S, is

Sir =E_L V(S 1X )1/ V(f), (B.4.71)

which can be established as follows. First,
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Vi (f %) = (f X)) =B LF ()X )L £ (X[ X)) =B LF (x| x_)])

= <f(x X)) = [ £ OX ), O, (X)) = [ k% ( >dxi>
&, %,

= (FORIX ). f(X|X) - 2<f(x %), [ (X[ %)d, (x,-)dx,->
_Xi

+ <I SX[x_;)d; (x;)dx;, I S| x_)d; (x; )dxz> (B.472)
&, &,
2 2
= [ 2%, (x)dx, —{jf(xni)d,-(x,-)dxi] +[jf<xx~,~)d,~(x,-)dx,}
&, &, x,
2
= IfZ(x | X_;)d; (x;)dx; _!I S(x] x~i)di(xi)dxi] .
x, &,
In turn,
2
ELIV,(f 1x)]= | [ [ 72 %), ), —[j fXIx)d, (x,-)dxl-] }d (X, )dx.;
X\ & &;
2
= | { [ 120 x ) (x)d, Jd (x)dx, — | [! [FACIE I ACHY ] }f (X )dx
X_;
j £ (X)dx — j j j L x) (X 5)d (5)d, (x)d_, (x, )d%dx.dx, (B.4.73)
X X_; XX

= [ 2 (0d (x)dx - j j SO, %)d(F)d(X)d% dx
X

=V()=V(),

with the final equality following from a match with the numerator in the final equality in Eq.
(B.4.69). Thus, from Egs. (B.4.69) and (B.4.73) ,

S = (V=V} V() =E_[V,(f XD/ V(f). (B.4.74)
with

V(1) = Ve, [Ex (/%) ] (B.4.75)
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from Eq. (B.4.68).

In summary, the representations

ELIV(/ 1)1/ V()
Sy =1V =V [Ex (1) ]V (B.4.76)
1=Vy [Bx (F 1% ]/ V()

follow from Egs. (B.4.69), (B.4.73) and (B.4.68).

The variance decomposition associated with Egs. (B.4.59)-(B.4.65) has potential uses in
addition to facilitating the representation and numerical approximation of S;,. For example, an

analysis might involve two models (i.e., Model A and Model B), where (1) X, and X, are vectors
of uncertain variables that are inputs to Model A and Model B, respectively, and (i1)

v=f(X;,X,)=f(x,%5,...,%,) (B.4.77)

is the analysis result of interest produced by the combined operation of Models A and B. In this
situation, (1) V(f,) and V(f,) would represent the contributions of Models A and B,

respectively, to the uncertainty in y, and (ii) V(fu,v) would represent the contribution of

interactions involving X, and X, , and correspondingly Models A and B, to the uncertainty in y.

B.5 Approximation of Variance Decomposition for f(x,,x,,...,x,)

As discussed in Sect. B.3 for f(x,x,,x;), the variances V(f), V(f;), V(fy.) , ... associated
with f(x,x,,...,x,) will, most likely, need to be approximated with sampling-based procedures.
The evaluation of f, = E(f) and V(f) with sampling-based procedures is straight forward. A
random or Latin hypercube sample

X, = [Xgs %5 yomsi |55 S Li2snes S, (B.5.1)

>7sn

is generated from X=X, x&,x---xX  in consistency with the probability spaces
(X, X,,m;),i =1,2,...,n, and the associated density functions d,;(x;),i=1,2,...,n. Then, the
approximations

fo=fy and V()= V(f) (B.5.2)

are determined as indicated in Egs. (B.3.2) and (B.3.3).
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As described in Egs. (B.3.14)-(B.3.18), the variance V(f;) can be approximated based on the

representation

V) =] [ 00K x)d (% Hd(x)dk_dx— f; (B.5.3)
XX,

in Eq. (B.4.46) with use of the sample in Eq. (B.5.1) and one additional sample. This additional
sample

X, =[%,,%000n ks =1,2,...,18, (B.5.4)

S

is obtained by randomly rearranging the sampled values for each variable. For example, the
sequence of values X,X,,...,X,5; for x; in the sample in Eq. (B.5.4) is simply a random

rearrangement of the sequence of values x;;,x,;,...,x,5; for x; in the sample in Eq.(B.5.1). Then,
for each variable x;, a new sample S; is obtained by reordering the sample elements
X.,s =1,2,...,nS, to produce a rearranged sequence

s =% g |58 = Li2ewnttld, with £, =X, (B.5.5)

isl» 152 5 isn

Then, V(f;) is approximated by

A nS ~ A A

VU= 2L SO G) S = fy =1 = fy
= zf(xél’ Kgioees Xy )f(xlS]’ Xisi o+ 'xisn)/nS_fAO2 :ii _];;)2 (B56)
_Zf(xsl’ KXsise xvn)f(xzvlﬂ AED isn)/nS_jbz Zii _];02'

With this approach, 2 nS evaluations of the function f(x,x,,...,x,) are required for
approximation of all n of the variances V(f;). A less efficient approach is described in conjunction
with Egs. (B.3.10)-(B.3.13) that would require (n+1)nS evaluations of f(x,x,,...,x,) for

approximation of all n of the variances V(f,).

The variances V(f;) can be approximated on the basis of the representation

V() = J j SOOSEyox)d_y (R )d(0dX_ydx— f7 =V(£)=V(f}),  (BS5.T)
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in Eq. (B.4.49). If all p=n!/2!(n—-2)! possibilities for the definition of V(f})are to be

approximated, the starting point in a sampling-based approximation procedure is a random or Latin
hypercube sample

[X,, X, 1= (X0 Xy seeer Xyys Koy Koy senns By oS = 1,2,...,n8 (B.5.8)

3% en 2 7Yl B NMgR e Nen

from X x X, with (X,X,m) and (X ,X,nﬁ) assumed to be identical but independent probability
spaces (i.e., both spaces have the same density function d(x) but there are no correlations between
the two spaces). Then, in consistency with Eq. (B.5.7),

R nS R .
V() =D F )Ry X) S = f =NV ()= V(). (B.5.9)
s=1

If a single (i,j) pair is under consideration, then the sample from X' x X in Eq. (B.5.8) can be

replaced by a sample from X x X _;i» Where X ; corresponds to the space with x; and x; omitted.

If desired V(f,) defined in Eq. (B.4.55) can be approximated in a manner similar that shown
for V(f;) in Egs. (B.5.7)-(B.5.9). However, it is anticipated that a need for results of this detail
(e.g., for u=[i, j,k]) will rarely arise.

The variance contributions S;, can be approximated on the basis of the representation
Sir=1- {I [ FO0re,%)d(E@)d(0dsdx— }/V(f) (B.5.10)

in Eq. (B.4.70). Given a sample from X' x X as illustrated in Eq. (B.5.8), S;; can be approximated
by

Sir =1- {Zf(x ) (X, %)/ S — fo}/V(f) (B.5.11)

If S, 1s to be determined for a single variable x;, then the sample from X" x X in Eq. (B.5.8) can

be replaced by a sample from X x )?l :

B.6 Additional Considerations
The required evaluations of a computationally demanding model can be a major challenge in

the performance of an uncertainty and sensitivity analysis for this model based on Sobol’ variance
decomposition. A possible mitigation, but not complete removal, of this challenge can sometimes

B-43



be obtained by developing a surrogate model that approximates the model under consideration and
then performing a Sobol’ variance decomposition for this surrogate model.

A number of approaches to surrogate model development for use in conjunction with Sobol’
variance decomposition calculations are described and illustrated in Ref. [11], including
Multivariate Adaptive Regression Splines (MARS) [12], Random Forest (RF) procedures [13],
Gradient Boosting Machine (GBM) procedures [14], Adaptive Component Selection and
Smoothing Operator (ACOSSO) [15], and Gaussian Process (GP) models [16-18]. In addition to
several notional examples, an example is presented in Ref. [11] for a result from the 1996
performance assessment for the Waste Isolation Pilot Plant (WIPP) [19].

The procedures presented in this appendix for calculating Sobol’ variance decomposition are
predicated on the assumption that the uncertain variables under consideration are independent.
However, this is often not the case in many real analyses. Thus, it is desirable to have a procedure
for including correlated variables in the determination of Sobol” variance decompositions.

Such a procedure has been introduced by A. Nataf [20] and is now commonly referred to as
the Nataf transformation. With this transformation, correlated variables are transformed into
uncorrelated, normally distributed variables that have structure that is connected to the correlation
structure of the original correlated variables. The Nataf transformation is now widely used and an
extensive literature exists (e.g., [21-29])
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C. Polynomial Chaos

C.1 Introduction

Function representations obtained with polynomial chaos procedures provide another way to
obtain variance decompositions. Like Sobol’ variance decomposition, polynomial chaos-based
procedures for variance decomposition involve sets of orthonormal functions. However, an
important distinction between the two approaches is that (i) the Sobol’ approach constructs the set
of orthonormal functions used to represent the function of interest from “scratch” (i.e., entirely
from consideration of the function under study) and (ii) the polynomial chaos approach starts with
sets of predefined orthonormal polynomials that are then used to construct the set of orthonormal
functions used to represent the function of interest. Once the desired representation with
orthonormal functions is constructed, both approaches are based on a variance decomposition of
the form shown in Egs. (B.2.27) and (B.4.35) of App. B.

As is the case for Sobol’ variance decomposition, the notation needed to describe variance
decomposition with procedures based on polynomial chaos expansions is complicated and often
described in a very compact manner in the journal literature in order to meet the length
requirements imposed on journal publications. As a result, it can be difficult for the uninitiated to
develop an understanding of exactly what is the mathematical structure that underlies uncertainty
and sensitivity analyses based on polynomial chaos procedures. The purpose of this appendix is to
lead the interested reader through the details of this structure. To accomplish this, the structure of
variance decomposition with polynomial chaos procedures is described separately for (i) the less
complicated case involving a function f(x;,x,,x;) of only 3 uncertain variables and (ii) the

notationally more complex case involving a function f(x;,Xx,,...,x,) of n uncertain variables.

The following topics are considered in this appendix: (i) Introduction to orthonormal
polynomials in Sect. C.2, (ii) Variance decomposition for f(x,,x,,x;)with predefined

orthonormal polynomials in Sect. C.3, (iii) Variance decomposition for f(x,,x,,...,x,) with
predefined orthonormal polynomials in Sect. C.4, (iv) Variance decomposition for f(x;,x,,x;)

without predefined orthonormal polynomials in Sect. C.5, (v) Variance decomposition for
f(x,x,,...,x,) without predefined orthonormal polynomials in Sect. C.6, and (vi) Approximation

of polynomial chaos representations for f(x,,x,,x;) and f(x,x,,...,x,) in Sect. C.7.

Additional information on variance decomposition procedures employing polynomial chaos
function representations is available in a number of publications (e.g., [1-17]).

C.2 Introduction to Orthonormal Polynomials

Due to the central role that classical orthogonal polynomials have in the development of
polynomial chaos representations for complicated functions and the decomposition of the variance
associated with such functions, a brief introduction to orthogonal polynomials is given in this
section. Orthogonal polynomials are extensively used in the modeling of many complex systems.
As a result, an extensive literature exists where additional information on orthogonal polynomials
can be obtained (e.g., Refs. [18-24]).
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The polynomials in a set
P= {pn (x): p, (x) is a polynomial of degree n € {0,1,2,...} andx e X' = [1,%]} (C.2.1)
are orthogonal provided there exists a weight function w(x) with the property that
(a0, () = [ P, ()P, (xw(x)dx
X
= 5,,, [ P2 (pw(x)dx (C2.2)
X

[ p2Cow(xdx if m=n
=3\ &

0 if m=n,
where
lifm=n
O = ] (C.2.3)
0 if m#n.

As a consequence of the linearity of the integral in Eq. (C.2.2), a positive multiple ew(x), ¢ >0,

of a weight function is also a weight function. In addition, the polynomials in the set P are
orthonormal if there exists a weight function w(x) with the property that

1if m=n

(P (), P,y () = J;Pn () p, ()W(x)dx = 6, = {0 i om (C.2.4)

Variance decomposition employing a polynomial chaos representation for a function (i.e.,
computer model) f(x,,x,,...,x,) of variables x,,i =1,2,...,n, with associated probability spaces
(X;,X,,m;) and density functions d, (x;)involves two initial steps:

Step 1: Determination of a set

P ={py(x;): p;y(x;) is a polynomial of degree n € {0,1,2,...} and x; € X, =[x,,%; ]} (C.2.5)

of orthogonal polynomials for each variable x; with the property that the density function d, (x;)
is a weight function for the polynomials in the set P (i.e., d,(x;) satisfies the property indicated
for w(x) in Eq. (C.2.2)).

Step 2: Transform (i.e., linearly scale) the polynomials in 7 to obtain a set
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75i = {[)m (x;): p;, (x;) 1s a polynomial of degree n € {0,1,2,...} and x; € X, =[x, ,fi]} (C.2.6)

that is orthonormal with the use of d,(x;) as a weight function (i.e., the polynomials p,, (x;) in

P and the density function d, (x;)satisfy the conditions in Eq. (C.2.4)).

The nature of Step 1 is illustrated in Table C.1. Specifically, Column 1 lists examples of
probability distributions that might be considered in a variance decomposition analysis involving
polynomial chaos calculations. Then, Columns 2 and 3 list the sample spaces and density functions
for the indicated probability distributions. The goal is to determine a set of orthogonal functions
for each probability distribution that has (i) the same domain of definition as the sample space of
the probability distribution and (ii) a weight function that is linear scaling of the density function
of the probability distribution. This goal is met by the orthogonal polynomials indicated in
Columns 4, 5 and 6.
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Table C.1 Illustration of probability distributions and associated sets of orthogonal polynomials.

Column 1 Column 2 Column 3 Column 4 | Column5 Column 6
Distribution | Sample Density Associated | Example | Weight
Space X Function d(x) Orthogonal Function
Polynomials w(x)
Uniform X, =[-11] di(x)=1/2 Legendre Table w(x) =1
F,(x) C.2a on [-1,1]
Uniform X, =[0,1] d,(x)=1 Shifted Table w(x) =1
Legendre C.2b on [0,1]
By (x)
Normal Xy =(—0,0) | dy(x) = Hermite Table wy(x) =
Vﬁvtltfo o=1 exp(—x’ /2) He, (x) Cac exp(—x” /2)
V27 on (—oo,)
Exponential | X, =[0,00) d,(x) =exp(—x) | Laguerre Table w,(x) =
on [0,)
Gamma X; =[0,0) ds(x) = Generalized | Table w5 (x) =
with " Laguerre C2e "
a>-1A=1 x“ exp(—x) 12.(x) x“ exp(—x)
INa+1) n on [0,0)
Beta &g =[-1,1] de(x) = Jacobi Table We (x) =
a.p)
it a-xra+xyf | B0 gty
B>l K[20 P on [-1,1]
[a,6]=[-L1] Bla+LA+D]"
The general forms for the density functions d,(x), ds(x) and d,(x) are
d,(x) = Aexp(=Ax), (C.2.7)
ds(x) = A" x* exp(-Ax) /T (e +1) with a > -1, (C.2.8)
and
— 0% (x—a)?
d (x) = — b0 (x=a) with & > 1, 8> —La<b and B(p,q) =D (c29)

(b-a)* """ Bla+1,5+1) " T(p+q)

As indicated in Table C.1, some of the constants in the density functions in Egs. (C.2.7)-(C.2.9)
are replaced by specific values to match the corresponding orthogonal polynomials (i.e., L,(x),

Ly (x) and B (x)).



Table C.2 Examples of the orthogonal polynomials introduced in Table C.1.

C.2a: Legendre P, (x)

C.2b: Shifted Legendre P, (x)

B(x)=1

B (x)=1

R(x)=x

P (x)=2x-1

P (x)=(3x*-1)/2

Py (x) =6x% —6x+1

By (x)=(5x" =3x)/2

B (x) =20x” —30x* +12x—1

P,(x) = (35x* —30x* +3)/8

P (x) = 70x" —140x> +90x* — 20x +1

P, (x) = (63x° —70x” +15x)/8

P (x) =252x° —630x" +560x° —210x* +30x 1

C.2c: Hermite (0,1) He,(x)

C.2d: Laguerre L, (x)

He,(x) =1 Ly(x)=1
He (x)=x L(x)=-x+1
He,(x)=x" -1 Ly(x)=(x*—4x+2)/2

Hey(x) = X —3x

Ly(x) = (—x’ +9x* —18x+6) /6

He,(x) = xt—6x2+3

L,(x) = (x* =16x° + 72x* —96x +24) / 24

Hey(x) = x° —10x° +15x

Ls(x) = (—x° +25x" —200x° +600x> — 600x +120) / 120

C.2e: Generalized Laguerre L (x)

Lg (x)=1

LI(x)=—x+a+1

L(x)=x"/2—(a+2)x+(a+2) (a+1)/2

L(x)=—x 6+ (a+3)x" /12— (a+2)(a+3)x/2+(a+1)a+2)(a+3)/6

C.2f: Jacobi P““?)(x)

PP (x)=1

PP (x)=(a+1)+(a+B+2)(x-1)/2

PP (x) = (@+ D)@ +2)/2+(a+2) @+ f+3)x-1)/2+(a+B+3)a+f+H(x-1)"/8
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More generally, the polynomials in Table C.2 are defined by

P (x)= %;}(ZT (x-1)" (x+DF, (C.2.10)

P (x)=P,(2x-1)=(-1)" ;O[Z][" Jrkkj(—x)", (C.2.11)

He, (x) _n'[nz/z:]k'((n_l);k)'xnjk with [n/z]z{?n/_zl)fj’z "f:rve:odd’ (C.2.12)
L,(x)= Z( j( D xF, (C.2.13)

LZ(X)zé(—l)" (Zt:ji—i (C2.14)

k n—k
PR (x) = Z[”*“]E” ;ﬁ)(%lj (xT“j , (C.2.15)

Step 2 involves transforming the sets of orthogonal polynomials indicated in Table C.1 and
Table C.2 into sets of orthonormal polynomials with respect to the density functions indicated in
Table C.1. For notational purposes, the set P of orthogonal polynomials defined in Eq. (C.2.5) is

assumed to correspond to a set of orthogonal polynomials associated with the probability space
for variable x; with sample space X and density function d, (x;). Then,

<pin (%), Pin (xi)> = _[ Pin () Py (X,)d; (x;) = J- P; (x; )d; (x;) (C.2.16)
X &

and the desired normalization of the polynomials in P is given by

pm ()C ) _ pin ()C)
(Pin (%), i () \/j Pin () (x;)

(C.2.17)

ﬁin (xi) = \/
In turn, the desired normalization is verified by
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<l~7in (%), Dy (X; )> = | Pin (X)) Dy (x;)d; (x; )dx;

Din(X;) ” Pin (%)
_[ pz%q (x;)d; (x;) \/J- pizn (x;)d; (x;)
¥ ¥

xd; (x;)dx;

2{ p
I

(C.2.18)
pizn (x; )d; (x;)

i

!
!

Pii (o, )d; (x;)

{4

1.

For the polynomials introduced in Table C.1, the square of the normalization devisors to
produce the desired sets of orthonormal polynomials are defined as follows:

Legendre 2,(x): [ P, (x)P, (x)d; (0)dx = [ P, (), (x)(1/ 2)dx

—(1/2) jll P, (x)P, (x)(1)dx (C.2.19)

12 1
2 2n+1 2n+1’

Shifted Legendre P’ (x) : j; P (x)P" (x)d, (x)dx = jol P (x)P" (x)(1)dx = ﬁ (C.2.20)
n+

Normal He, (x): ji) He, (x)He, (x)d; (x)dx = j_“; He, (x)He, (x)exp(—x> / 2) /27 dx
_ % [* He,(x)He,(x)exp(~* /2)dx  (C221)
™

1
= xn!\2mw =n!,
J2r

2r

Laguerre L, (x) : I: L, (x)L, (x)d, (x)dx = j: L, (x)L, (x)exp(-x)dx=1.  (C.2.22)

Generalized Laguerre L (x) : J-Ow L% (x) L (x)ds (x)dx = j:’ 17 (X) L% (x) xrfzpjz)x)

1 ® o a a -
“Ta+l .[0 L (x)L; (x)x” exp(—x)dx (C.2.23)
1 XF(n+a+1):F(n+a+1)

" T(a+) 7! AT(a+1)
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Jacobi P (x): [ B (x) PP (x)d (x)dx

(1-x)*1+x)”
2P B +1,8+1)

1
_ (CH)) (a,B)
= [ BP (x) B ()

! jl PP ()PP (x)(1 - x)* (1 + x)P dx

111

2 Ba+ 1, B +1) (C.2.24)
_ 1 y 295 T(n+a+DI(n+ B +1)
2P B +1,+1) 2n+a+pB+1 T(n+a+pB+1Dn!

1 INa+p+2) Th+a+)T(n+p+1)
T Qnta+ i) Tnta+ f+l) T@+l) T(B+1)
=h.

With use of the results in Egs. (C.2.19)-(C.2.24), the desired orthonormal polynomials for use in
conjunction with the density functions for the probability distributions in Table C.1 are

Uniform on [1,1]: B, (x) = P,(x)//1/ 2n+1) = P,(x)\2n +1, (C.2.25)

Uniform on [0,1]: B (x) = P (x)/\1/ @n+1) = P (x)\2n +1, (C.2.26)

Normal with 42 = 0,0 =1 on [—w,]: He, (x) = He, (x) //n!, (C.2.27)

Laguerre with 2 =1 on [0,00]: L, (x) = L, (x)/1 = L, (x), (C.2.28)
Ly (x)

Generalized Laguerre with 4 =1 on [0, 0] : ZZ (x)=

JL(+a+1)/nT(a +1)

Ly (x)yn!T(a+1)

Tn+a+l)

(C.2.29)

Beta on [a,b] = [~1,1] with &, from Eq. (5.24): P““?)(x) = P““P)(x)/ h,. ~ (C.2.30)

The following sections will describe the use of orthonormal polynomials is the determination
of variance decomposition results.

C.3 Variance Decomposition for f(x,,x,,x;)with Predefined Orthonormal
Polynomials

The polynomial chaos approach to variance decomposition starts with sets of predefined
orthonormal functions. As a motivational example, the previously introduced function f(x)is

used, with (i) X =[x,X,,x;], (ii) the epistemically uncertain variables x;, x, and x; assumed to
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be independent, and (iii) the uncertainty in x;, X, and x; characterized by the probability spaces
(X, X,,m), (X,,X,,m,)and (X;,X;,m;) with X, =[x;,x;] and associated density functions
d(x,), d,(x,) and d;(x;). Further, each uncertain variable x;,7 =1,2,3, is assumed to have an
associated set

P ={p,;(x;): py;(x;) 1s a polynomial of degree d forx;, € X; andd =0,1,2,...} (C.3.1)
of orthonormal polynomials with inner products defined by

<pir (X;)s Dy (xi)> = _[ Pir (%) i (xX;)d; (x;)dx; for 7={0,1,2,3,....} and (r,s)eZxZ
X

’ C.3.2
l1lifr=s ( )
0 if r #s.

As a reminder, the second equality in Eq. (C.3.2) is simply a statement of what it means for the
polynomials in the set P to be orthonormal with respect to the inner product defined in the first

equality in Eq. (C.3.2). Examples of possible definitions for the set 2 are shown in conjunction
with Table C.1 and Table C.2.

As a consequence of the orthonormality of the polynomials contained in A, P and 7, the
multivariable polynomials contained in the set

P = {prst (X) : prst (X) = D (xl )p2s ()C2 )p3t (X3) forplr (xl) € 7319p2s (XZ) € 7)2’

{(2.3)
Dy (x3) € R, and (r,s,t) e Iy, =T x I x T}

are also orthonormal for the inner product
( Py (X), Py (X)) = j Dyt (X) Dy XM (X)dX for (7,s,2), ,v,w)e Ly =IxIxT
X

= I _[ _[ Pir (X)) Do (%) Py, (X3) % Py, (%) P2y, (%) Py, (535 (X3)d (3, )dly (%) )doxy dox,y dixy

X &y A

= I P1- (%) py, (37 () )dx; % _[ Pas (X2)D,, (X3)d, (x5 )dx, ¥ J. P (X3) p3,, (363)d5 (33 )doxs

X % %,

IxIx1=1 if p,,(X) = p,,,(X), 1.e.; all integrals = 1 from normality
0 if p,,(X) # p,...(X), 1.e., at least one integral = 0 from orthogonality.

(C.3.4)

The last equality in Eq. (C.3.4) establishes that the multivariable polynomials contained in the set
P defined in Eq. (C.3.3) orthonormal with respect to the indicated inner product.
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The core idea in the polynomial chaos approach to variance decomposition is to represent f'(X)
by

J(x)= Z Co Dy (X) for T =T xITxT

(r,s,t)eI3

= > € D1 (%) Py (%) 3, (33) (C.3.5)

(r,s,t)EI3

=fot Z Crgr D1y (X1) Pag (%) P3, (33),
(r,5,0)%(0,0,0)eT>

where (i) c,,, 1s an appropriately determined coefficient as indicated in Egs. (C.3.8) - (C.3.10), and

rst

(ii) the summation notation (r,s,7) # (0,0,0) € Z° in the last equality indicates that the summation

is over all (r,s,1) € Z° except (0,0,0). Specifically, the variance V(f) of f is given by

V(N =E([f0-ENT)
= [[ro0- £ d(x)dx
X

= [ 20dx)dx— £
X
= (00, £ ()~ f7
:< Z Crst Prst (X), Z & P (x)>_f02 (C.3.6)

(r,s,t)eI3 (r,s,t)613

= Z Z Crst Cuvw <prst (X), Puvw (X)> - f02

(r,s,t)eI3 (u,v,w)513

2 2
= 2 crst - .ﬂ)

(r,s,t)el’

2
= Z Crst ’
(r,5,6)#(0,0,0)eZ’

with (i) the next to last equality following from the equalities

1 for (r,s,t)=(u,v,w)

(Pt (X), Py (X)) = { (C.3.7)

0 for (r,s,t) # (u,v,w)
and (i1) the final equality following from the equality c,, = £, as shown in Eq. (C.3.9).

The coefficients ¢, in Egs. (C.3.5) and (C.3.6) are defined by

rst

C-10



(Dot 00, £(0) = [ Py (0 (00l (X)X
X

— j Prst (X)[ Z Copomw Prvw (X)J d(x)dx
%

(u,v,w)el'3

= Y Cun | Pra (0P, (0d(X)dx (C3.8)

(u,v,w)eI3 X

= z Cuvw <prst (X)’ Puvw (X)>

(u,v,w)eI3

= Chy <Pm (X), Prst (X)>
C

= St

with the final equality following from the equalities in Eq. (C.3.7). For (r,s,t) =(0,0,0), the
corresponding orthonormal polynomial of degree 0 is p,,,(X) =1 with an associated coefficient

oo defined by
o0 = (oo 0./ X)) = [ oo (0L (0AX)dx = [ £(OI(K)dX = ELf(X)] = fy.  (C3.9)
2 X

As shown in Eq. (C.3.8), the remaining coefficients are defined by

Ct = [ Py O () (X)dX, (C3.10)
X

with the indicated integral requiring numerical evaluation with quadrature or sampling-based
methods. An alternate evaluation procedure based on regression analysis techniques is described
in Sect.C.7.

The previously defined variances in Eqs. (B.2.35)-(B.2.46) of App. B for f,(x,), f,(x,),
J3065), fia(xx), fis(X,%3), fos(xy,x3) and  f,3(x,X,,%;) can also be represented by

appropriates sums of subsets of the squared coefficients cfw in the representation for V(f) in Eq.
(C.3.6). The representation for V( f;) is considered first. To start, f,(x;) can be represented by

Si(x) = Zcrplr ()= Zcrplr ()= ZCFO()plr (%), (C.3.11)
r=0 r=1 r=1

where (1) p,,.(x,), r=0,1,2,3,..., correspond to the set of orthonormal polynomials defined in
conjunction with Eq. (C.3.1) for the variable x, and (ii) r rather than d is used to represent the
degree of the polynomial p,, (x,) to match with notational use of 7, s and ¢ to represent the degrees

of the polynomials p,, (x;), p,,(x,) and p;,(x;) in Eq. (C.3.5) and elsewhere. Specifically,
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C, = <p1r (xl )’ fl (xl )>
= [ P () ()l (3 )y
X

= I P (%) I J. S (X150, X3)d3(X3)d, (3, )dxsdx, — fo |dy (x)dx,
" B (C.3.12)
= [ P (o) 4,004 (0dX = £y [ i, ()l ()b
X X
0 for r=0 from f,-f,=0
=1 [ P () A0 for >0 from [ py, (x,)d; (x)dy, =0
X X
=c,, Inthe notation of Eq. (C.3.5).
In turn,
V() = (i ~E().S —E(D)
= icrplr (x; ),icrplr (x )> from Eq. (C.3.11) and E(f;) =0
r=l1 r=l1
(C3.

= zzcrcs <p1r (xl)’ Dis (X1)>

= Zcf from orthonormality

13)

with the final equality following from Eq. (C.3.12). Thus, the variance V(f;) of f,(x,) can be
obtained from a sum of squared coefficients obtained in a polynomial expansion of f(x;,x,,x;).

Similar derivations for f,(x,) and f,(x;) produce

fr(xy) = ZCOSOPZS (x,) and V(f;) = z Cgso
s=1 s=1

and

3(x3) =3 o3, (x3) and V() = 3 e
t=1 t=1
with subscripts s and ¢ used for consistency with Egs. (C.3.5) and (C.3.6).
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The variance V(f,,) of f,(x;,x,) obtained with polynomial chaos techniques is now

considered. First, the following expansion for f,,(x,,x,) is developed:

Fi2(5:%5) = DD 0 P (52 (35). (C.3.16)

r=0s=0

Initially, f,,(x,,x,) can be represented by

Fo (i) = [ 0,3 (55)dxs = £i00) = f.() = fy
X

" . (C.3.17)
= _[ SO, %0, x3)d5 (x3)dx; — £y | — zcrooplr (x) - ZCOSOPZS (x,)
r=1 s=l1

A

with (i) the first equality corresponding to the definition of f,(x;,x,) in Eq. (B.2.6) and the
second equality following from the representations

h(x) = Z 001 (x) and f;(x;) = ZCOSOPZS (%x,)- (C.3.18)
r=1 r=l
Next, the representation

J. S (x5 %0, %3)d5 (03)dxs — fy = Z Z Crs0 D1y (X1) P (X5)
X, r=0s=0

(C.3.19)
= Z Zcrsoplr (xl )p2s (x2 ) + zcrooplr (xl) + ZCOSOP2S (X2)
#=] s=1

r=1 s=1

1s obtained with
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Cps = <P1r (x1) Pas (32), _[ S (xp, %5, %3)d5 (x5 )dxs fo>

Re

= [ | PGP (x»[ | 7oy )l (e )y —fo}e (3, )l (x; ey o

X X X,
= I J. I D1y () P (X330 (%3) f (31, X5, X3 )5 (33)d, (%, )d, (X )dx;dix, dx,

XX x

- Jo I I _[ D1 (X)) Pag (X530 (X3)d;5(x3)d, (x,)d (X, )dx;dx, dxy
X Xy Ay
Cooo = Jo—fo =0 for r=5=0

B —fox0=c,, for r>0,5s=0
- Cos0 — Jo X0 =c¢y, for r>0,5s=0

- fox0=c,, for r>0,5>0. (C.3.20)

Finally, combining the results in Egs. (C.3.17) and (C.3.19) produces

Ji2(xp,%,) = Z Z Crso P1r (X)) Do (35) + Z Croo D1y (X7) + Z Cos0 P2s (%2 )}

r=1 s=1

—ZcrOOplr (%)‘ZCosopzs (x;) (C3.21)

chrsoplr (xl )p25 (X2 )

r=1 s=

In turn, the variance V(f},) of f,(x,,x,) is given by

< 12(x1’x2)_E[flz(xlaxz)]:flz(x],xz)—E[flz(xl,xz)]>
= (/12 (x.3,), /15 (51,%,)) from E[fjy (x;,x,)] =0

- <Z Zcrsoplr (%) Pas (x3), Z zcrsoplr (x1) Pos (x3)

r=1 5=1

V(h,) =

> (C.3.22)

with the final equality following from the orthonormality of p,,(x;) and p,(x,). By derivations
similar to those in Egs. (C.3.16)-(C.3.22), the variances for f;(x;,x;) and f,;(x,,x;) are given

by
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Sis(x,23) = zzcrOtplr (%) p3, (x3) and V(f};) = chrzo: (C.3.23)

r=1 t=1 r=1 t=1

and

Sr3(xy,x3) = z Z Cost Pas (%) P53, (x3) and V(fy3) = Z Z cgst . (C.3.24)

s=1 t=1 s=1 t=1

The variance V(f,,;) of f,;3(x,x,,x;) obtained with polynomial chaos techniques is now
considered. First, the following expansion for f,;(x;,x,,x;) is developed:

o0 o

Jio3 (X1, %5, %3) = Z Z Z Crse D1y (X)) P2 (X)) P3, (3)- (C.3.25)

r=0s5=01=0

Initially, f,,5(x;,x,,x,) can be represented by

Jio3 (X150, 53) = f (5, %,,6) = fo — f1(q) = f2 (%) — f3(x3)
= Ji2 (x5 x0) = 1305 x3) — f3(x5,%3)

= f£)+ z crstplr(xl)pZS(xZ)p3t(x3) _ﬁ)

(r,5,0)%(0,0,0)eT

- zcroopn (xl ) - Zcosopzs (xz) — ZCOOI‘p3t (x3) (C326)
=1 s=1 o=l

o o0 o 00

w0
= 2260 = 222,60~ 2.2 Cou
r=1 s=1 r=1 t=1 s=1 t=1

o 00 oo

= ZZZCVSZPIV (xl )pZS (x2 )p3t (X3 )a

r=1 s=1 t=1
with (i) the first equality corresponding to the definition of f,,;(x;,x,,x;) in Eq. (B.2.9) of App.
B and (i1) the second equality following from the representations for f(x;,x,,x;) in Eq. (C.3.5),
fi(x), f5(xy) and f;(x;) in Egs. (C.3.18), (C.3.14) and (C.3.15), and f,,(x;,x,), fi5(x,x;)

and f,;(x,,x;) in Egs.(C.3.21), (C.3.23) and (C.3.24), and (iii) third equality resulting from
differences involving equal terms. Next, the variance V(f,,;) of f,;(x;,x,,x;) is given by
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V(fi23) = <f123 (X1, %5, %3) = E(f123) /123 (X1, %5, %3) — E(f13 )>
= <f123 (X1 %55, X3)of 123 (X1 X5, X3 )> from E(f},;) =0
=<222cmpn<x1>pzs(x2>p3,<x3),222cmpn(x1>pzs<x2>p3t(x3>> (€.3.27)

r=I s=1 t=1 r=1 s=1 t=1

with the final equality following from the orthonormality of p,, (x,), p,,(x,) and p;,(x;) ..

The polynomial chaos variance decomposition of f(x;,x,,x;) is based on the equality

V(f) = P

(r,5,)%(0,0,0)eZ°

(o 0] (oo} o0 o0 o0
2 2 2 2
=5 zcrOO + Z Coso T Z Coor T z zcmo
r=1 s=1 t=1 r=1 s=1 (C328)

o 00 00

o o 0 o0
+zzc30t +chgst +zzchst

r=1 t=1 s=1 t=1 r=1 s=1 t=1

= VD) + V(L) + V(L) + V(f12) + V(f13) + V(f3) + V(fi3),

with (1) Equality 1 obtained from Eq. (C.3.6), (i1) Equality 2 obtained by a rearrangement of the
summation in Equality 1, and (iii) Equality 3 obtained from the variances defined in Egs. (C.3.13)
, (C.3.14), (C.3.15), (C.3.22), (C.3.23), (C.3.24) and (C.3.27). In turn, as previously discussed in
connection with Egs. (3.28)-(3.32), division of both sides of Eq. (C.3.28) by V(f) yields

1=8+8, +8; + 85 + 515 + 553 + 85235 {C.3.29)
with

S, =V(f,)/V(f) for i=1,2,3

ZchOO /IV(f) for i=1
r=1

B ‘ (C.3.30)
=1 i/ V() for i=2
s=1

D oo ! V(f) for i=3,
t=1

C-16



S; =V(f;)/ V(f) for 1<i<j<3

22020 IV(f) for (,j)=(1,2)
I, V) for ()= (1,3) (e
2263 IN(f) for (i, /) =(2,3),
Sis = V(fi3)/ V() = iégc@ IV(f) (C.3.32)
and, as previously indicated,
V= X o (C3.33)

(r,5,0)%(0,0,0)eT

in Egs. (C.3.30)-(C.3.32). The terms on the right-hand side of Eq. (C.3.29) equal the fractions of
the variance V(f) of f that can be accounted for by f;, f;,..., f;,; and can be used as measures of

sensitivity. An additional measure of sensitivity is given by

Sir =[VUD + V() + V(i) + V(i1 V()

(C3.34)
=8, + 8, + 813+ S35

which measures the effect on V(f) of x; and all interactions of x; with x, and x;. Corresponding

measures S,, and Sy, for x, and x; are defined analogously.

C.4 Variance Decomposition for f(x,,x,,...,x,) with Predefined Orthonormal
Polynomials

This presentation has used n = 3, i.e., X =[x, x,,x;], for illustration of the basic ideas in the

chaos representation of a function and its associated variance. The ideas are similar but notationally
more complex for a potentially larger value for n. For generality, a function f(x)is now

considered, with (i) X=[x,x,,...,x,], (ii) the epistemically uncertain variables X,x,,...,X,
assumed to be independent, and (iii) the uncertainty in each variable x; characterized by a
probability space (X;,X;,m;) with X, =[x,,X;] and an associated density function d;(x;).

Further, the distribution for each uncertain variable x; is assumed to have an associated set

P ={p,y(x;): py;(x;) 1s a polynomial of degree d forx;, € X; andd =0,1,2,...} (C.4.1)
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of orthonormal polynomials with inner products defined as indicated in Eq. (C.3.2). Examples of
possible definitions for the set P are shown in Table C.2.

The same type of manipulations that lead to the representations in Egs. (C.3.5) and (C.3.6) for
f(x) and V(f) with n = 3 lead to similar, but somewhat more complicated, representations for

f(x) and V(f) with an arbitrary value for n. The following additional notations are needed for the
representations for f(x)and V(f) with an arbitrary value for n:

X=X xXx-xX,, d(x):ﬁd,.(x,.), dx:ﬁdxi, (C.4.2)
fy =E(f) = [ £O0d(x)dx, (C.43)
X

I" =TI, xT,x---xI, with Z, ={0,1,2,...}, (C.4.4)
p(x|d)= f[p,.di (x,) for d=[d,,d,,...,d 11", (C.4.5)

i=1
cq =(p(x|d), f(X)) = j p(x|d)f(x)d(x)dx for de Z", (C.4.6)

X
and

D, . ={d:d=[d,d;,...d,]eT" andd; >0 iff k € {ip iy, .0y}, (C.A4.7)

where, in Eq. (C.4.7), (1) i,i,,...,i; is a sequence of integers with 1<i, <i, <---<i, <n and (i1)

iff is used as an abbreviation for “if and only if .

Given the preceding notations, manipulations similar to those that lead to the representations
in Egs. (C.3.5) and (C.3.6) for f(x) and V(f) with n = 3 produce the following representations for

f(x) and V(f) with an arbitrary value for n:

SO =1 (x,%5,0%,)

= > cap(x|d)
deZ”
n-2 n-1 n
—fo+ZZCdp(X|d)+Z S Y Y. S YT epx|d) (C4S3)
0= ldED i=lip= =i +ldeDy ) i=1 iy =i +11i ’2+1d€Dz, 5
1 2
Z Z Yo YT cpxld)

\Hiy=i+ Q=i+ deD[1 P
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and

2
V()= D
d=[0,0,...,01eZ”
" n=2 n-1 n
—chd+z Z Z Cd+z Z Z Z ca
=1 de'D ij=1i,=i+1 dE'D,n’ i=l =i+l iy=iy+1 dEDII ,i2.03
1 2 3 n
YD IR > (C.4.9)
ij=1 iy =i +1 i3:i2+1 by =iy i+ dEDq 10355350
n=2 n-l n
_zv(f )+Z z V(f;llz)—i_z‘d Z z ’112’3
i= 1,24114-1 ij=1 iy =i; +l iy=ip +1
+Z Z z Z 11’2 ’n
i=liy=i+liz=i,+1  i,=i, +I’

with the final equality in Eq. (C.4.9) following from manipulations that are similar to the
manipulations that lead to the final equality in Eq. (C.3.28).

With Eq. (C.4.9) established, normalized variances associated with f(x) can be obtained as

indicated in Egs. (C.3.28)-(C.3.34) for n = 3. Specifically, division of both sides of Eq. (C.4.9) by
V() produces

n-2 n-l n
I_ZS +Z Z S’ﬂz +Z Z z S11i2i3
i=liy= zl+l i =1 iy=i)+1 i3=iy+1 (C410)
RS DA Z
i=liy=i+liy=i+l  i,=i,_+]
with
S, =VU)IV() =D I V()= D > q (C.4.11)
deDl-f deDl-;' d=[0,0,...,0]eZ"

yeers S

for j =1,2,...,n and the other normalized variances S;; , S iy

" defined similarly.
1243

C.5 Variance Decomposition for f(x,,x,,x;) without Predefined Orthonormal
Polynomials

To this point, the polynomial chaos decomposition of f(X)= f(x,,x,,x;) and associated

variance decomposition have been derived with the assumptions indicated in conjunction with Egs.
(C.3.1) and (C.3.2). Central to these assumptions is that the distributions for x,,x, and x; have
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associated sets of orthonormal polynomials with the properties indicated in Eqgs. (C.3.1) and
(C.3.2). However, it may be the case that the desired sets of orthonormal polynomials are not
available for the distributions for one or more of the variables under consideration. Fortunately,
this complication can be handled with appropriate variable transformations as described below.

For starters, assume that a set of orthonormal polynomials with the properties indicated in Egs.
(C.3.1) and (C.3.2) is not available for variable x;,,i=1, 2 or 3, and its associated probability space

(X;,X,,m;) . Inthe following, it is shown that x; can be replaced in a polynomial chaos calculation

by the transformed variable 7;(u;) defined by
CulT; ()] = G,y () = T, () = C'[C,, ()], (C5.1)

where (i) C,,;(x;) is the CDF associated with the probability space (X;,X;,m;) for x;, (ii) the
variable u; has an associated probability space (U;,U;,m,;) with U, =[u,,u;] , (iii) C,(u,) and
d,;(u;) are the CDF and density function associated with (U;,U;,m,;), and (iv) (U;,U,,m,) has
an associated set

ui

P, =1{p; ;) : p,y(u;) 1s a polynomial of degree d foru; e U, and d =0,1,2,...} (C.5.2)
of orthonormal polynomials with an inner product defined by

<ﬁir (ui)aﬁis (ul)> = J-ﬁir (ui)ﬁis (ui)dui (ui)dui for 7= {0:132737"-'} and (I",S) €Ix1
u

1

(it res (C.5.3)
o if s
The relationships
d,;(u;)=dC, (u;)/dy,
= dC [T, (u,)]/du,
(C.5.4)
= dCy (VAT |, x dT; )/,
=d [T, (u;)IT(u;) with T(u,)=dT,(u;)/dy,,
T(y) = C3 [Cr ()] = C (0) = x; (C5.5)
and
T (i) = i [C, @)] = C,/ (1.0) =, (C.5.6)
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follow from the definition of 7;(u;) in Eq. (C.5.1) and will be useful in later derivations.

For starters, it is noted that f(x;,x,,x;) and f (v, uy,uy) = fIT,(w)), T, (u, ), I, (u;)] have the
same expected value and variance. Specifically,

E(f)= E(f[T (), Ty (uy), Ty (3)])

=

=

j [T ), Ty (1), T %)]Hdm ) Jdu

i=3

SIS —=F!

S F

— 5 E —y

1 1
[ [ 17, T ), T )1 ] g 1T )T ) [ dy; - from Eq. (C.5.4)
i=3 i=3

YU
NG 1(uy) T (13) 1 1

= I J. I S4,5,,T, )H d. (T )]H d7; from change of variables
Ty (uy) T () T3 (u3) =3 i=3

X)X X3

:ij(z;,Tz,T)de,(T)]HdT from Eqgs. (C.5.5)-(C.5.6)

X X X3

= I _[ If(x19x25x3)de1 (x; )]de notation change: 7, = x;

A A, o
=E[f (%, x,,x3)]
= /o (C.5.7)

and

V()= V(1T ), Ty (1), Ty (u3)])

Il
[ —

[ [ 210 T ). T: (u3)]Hdm(u T

i=3

I
[ — 5]

= j _[f (535 524 )dez (x; )]de f0 same edits as in Eq. (C.5.7)
X X X i=3

= VV(XI s X5 X3 )]

=V(f).

As indicated for f(x;,x,,x;) in Eq. (C3.5), f[T;(),T,(u,),T5(us)]can be similarly
represented by
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S @), T (). )] = Y, Dy (W)

(r,s,t)eI3

= > G By () Pay () Py, (1) (C.5.9)

(r,s,t)eI3

- ﬁ) & Z 5rstﬁ1r (ul)ﬁzs (uz)ﬁ3t (u3 ),
(r,5,)%(0,0,0)eT

with u=[u,1y,u3], Py (W) = Py, () P (uy) Py, (u3) and I° = Tx T x T . Inturn, &, is defined
by

G = { B W, FITW) = [ B WSTT (W), ()du (C.5.10)
u

as indicated in Eq. (C.3.8) with T(u) =7, (v,),T, (1, ), 5 (u5)] and d,(u) =d,,, (u,)d,, (u,)d, ;5 (uy)
. In turn,

V(f[T(u)]) = V(f[Tl (), T, (uy), T (uy )])

< > Eub W), D) Emiam(u)>E2( FITW)]) (C.5.11)

(r,,0)eZ? (r,s,t)el’

_ ~2
- Z Crsl

(r,5,0)#(0,0,0)eZ>
as indicated in Eq. (C.3.8).

The previously defined variances defined in Egs. (C.3.13)-(C.3.27) for f,(x,), f5(x,), f3(x3)

s Ji(X,%), fi5(x,%3), fo3(x,,x5) and f,5(x;,x,,x;) can also be represented by appropriates
sums of subsets of the squared coefficients ., in the representation for V(f[T(u)]) in Eq.
(C.5.11). To accomplish this, analogous functions fl(ul), fz(uz), f3(u3), flz(ul,uz), j}l3(u1,u3)

y ]723 (u,,uy) and ];123 (u;,u,,u;) need to be defined and shown to have the same variances as

S1(0)s [200), f506), fia(xn:x), fi3(6,X%3), f3(%,X3) and fi55(x,x;,%3) .

The function ]NF] (u;) is considered first and is defined by
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fiu)=E(fIT:u)])- fy for u, €Y,
= [ [ 1T w), 5 (03)d, 5 (0 )dutyduy — f

Z/{Z Z/{3

= [ AU 00T ), T 0y, 5 03 1ty — (C5.12)
Uy U

= [ [ ST )33 1y )y (5, s — i,
XZ X3

with the final equality following from the same edits (i.e., steps) used in Eq. (C.5.7). Next,

E[ i) = [| [ [ S15G0) 0301y () (0 )dxsdy fo}ul(uodul
U _Xz X3

= J- _[ _[ STx1,%,x3Jd5 (x3)d, (X, )dxy dx, — £, }dl (% )dx,
RARP.S
same edits as in Eq. (C.5.7) (C.5.13)
=Jfo= /o
=0,

2
VI:J?I (”1)] = _[ j I ST (), x5, %3} (x3)d (x5 )dxydx, _fo} d,1 (uy)du, -0’
U | X X3

2
= I I J. S (xp5 %5, %3 )d5 (x3)d (X, )dxs dox, fo] d, (x;)dx,

XXX

(C.5.14)

same edits as in Eq. (C.5.8)
=V [fi (xl )] L]
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¢, = <131r a];1 (1 )>

= <1~71r> J. _[ ST (w5 (uy)d, , (uy)duydu, — fo>

U U

U U

= J. D, (”1)[_[ j STz u) 5 (uy)d,, 5 (uy )d”3d”2]du1 (uy )du,
U

- fo I D (uy)d,y (uy )duy

U

= [ [ | By @)IT (W)}, (u)du—

U Uy U
fo—/Jy=0 for r=0
=V[ [ [ By ) IT @), Wdu for r>0

Uy Uy Uy

Jox1 for r=0
Jox0 for r>0

=C,o for r=12,..,

Fi) =" by, () =D 00 b1, (1) Prg (1) P (113)
r=1 r=1

V[]?l (”1)] = <zér Py (1)) = O’Zgrﬁlr(ul)_ 0> = Z ~r2 = 25,200
r=1 r=1 r=1

r=l1

and in final summary

VA= V][ /@) ]=28 = &
r=1 r=l1

(C.5.15)

(C.5.16)

(C.5.17)

(C.5.18)

In similarity to the definition of £, (u,) in Eq. (C.5.12), f, (1), f~3(u3), fro (g uy) ‘];13(u1,u3)

, f23(u2,u3) and ]7123 (u;,u,,uy) are defined by
fiw)=E(fITW:u)])- f, for u, elU,i=1,2,3,

Jyou) = B(SIT Wz uu)]) = fiw) = f)) - £
for (u,u;)elxU;,1<i<j<3

and
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j;]23(u1,u2,u3)=E(f[T(u:ul,uz,u3)])—f0 —f](ul)—fz(uz)—ﬁ(%)
— Jio (g 1) = fis (uysty) = fog () (C.5.21)
for (uy,u,,us) et =U xU, xU,.

Next, the following variance relationships follow by derivations similar to the derivation in Egs.
(C.5.12)-(C.5.17) that produced the equalities involving V [ p e )] and V [ fl (u, )] in Eq. (C.5.18)

V[AE)]= V][ A) ] =D é (C5.22)
s=1

V[AG)]= V] /i) ]= Zcom, (C.5.23)
V[flz(xl’xz)] [fz(”p”z)] ZZ rzso (C.5.24)

r=1 s=I
[f13(x1,x3 ] [f13(u1,u3)} zz r20t (C.5.25)

r=1 t=1
V[ fo3(x3,35)] = V[J;23 (uza%)] COst (C.5.26)

s=1 t=1

and
V[f123 (xlax2:x3)] = V|:]~0123 (ul,uz,u3)] Zzz Crt+ (C.5.27)
r=1 s=1 t=1

The polynomial chaos variance decomposition of f(x;,x,,x;) is based on the equalities
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VI (x, x5, x3)] = V (f[Tl (uy), Ty (uy), T (us )])
=2 Z 53?[

(r,5,1)#(0,0,0)eZ>

=3 ZCVOO + ZCOSO + Zcom + ZZCVSO

e (C.5.28)

+chr0t + zzcw +zzz5fst

r=1 t=1 s=1 t=1 r=1 s=1 t=1
=4 V() + V(L) + V() + V(1) + V(i3) + V() + V(fiz3)
=5 V(D + V(L) + V(L) +V(U12) + V(13) + V(f3) + V(i)
with (i) Equality 1 following from Eq. (C.5.8), (ii) Equality 2 following from Eq. (C.5.11), (iii)
Equality 3 following from the same manipulations that produced Equality 2 in Eq. (C.3.28), and
Equalities 4 and 5 following from Egs. (C.5.18) and (C.5.22)-(C.5.27).

Next, as previously discussed in connection with Egs. (3.28)-(3.32), division of both sides of
Eq. (C.5.28) by any one of the equivalent expressions

V() = VIF (x.%5,x5)] = V(/TT (). Ty (), T3 (3)]) = V(f) (C.5.29)
yields
1=8,+8, +8; +8), + S5 + 53 + S35 (C.5.30)
with
S, =V(f)/V(f) for i=1,2,3

ZC},OO /V(f) for i=1

i (C.5.31)
= o/ V() for i=2

s=1

> g, ! V(f) for i=3,
t=1
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S, =V(f;)/V(f) for 1<i<j<3

y Y

rii:ﬁfso IV(f) for (i,/)=(1,2)
=4ii5§m IV (f) for (i,))=(1,3) (€532)
= e
2263 IN(f) for (i, j)=(23),
S1p3 = V(f123)/ V() = iégc% IV(f) (C.5.33)
and, as previously indicated,
v(H= > &, (C.5.34)

(r,5,1)#(0,0,0)eZ’

The terms on the right-hand side of Eq. (C.5.30) equal the fractions of the variance V(f) of f that
can be accounted for by f, f,,..., f,;3 and can be used as measures of sensitivity. An additional

measure of sensitivity is given by

Sir =[VUD + V(i) + V(i) + V()] V()
=[V(/)+V(fi) + V(fi3)+ V(A V() (C.5.35)

=8+ 8, + 83 + S35

which measures the effect on V(f) of x; and all interactions of x, with x, and x;. Corresponding

measures S,, and Sy, for x, and x; are defined analogously.

The notation used in this section implies that the distribution for each variable x; does not have

a conveniently defined associated set of orthonormal polynomials. However, the notation in use
actually allows for the inclusion of the case where the distributions for one or more variables have
known associated sets of orthonormal polynomials. In this case, these sets orthonormal
polynomials and associated distributions can be used in the polynomial chaos expansion as
indicated in this section without a notational change from use of the transformation 7; (1, ) defined

in Eq. (C.5.1). This result occurs because, if x; and u, have the same distributions, then 7;(u; ) as
defined in Eq. (C.5.1) simply becomes the identity function (i.e., 7:(#;) =u;), which means that
the use of the transformation 7;(x;) in a polynomial chaos has no effect on the results of the

expansion.
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C.6 Variance Decomposition for f(x,,x,,...,x,) without Predefined Orthonormal
Polynomials

Sect. C.5 hasused n=3,1.e., X =[x;,x,,x;], for illustration of the basic ideas in the polynomial

chaos representation of a function and its associated variance without the assumption that the
distribution for each x; has an associated set of orthonormal polynomials. The ideas are similar

but notationally more complex for a potentially larger value for n. For generality, a function f(x)
is now considered, with (i) X =[x;,X,,..., X, ], (ii) the epistemically uncertain variables x;,x,,...,X,
assumed to be independent, and (iii) the uncertainty in each variable x; characterized by a
probability space (&X;,X;,m;) with X; =[x,,X;] and a corresponding density function d,(x;). An
associated set of orthonormal polynomials is not assumed for the distribution assigned to each x;
. However, as described in conjunction with Egs. (C.5.1)-(C.5.6), each x; is assigned a set ),

orthonormal polynomials that, in general, is not related to the distribution assigned to x; .

The same type of manipulations that lead to the equalities E(f ) =E(f)and V(f )=V(f) in

Egs. (C.5.7) and (C.5.8) for n = 3 lead to the same equalities for an arbitrary value for n. For this
development, the notational definitions in Egs. (C.4.2)-(C.4.7) remain unchanged with the
following similar notational definitions made for the orthonormal polynomials in the sets P, and

associated distributions defined by the probability spaces(U;,U;,m,;) and density functions
dui (ui ):

U=UxUx-xU, d,(u) zlildm(ui), du= lildui, (C.6.1)
S = fITW] = f15,w),T5 (y),.... T, (1,)] (C.6.2)
puld)= ﬁﬁld’, () for d=[d,,d,,...d, 11", (C.6.3)
ol
and
& =(pwld), f[TW]) = Z{ p(x|d)f[T(u)]d, (udu for deZ". (C.6.4)

Given the preceding notations, manipulations similar to those that lead to the equalities in Egs.
(C.5.7) and (C.5.8) for n = 3 produce corresponding equalities for an arbitrary value for n.
Specifically,
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E(/) = E(/1% ). Ty (), T, (11,)])
i, o, 1 1
j I ), Ty (uy), ..., T, (u, )]H d,; (u; )H du;

I
[ e B S|
e s

) ST ), T (). w>ﬂ1dmuwu)Tw>fkw from Eq. (C.5.4)

i=n

S '—-.5‘ F

w 1
L) T(uwy)  T,(G,)

= j : J. v - )H d (T, )]H dT, from change of variables (C.6.5)
TI(EI)T(EZ) T, (w,) i=n
X %

f(T,T,,..., )Hdm(T)]HdT from Egs. (C.5.5)-(C.5.6)

i=n

=11

= I I J.f(xpxz, )X )dez (x; )]de notation change: 7; = x;

XX X

n

=[f (x5 %50, %3)] = B(f) = fo-

[t '-—-:k

Similarly,
V() =V(/ JUICHRACYE ST, (,)])
1 1
: J £ ), Ty (), s T, (1, )]Hdm (u; )Hdu,.

Il
[
|5 '—.5'

_E2 (f[Tl(ul)’TZ(MZ)J:'T (l/l )])
3 (C.6.6)
~U%mw%)wmﬂ%mnw%ﬁmmmm

i=n

I
IS —y =l
Ne— 5 —=5!

L]

| PO xy e x ) d .(x.)] dx. — ;7 same edits as in Eq. (C.5.7)
15+%2 n xi \7Vi i 0

i=n i=n

Il
R —_—

2

U (x5 25000, %,)] = V()

I
<

Next, similarly to fand V(f) in Egs. (C.4.8) and (C.4.9), the polynomial chaos representations
for j; and V( f ) with D:lzl and ¢4 defined in Eqs. (C.4.7) and (C.6.4) are given by
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F) = fIT,w), T, (), T, ()]

= 2. Cab(uld)
deZ”
n—-2 n-l1 n
—fo+Z T apuld S 3 Y puid+S S ST apuld (€6
ldeD ij=1i,=ij+1 deD; ij=1 i, =i;+1 =i, +1 deD;’

i i15i2,13

12 3 n
+...+Z Z Z Z Z Ed[?(u|d)
i=liy=i+liy=i+1 i =i, | +1deD} ,

and

V(f )= Z Cj
d+[0,0,....0]eZ"
n n=1 n n=2
SDIDITEDID WD IS I WD WD WE:
i=1deD/, ii=1i,=i;+1 deD”" =1 i, =i+l i3=i, +1 deD”

14 1,2 12,3
1 2

S 1D D D

i=liy=ij+liz=i,+1  i,=i, ;+1'deD/

UR R
n=2 n-l n
= ZWf 2539 RTURES 3D I IR/
ij=liy=ij+1 i =1 iy=i)+1 =iy +1

2

n ..+z > Z z V(fiii s

i=1 i2 =i+l iy=i,+1 i, =i, |+’

n=2 n-l n
=4 Zv(ﬁ] )+ Z z V(filiz )+ Z Z Z V(filizi3 )
i =1 iy =i+l =11y =i;+1 i3 =i, +1
+ 1 i
112112;14»1 13122+1 i; a§+1 - (C68)

where (1) Equality 1 follows from the orthonormality of the polynomials in the sets Pu,. 51 = 152

., 1, (1) Equality 2 follows from a rearrangement of the summation in equality 1, (iii) Equality 3
involves functions f;, flj, fy » defined the same as the functions f, f;,..., f;_,except with

respect to u,,u,,...,u, rather than x,,x,,...,x, and with the equalities between the summations in
Equality 2 and the variances V(f,), V(fl.j ) - V(fljmn) obtained in a manner similar to that shown in
(C.3.13)-(C.3.28), and (iv) Equality 4 follows from the equalities V(/?i) =V(f.),

V(fl.j) = V()5 V(ffjmn) = V(f;.,) obtained in a manner similar to that shown in Egs. (C.5.12)-
(C.5.27).
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With Eq. (C.6.8) established, normalized variances associated with f(x) can be obtained as
indicated in Egs. (C.5.29)-(C.5.30) for n = 3. Specifically, division of both sides of Eq. (C.6.8)by
V(f ) produces

n-2 n-1 n

n n-1 n
lzzsil +Z Z Siliz +z z z Si‘i2i3

i=1 i =1 iy =i +1 i =1 iy=iy +1 iy=ip +1

e ) (C.6.9)
+...+Z Z Z Z Si1i2~~~i3’
i=li=ij+liz=iy+1  i,=i, |+1
with
S, =V V()
=V(f,)/ V() (C.6.10)
Y&/ T &
deD,-;' d=#[0,0,...,01eZ”

for j =1,2,...,n and the other normalized variances S, , S;;

seees S;; . defined similarly.

Most analyses are likely to involve either (i) a mixture of variables some of which have a
distribution associated with one of the commonly defined sets of orthonormal polynomials while
the other variables do not have such an association or (ii) only variables that have distributions that
are not associated with any of the commonly defined sets of orthonormal polynomials. For
example, uncertainty and sensitivity analyses often make extensive use of distributions such as
piecewise uniform, log uniform, triangular and truncated normal.

A simple way to design a polynomial chaos analysis structure is to assume that shifted
Legendre polynomials are the only set of orthonormal polynomials to be used. Then, each variable
and its associated distribution will undergo a transformation of the form indicated in Eq. (C.5.1),
and then the analysis will have the conceptual structure described in this section. The shifted
Legendre polynomials are particularly convenient to work with as their associated distribution is
a uniform distribution on [0, 1] With this distribution (i.e., uniform on [0,1]), the transformation
in Eq. (C.5.1) corresponds to what is usually done in the generation of random and Latin hypercube
samples of size nS (i.e., for each variable x under consideration, sampled values u,,u,,...,u,s from

a uniform distribution on [0,1] are generated and then used obtain sampled values for x from the
transform x; = CDFX_1 (u;), where CDF, is the CDF for x). Thus, the transformation in Eq. (C.5.1)

is a commonly used transformation in sampling when shifted Legendre polynomials are used in a
polynomial chaos analysis.
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C.7 Approximation of Polynomial Chaos Representations for f(x,x,,x;) and
i £ -

The approximation of the polynomial chaos representation

FX) = f(x,Xp,000%,) = D cqp(x|d) with D={d:deI"} (C.7.1)

deD
is now considered, with

P ={p,;(x;): p,y(x;) is a polynomial of degree d forx; e X; andd =0,1,2,...}, (C.7.2)

p(x|d)= f[p,.di (x,) for d=[d,,d,,...d, 1eD=T1", (C.7.3)
i=1
cg =(p(x|d), (X)) = j p(x|d)f(X)d(x)dx for de D=1", (C.7.4)
X
|d]| = Zn:dl. = degree of p(x|d) for de D =1". (C.7.5)

i=l1

The indicated approximations are usually defined by truncating the infinite series in Eq. (C.7.1).
This results in an approximation of the form

FX) = f(x, X500 X,) = ch p(x|d), (C.7.6)

deD
where D is a suitably restricted subset of D.

The manner in which D is defined is likely to be analysis specific. A possibility is to define

D on the basis of a maximum value d,,. for the degrees Hd” of the polynomials p(x|d) that

result in the coefficients ¢4 in Eq. (C.7.6). This manner of defining D results in
D= {d:deDand |d|<d,,}. (C.7.7)

In turn, this definition for D results in

+ d,)!
o = | O |2 )t (C.7.8)
d nld, !

mx

terms in the summation in Eq. (C.7.6) ([25], Eq. 17).
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In concept, coefficients c4,d 73, in Eq. (C.7.6) can be obtained by numerically evaluating
the defining integral for each ¢4 shown in Eq. (C.7.4). However, this is not a workable approach

in most analyses due to (i) the large number of coefficients that must be evaluated and (ii) the
expense of evaluating the function f(x), which in most analyses is a complex and computationally

demanding computer program.

An alternate procedure is to use a regression-based procedure for the estimation of the
coefficients c4,d € D, in Eq. (C.7.6) [26]. This approach is based on the use of (i) a random or
Latin hypercube sample

X, =[X5 X055 X5 1,8 =1,2,..., 08, (C.7.9)

S

generated from X =& x&,x---xX, in consistency with the density functions

d;(x;),i =1,2,...,n, and (ii) the associated model evaluations

FX) = f(XsXggens X, )i =1,2,...,18. (C.7.10)

In turn, the desire is to obtain estimates ¢4 for the coeffects ¢4 in Eq. (C.7.6) that produce the

smallest (i.e., minimum) value for the sum of squares

2

nS
2| (X)) =D éyp(x,|d) | =(F-PE)(f-PE), (C.7.11)
s=1 deD
with
f(x) px1d)  px [dy) - p(x [d,;) | Te
fo f(:xz) . P- p(X, |:d1) p(X, ‘:dz) P(X2|:dnr) e é:dl _ :2 . (C7.12)
f(an) p(an ’dl) p(an ‘dZ) p(an |dnT) _édl_ é\.nT

a prime (e.g., P') designating the transpose of a matrix, and the elements of D represented by
d.d,,...d ; for notational convenience. The desired estimates are obtained from the

minimization procedure
0=0/0E[ (f-P&)'(f—P¢) | =—2P'f + 2(P'P¢) (C.7.13)
and the resultant equalities

(P'P)c =P'f and ¢=(P'P)'P'f (C.7.14)
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with
0:[0 0 -- O]’ and 8/6&=[8/<’5c1 0/0cy, - 6/ach]. (C.7.15)

Thus, the estimated coefficients ¢; that minimize the sum of squares in Eq. (C.7.11) can be

obtained from the second equality in Eq. (C.7.14) ([27], p.88). The justification for this result
derives from a result known as the Gauss-Markov Theorem.
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