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Chapter 7
A Real-Time Big Data
Control-Theoretical Framework
for Cyber-Physical-Human Systems

Azwirman Gusrialdi, Ying Xu, Zhihua Qu and Marwan A. Simaan

Abstract Cyber-physical-human systems naturally arise from interdependent infras-1

tructure systems and smart connected communities. Such applications require ubiqui-2

tous information sensing and processing, intelligent machine-to-machine communi-3

cation for a seamless coordination, as well as intelligent interactions between humans4

and machines. This chapter presents a control-theoretical framework to model het-5

erogeneous physical dynamic systems, information and communication, as well as6

cooperative controls and/or distributed optimization of such interconnected systems.7

It is shown that efficient analytical and computational algorithms can be modularly8

designed and hierarchically implemented to operate and optimize cyber-physical-9

human systems, first to quantify individually the input–output relationship of non-10

linear dynamic behaviors of every physical subsystem, then to coordinate locally11

both cyber-physical interactions of neighboring agents as well as physical-human12

interactions, and finally to dynamically model and optimize the overall networked13

system. The hierarchical structure makes the overall optimization and control prob-14

lem scalable and solvable. Moreover, the three levels integrate individual designs15

and optimization, distributed cooperative optimization, and decision-making through16

real-time, data-driven, model-based learning and control. Specifically, one of the17

contributions of the chapter is to demonstrate how the combination of dissipativity18

theory and cooperative control serves as a natural framework and promising tools to19

analyze, optimize, and control such large-scale system. Application to digital grid is20

investigated as an illustrative example.21
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2 A. Gusrialdi et al.

7.1 Introduction22

Cyber-physical-systems (CPSs) refer to the integrations of cyber core consisting ofAQ1 23

communication network, computation and physical processes (engineered systems)AQ2 24

which are normally large scale and complex, as illustrated in Fig. 7.1. These two25

components are tightly coupled: embedded computers and networks monitor and26

control the physical processes, usually with feedback loops where physical pro-27

cesses affect computations and vice versa. In addition, CPSs will also interact with28

humans resulting in cyber-physical-human systems. Cyber-physical-human systems29

naturally arise from interdependent infrastructure systems and smart connected com-30

munities. Examples include smart grid [54], intelligent transportation systems [16],31

and smart city [5]. Such applications require ubiquitous information sensing and pro-32

cessing, intelligent machine-to-machine communication, a seamless coordination of33

physical systems, and intelligent interactions between humans and machines. While34

technological advances and the development of relatively inexpensive yet power-AQ3 35

ful communication, computation, and sensing devices make the realization of such36

complex system feasible, fundamental technical challenges centered on real-time big37

data processing, optimization, and control of the spatially distributed complex sys-38

tems remain to be solved. A major and fundamental challenge is to develop a control39

design theory that does not consider the physical and cyber components separately,40

but as two facets of the same system [2]. Another major challenge is the choice of41

control architecture which allows the designer to control the complex system effi-42

ciently and in real time. Traditional centralized control architecture, where all the43

data from ubiquitous sensors are gathered in a centralized processing center, which44

optimizes and computes the control input for the overall system is not appropriate to45

optimize and control such large-scale interconnected system since it may suffer from46

explosion of data and may also harm data privacy [4]. This calls for a scalable and47

modular system theoretic tools to analyze, optimize, and control the cyber-physical-48

human systems. In particular, distributed optimization and control algorithms are49

highly desirable for dealing with such complex systems due to its scalability and50

robustness against component faults and cyberattacks [17].51

The chapter presents a control-theoretical framework to model heterogeneous52

physical dynamic systems, information and communication, as well as cooperative53

controls and/or distributed optimization through which human operator or users can54

interact effectively with physical systems in a multi-agent setting to achieve various55

control and optimization objectives. It is shown that efficient computational algo-56

rithms can be applied hierarchically to operate and optimize cyber-physical-human57

systems, first individually to quantify the dynamic behavior of every agent, then58

locally to describe the local interactions of neighboring agents, and finally to the59

overall system. All the three control levels deal with real-time big data, and the60

hierarchical structure makes the overall optimization and control problem scalable61

and solvable. In particular, one of the contributions is to demonstrate how the con-62

cept of dissipativity theory and cooperative control serve as a natural framework
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7 A Real-Time Big Data Control-Theoretical Framework … 3

and promising tools to analyze, optimize, and control such large-scale systems in63

a scalable and modular manner. Application to digital power grid is investigated as64

an illustrative example.65

The chapter is organized as follows. We begin with dynamic modeling of cyber-66

physical-human systems together with its optimization and control objectives in67

Section 7.2. A brief summary of the basic concepts of dissipativity theory and coop-68

erative control as the main analytical and design tools is presented in Section 7.3.69

Section 7.4 provides an example of applying the dissipativity theory and cooper-70

ative control to design hierarchical control of power system. Modeling and anal-71

ysis of human–machine interaction with focus on electricity market are presented72

in Section 7.5. The role of real-time big data and decision-making in controlling73

cyber-physical-human systems is discussed in Section 7.6. Finally, we conclude in74

Section 7.7.75

7.2 Dynamic Modeling of Cyber-Physical Systems76

and Its Optimization/Control Objectives77

System modeling is an important step in designing control algorithms. Briefly speak-78

ing, a model is a mathematical representation of physical system which allows us79

to reason and predict how the system will behave. In this chapter, we are mainly80

interested in models of dynamical system describing the input/output behavior of81

systems. To this end, let us consider cyber-physical-human systems consisting of82

n heterogeneous physical systems whose individual dynamics can be modeled by83

differential equations in the form of84

ẋi = fi (xi , ui , ri ), yi = hi (xi , ri ), (7.1)85

with i = {1, . . . , n}. The model in (7.1) is known as state-space models where vari-86

ables xi ∈ �ni denote the state which encodes what needs to be known about the87

past history, ui ∈ �m is the control signals to be designed, and yi ∈ �m denotes the88

output (measurement) signals of the i-th system. In addition, ri ∈ �m in (7.1) is the89

operational decision as a result of the intelligent interaction between humans and the90

physical systems which may take place in a slower timescale. In general, the physical91

systems may also be interconnected through a physical network whose characteristic92

could be described by the following algebraic equation:93

κi (y1, . . . , yn, x1, . . . , xn) = 0. (7.2)94

As an example, consider a power system where the individual physical system refers95

to the synchronous generator as shown in Fig. 7.1. For the sake of simplicity, the96

dynamics of synchronous generator is given by the following swing equation:97

Mi δ̈i = Pm,i − Pe,i − Diω0δ̇i , (7.3)98
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4 A. Gusrialdi et al.

where Mi > 0 denotes its inertia, Di > 0 is its damping constant, Pm,i denotes its99

mechanical power while Pe,i is its active power output, and δi denotes its rotor100

angle measured with respect to a rotating frame with speed ω0. The generators are101

physically interconnected with each other which can be characterized through the102

following nonlinear power flow equation:103

Pe,i = E2
i Gii +

∑

k �=i

Ei Ek(Gik cos δik + Bik sin δik), (7.4)104

where δik = δi − δk , Ei is the voltage of the generator bus, and Yik = Gik + j Bik105

is the transfer admittance between generators i and k. Defining, respectively, the106

states, input and output of the i-th generator as xi = [δi − δ∗
i , ωi ]T , ui = Pm,i and107

yi = xi with δ∗
i denotes the final angle, we can recast swing equation (7.3) together108

with power flow equation (7.4) with respect to their equilibrium in the form of (7.1)109

as [22]110

ẋi = Ai (xi )xi + Bi (xi )ui +
∑

k∈N i

Hik(yi , yk)(yk − yi ), yi = Ci xi , (7.5)111

where Ni denotes the neighboring set of generator i , matrices Ai , Bi and coupling112

matrix Hik are state/output-dependent. Note that generators with higher (e.g., fifth113

or sixth) order dynamics can also be represented by state-space model (7.5). In114

addition to the physical network, there is also a cyber-layer representing informa-115

tion/communication network for the system operator/local controller of physical116

systems to obtain/exchange measurements in order to monitor and control the over-117

all system. The structure of communication network (information flow) in general is118

modeled using a graph as illustrated in Fig. 7.1. Let N c
i denote the communication119

neighboring set of the i-th subsystem. In other words, subsystem j ∈ N c
i if infor-120

mation on measurement y j is available to the i-th subsystem. The communication121

network topology can also be represented by the following communication matrix:122

Sc = [Sc
i j ] ∈ �n×n, Sc

ii = 1, (7.6)123

where Sc
i j = 1 if j ∈ N c

i and Sc
i j = 0 otherwise.124

Optimizing and controlling the above cyber-physical-human systems calls for125

computationally efficient and scalable algorithms to deal with its large-scale nature126

and complexity (in terms of heterogeneous individual nonlinear dynamics and their127

physical interconnections). To this end, we divide the control objective of cyber-128

physical-human systems into three levels as illustrated in Fig. 7.2. Specifically, the129

control input ui in (7.1) is decomposed into the following hierarchical form:130

ui = usi (xi ) + uli (yi , y j ) + vi︸ ︷︷ ︸
ui

, (7.7)131
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7 A Real-Time Big Data Control-Theoretical Framework … 5

individual
subsystem

physical
interconnection

local computation/
controller

communication
link

physical
systems

cyber
layer

control input/
local measurement

signals

Fig. 7.1 An illustrative diagram of cyber-physical systems as exemplified by power system

ẋi = fi(xi, ui, ri, t)
yi = hi(xi, ri, t)

ẋj = fj(xj , uj , rj , t)
yj = hj(xj , rj , t)

system i system j

controller controller

monitoring and
communication

operational
decision

ui ujyjyi

ri rj

Fig. 7.2 Three-level data-driven controls of cyber-physical-human systems. The dashed lines rep-
resent information flow between different levels

each layer with the following control design objective:132

1. the lowest level control usi aims to stabilize each individual physical system,133

2. the mid-level control input uli is to achieve a local coordination for a group of134

physical systems, and135

3. the highest level control vi aims at ensuring stability of the overall interconnected136

system.137

For the example of power system whose dynamics is represented by (7.5), the goal138

of low-level (self-feedback) control usi is to ensure (input–output) stability of the139

individual generator. The mid-level control uli can be designed as a distributed opti-140

462148_1_En_7_Chapter � TYPESET DISK LE � CP Disp.:17/7/2019 Pages: 25 Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

6 A. Gusrialdi et al.

mization algorithm (by taking advantage of the communication network) to achieve141

a uniform voltage profile for a group of generators or minimize power loss. Finally,142

the high-level control vi acts as a wide-area control with the goal of ensuring stability143

and/or improving performance of the power system.144

In what follows, we will present a control theoretic framework based on dissipa-145

tivity theory and cooperative control for systematically optimizing and controlling146

cyber-physical-human systems and further demonstrate its effectiveness using the147

power system example described previously.148

7.3 Main Analytical and Design Tools: Dissipativity149

Theory and Cooperative Control150

Dissipativity is an energy-like concept which describes input–output properties (e.g.,151

stability) of a dynamical system. Input–output mapping becomes a useful way of152

quantifying input–output properties of the system when the dynamical model of the153

system is not available. Briefly speaking, dissipative system is a system that absorbs154

more energy from the external world than it supplies [23]. Passivity is a special155

class of dissipativity and is originated in circuit analysis. Passive systems are always156

decreasing in energy with respect to input energy. For example, an electrical circuit157

consisting of resistor, inductor, and capacitor can dissipate energy by turning it into158

heat and also store energy, but it cannot supply more energy than what has been put159

into it. Another class of dissipative systems is what so-called passivity-short systems.160

Compared to passive systems, passivity-short systems may increase or remain the161

same in energy from input to output during transience. One example is a generator162

that is not decreasing in energy at all times simply because it is producing some163

amount of energy. Dissipativity-based approaches become attractive in analyzing164

and controlling CPS since its properties are preserved over system interconnections165

which makes the approach computationally scalable. For example, with individual166

output negative feedback, the passivity-short systems can be interconnected either in167

parallel or in series or in a positive feedback loop or a negative feedback loop while168

maintaining the same passivity-short property [21]. This compositional property169

makes dissipativity a powerful and promising tool to analyze and control large-scale170

system such as CPS [2].171

The concept of dissipativity is captured by introducing two energy-like functions,172

namely, supply rate and storage functions. Depending on the choice of particular173

supply rate function, dissipativity can imply several important behaviors such as174

stability of dynamical systems and their interconnections. Consider system (7.1)175

with ri = 0 and without physical interconnection. The i-th system with supply176

rate �i (ui (t), yi (t)) is said to be dissipative if there exists a nonnegative real storage177

function Vi (xi ) such that the following inequality holds [45]:178

Vi (xi (t)) − Vi (xi (0)) �
∫ t

0
�i (ui (τ ), yi (τ ))dτ. (7.8)179
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7 A Real-Time Big Data Control-Theoretical Framework … 7

Choosing the supply rate function in a quadratic form, the i-th system is said to be180

input passivity-short with respect to a differentiable storage function Vi (xi ) if the181

inequality182

V̇i � uT
i yi + εi i

2
‖ui‖2 − ρi

2
‖yi‖2 (7.9)183

holds for some εi i > 0, ρi � 0, and it is said to be output passivity-short if (7.9)184

holds for some εi i � 0, ρ < 0. In addition, the system is said to be L2 stable if185

inequality (7.9) holds for some ρi > 0 and a positive definite Vi resulting in186

‖yi‖L2 �
(

2εi i

ρi
+ 4

ρ2
i

)
‖ui‖L2 + constant. (7.10)187

Finally, the system is passive if inequality (7.9) holds for some εi i = 0 (and ρi = 0).188

Figure 7.3 illustrates a static input–output mapping of passivity and passivity-short189

systems. Note that passivity is quite restricted as it excludes most of linear dynamic190

systems such as nonminimum-phase systems and minimum-phase systems with rela-191

tive degree 2 or higher. It is shown in [27] that most linear systems are passivity-short192

and that all linear Lyapunov-stable dynamic systems are either passivity-short or can193

be made passivity-short under an output-feedback control. The parameters εi i and ρi194

are important for analysis, control design, and stability of networked passivity-short195

systems, and it is desirable to maximize the value of ρi and minimize εi i . In par-196

ticular, εi i is also called impact coefficient and it quantifies the impact of individual197

passivity-short system on the network-level cooperative control as will be discussed198

later. Let us show now that a synchronous generator connected to infinite bus is199

passivity-short. Dynamics of the generator is given by the following swing equation:200

Mi δ̈i = bi ui − Hii (δi − δ∗
i ) − Diω0δ̇i (7.11)201

and its output is defined as yi � δi − δ∗
i . Taking the following positive definite storage202

function:203

Vi =
(

kd

2k
√

kp
+

√
kp

kkd

)
y2

i + 1

kkd
√

kp
ẏ2

i + 1

k
√

kp
yi ẏi204

u u u

y y y(a) (b) (c)

Fig. 7.3 Input–output diagram (shaded region) [22] of: a passive; b input passivity-short; c output
passivity-short
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8 A. Gusrialdi et al.

with k = bi/Mi , kp = Hii/Mi , and kd = Diω0/Mi and computing its derivative205

yields206

V̇i � uT
i yi + k

(
(1 − √

k p)2

2k p
√

k p
+ 1

k2
d
√

k p

)
u2

i −
√

k p

2k
y2

i � uT
i yi + εi

2
‖ui ‖2 − ρi

2
‖yi ‖2

207

which shows that the generator is passivity-short and L2 stable. Furthermore, we208

can also obtain the physical meanings of εi and ρi . To this end, the transfer function209

of (7.11) can be written as210

G(s) = k

s2 + kds + kp
. (7.12)211

By writing kd = 2ξωn , kp = ω2
n , and k ≈ kp where ωn is the natural frequency and ξ212

denotes the damping ratio, it can be shown that213

εi ≈ ωn

(
1 − 1

ωn

)2

+ 1

2ξ 2ωn
, ρi ≈ 1

ωn
.214

Hence, we can see that the value of εi increases as ξ becomes smaller and the optimal215

value of εi is obtained for ωn = 1.216

Cooperative control is another control design tool that has shown a great promise217

in optimizing and controlling large-scale system and has been successfully utilized to218

develop network-level control of a group of mobile robots [3, 18], power system [54],219

charging scheduling of electric vehicles [16], and complex network [15]. The goal of220

cooperative control is to achieve nontrivial consensus using only local information221

(and thus scalable) obtained via the communication network as illustrated in Fig. 7.1,222

that is for all individual systems i , we have [42]223

lim
t→∞ ‖yi (t) − y j (t)‖ = 0, or lim

t→∞ yi (t) = c. (7.13)224

Consider again physically decoupled CPS with individual dynamics (7.1). As shown225

in [44], the concept of passivity-short simplifies the design of cooperative control226

by modularizing the lower level and network-level control designs. Specifically, a227

self-feedback control usi is first designed so that individual system becomes passivity-228

short. The cooperative control can then be designed by simply considering the fol-229

lowing fictitious integrator dynamics:230

ẏi = uli (7.14)231

where uli is specified as232

uli = kyi

∑

j∈N c
i

Sc
i j (y j − yi ). (7.15)233
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7 A Real-Time Big Data Control-Theoretical Framework … 9

The closed-loop dynamics of (7.14) and (7.15) can be compactly written as234

ẏ = −diag{ky1 , . . . , kyn }Ly, (7.16)235

with y = [y1, . . . , yn]T and L = diag{Sc1} − Sc. Consensus (7.13) is ensured if236

there is at least one node from which every other node can be reached and the237

gains kyi > 0 are chosen to be smaller than k∗. Moreover, if every node can be238

reached from any other nodes, k∗ can then be computed according to [44]239

k∗ = λ2(�L + LT �)

2(maxi εi i )λmax(LT �L)
, (7.17)240

where λ2(·), λmax(·) denote the smallest nonzero and largest eigenvalues, respec-241

tively, and matrix � = diag{η1} with ηT
1 L = 0. It is worth to note that k∗ in (7.17) can242

be computed in a distributed manner without requiring global information of L [12].243

The communication topology embedded in matrix L can also be optimized to increase244

the convergence speed of (7.15), see, e.g., [9, 11, 43]. As can be seen from (7.15)245

and (7.17), the design of cooperative control of networked passivity-short system246

does not require any explicit knowledge about the heterogeneous physical systems247

other than their impact coefficients. Moreover, quantity maxi εi i in (7.17) can be248

viewed as the “worst” value of impact coefficients of all the passivity-short systems.249

Adding or removing subsystems into or from the networked systems results in differ-250

ent impacts on the overall system operation. However, the performance of the overall251

system can still be guaranteed given that the control gains are appropriately upper252

bounded to limit such impact. Hence, the operation of the networked system can be253

performed in a plug-and-play manner while its stability is guaranteed.254

7.4 Hierarchical Control Design for255

Cyber-Physical-Human Systems256

In this section, we utilize the concept of passivity-short and cooperative control257

presented in the previous section to design hierarchical control law (7.7) for power258

system whose dynamics is given by (7.5).259

7.4.1 Low-Level Control Design: Ensuring Input–Output260

Stability261

Let us now consider the nominal subsystem in (7.5) by excluding its physical inter-262

connections, i.e., assuming Hik = 0 for all i �= k. The first step is to design a self-263

feedback control usi for individual physical system given by264
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10 A. Gusrialdi et al.

usi = −Ki xi265

such that (i) the individual physical system is passivity-short and L2 stable for input–266

output pair {ui , yi }; (ii) its impact on the overall system, that is, the values εi i and −ρi267

in (7.9) are minimized. To this end, taking the storage function V = 1
2 xT

i Pi xi with268

Pi is a positive definite matrix, a self-feedback control can be designed by solving269

the following optimization problem:270

minimize
Ki ,εi i ,ρi

[αi iεi i − (1 − αi iρi )]
subject to Pi > 0,

Mi (xi ) � 0,

εi i , ρi � 0,

(7.18)271

where αi i ∈ (0, 1) is a design parameter and matrix Mi (xi ) is defined as272

Mi (xi ) � (Ai (xi ) − Bi Ki )
T Pi + Pi (Ai (xi ) − Bi Ki ) + ρi CT

i Ci + 1

εi i
‖Pi Bi − CT

i ‖2 < 0.273

The second constraint in (7.18) guarantees that inequality (7.9) holds, i.e., the indi-274

vidual system is passivity-short and L2 stable. Note that at any instant of time t ,275

the state xi (t) becomes known from the Phasor Measurement Units (PMU) and so is276

matrix Ai (xi ), and hence Ki can be designed adaptively by using available Lyapunov277

function Pi > 0.278

After making the individual system passivity-short and L2 stable, next we consider279

the interconnected system to quantify the impact of nonlinear interconnections on280

subsystem (7.5) in a way parallel to that of εi i‖ui‖2. Specifically, the goal is to281

minimize the transient impacts of the inter-area oscillations encoded in εi j by solving282

the following optimization problem:283

minimize
εi j

∑

j∈N i

αi jεi j

subject to Pi > 0,

M ′
i (xi , y j ) � 0,

εi j , αi j � 0,
∑

j∈N i

αi j = 1,

(7.19)284

where285

M ′
i � Mi −

∑

j∈N i

(
Pi Hi j Ci + CT

i H T
i j Pi − 1

εi j Pi Hi j H T
i j Pi

)
.286
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The second constraint in (7.19) guarantees that the following property holds:287

V̇i � ui
T yi + εi i

2
‖ui‖2 − ρi

2
‖yi‖2 + 1

2

∑

j∈N i

εi j‖y j‖2,288

where the terms εi j‖y j‖2 quantify the impact of nonlinear interconnections on the289

subsystem. Standard techniques to solve Linear or Bilinear Matrix Inequality [51]290

can be readily used to compute the solutions to both optimization problems (7.18)291

and (7.19).292

7.4.2 Mid-level Control Design: Local Coordination Through293

Cyber-Physical Interconnection294

Next, we design local coordination (cooperative) control uli in (7.7) to improve the295

voltage profile of the power system. As a scenario, we consider a distribution network296

divided into several clusters as illustrated in Fig. 7.5. The goal is for the distributed297

generators (DGs) to cooperatively control their reactive power injection such that298

the sum of quadratic voltage errors of the DGs in each cluster is minimized. The299

problem can be formulated as the following optimization problem:300

min
ϑi

∑

i

fi , fi = 1

2
(1 − Ei )

2, (7.20)301

where the control variable are DGs reactive power fair utilization ratios ϑi defined302

as ϑi = Qei /Qei
with Qei

denotes the maximum reactive power available to the i-th303

DG. The reactive power and voltage are coupled through the following power flow304

equation:305

Qei = −E2
i Bii +

∑

k �=i

Ei Ek(Gik sin δik − Bik cos δik).306

In addition, it is also desirable for the DGs in each cluster to contribute equally (i.e.,307

the values ϑi reach a consensus for all DGs) in minimizing (7.20). To this end, the308

communication network is assumed to be bidirectional whose topology is similar to309

that of the distribution network as shown in Fig. 7.4. Cooperative control algorithm310

can then be designed to solve (7.20) as described in Section 7.3. Specifically, each311

DG adjusts its reactive power fair utilization ratio according to312

ϑ̇i = uli =
∑

j∈N c
i

(ϑ j − ϑi ) − βi
∂ fi

∂ϑi
, (7.21)313

where βi > 0 [33]. The first term of update rule (7.21) is a consensus protocol314

which facilitates the equal contribution of DGs into the reactive power generation315
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Fig. 7.4 Architecture of cooperative voltage control for distribution network as proposed in [33]
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Fig. 7.5 A diagram of IEEE 123 bus system divided into six clusters

while the second term corresponds to a (sub)gradient algorithm which minimizes316

the objective function in (7.20). Note that a similar strategy can also be applied to317

distributed frequency control with DGs as presented in [54].318

We evaluate the performance of the cooperative control (7.21) using IEEE 123-bus319

test system divided into six clusters as shown in Fig. 7.5. The objective is to regulate320

the bus voltages in cluster 4 with two photovoltaics installed at buses 76 and 83,321

respectively. The voltage regulation using cooperative control (7.21) is compared322

with the one using droop control where the droop control gain is manually tuned323

to achieve the best performance. Figure 7.6 shows the simulation results under both324

droop control and cooperative control strategies. As can be observed from the figure,325

droop control strategy results in voltage violations, that is, the voltage of the buses326

located far away from the substation exceeds the voltage limit of 1.05 p.u. On the327

other hand, using cooperative control (7.21), the voltage level can be successfully328
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Fig. 7.6 Comparison of
droop control and
cooperative control strategies
for regulating bus voltages in
cluster 4
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driven close to unity, and thus, the overvoltage problem can be eliminated. In addition,329

the cooperative control strategy also yields an equal reactive power fair utilization330

ratio for the DGs as shown in Fig. 7.7.331

7.4.3 High-Level Control Design: Wide-Area Coordination332

The final step is to design network-level control vi in (7.7) to ensure the overall333

system stability and hence to effectively damp out potential inter-area oscillations.334

As discussed in Section 7.3, the design of network-level control depends only on335

properties of individual subsystems, in particular their impact coefficient and L2336

parameter quantified by {εi i , . . . , εi j , . . .} and ρi , respectively. Similar to (7.15), the337

wide-area control vi is given by338
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Fig. 7.8 A three-area power system

vi = kw
yi

∑

j∈N w
i

Sw
i j (y j − yi ), (7.22)339

where matrix Sw = [Sw
i j ] represents the communication network of wide-area con-340

trol. By choosing control gain kw
yi

≈ kw and considering storage function V w =341 ∑
i

γi

kw
Vi , it can be shown by following similar steps as in [44] that system (7.5)342

exponentially converges to the desired output consensus provided that control gain343

kw satisfies344

−kw LT
w�Lw + (�w LT

w + Lw�w) + �

kw

� 0,345

where346

Lw = diag{Sw1} − Sw, � = diag{εi i }, �w = diag{γi }, � = diag{φi },
φi = γiρi −

∑

j

γ jε j i .
347

The proposed wide-area control is evaluated using a three-area power system348

as illustrated in Fig. 7.8. The simulation time is set to 60 s where at t = 0.0 s, a349

speed disturbance � = 0.01 p.u. is added to the system. The wide-area control using350

cooperative control (7.22) is compared with the one using traditional control with351

typical design (constant gain). The simulation results of power angle for generator 3352

for both control strategies are shown in Fig. 7.9. Even though the overall system is353

stable under both control strategies, it can be observed from the simulation results that354

by using the proposed cooperative control strategy, mitigation of the low-frequency355

oscillation (i.e., inter-area oscillation) is considerably improved in comparison to the356

oscillation under traditional control with constant gain. Note that similar results can357

also be observed for the other two generators in the power system.358
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Fig. 7.9 Comparison of power angle for generator 3 under both cooperative wide-area control and
traditional control strategies

7.5 Analysis of Human–Machine Interaction359

Human interactions with the physical systems through the cyber components is a cen-360

tral aspect of cyber-physical-human systems. During the interactions, human may361

act as an operator such as in teleoperation [24] or semiautonomous robot control sys-362

tems [3] in general. On the other hand, human may also perform as players or agents363

in multi-agent systems as can be observed in electricity market [39]. Therefore, it is364

important to formally and rigorously analyze the human–machine interactions (i.e.,365

human-in-the-loop control systems) in order to ensure the stability of the intercon-366

nected systems.367

Dissipativity theory has been used to model the human decision-making and action368

in human–machine interactions due to its effectiveness in dealing with the largely369

unknown human dynamics and its modular design. For example, dissipativity-based370

modeling is developed and validated in [24] to model human arm endpoint charac-371

teristics in a human-teleoperated system. In addition, human–machine interactions372

in semiautonomous robotic swarm is modeled and analyzed in [3] using the concept373

of passivity-short systems. In particular, it is theoretically shown and experimentally374

validated that human-operator modeled in [35] can be assumed to be a passivity-375

short system.376
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Fig. 7.10 Electricity market consisting of multiple areas

7.5.1 Human–Machine Interaction in Electricity Market377

We focus on human as players or agents in multi-agent systems. As an example, we378

consider an electricity market consisting of multiple areas. In the i-th area, there are379

set of consumers, generators, and an independent system operator (ISO) engaged380

in electricity market trading. Specifically, the consumers and generators decide the381

amount of demand and power supply and the ISO uses the information to update382

the electricity price in each area as illustrated in Fig. 7.10. The goal is to maximize383

the profit of each market participant while balancing the supply and demand. The384

problem can be formulated as the following social welfare maximization problem:385

maximize
PL ,PG

W (PL , PG)

subject to PL = PG,

linear equality and inequality constraints,

(7.23)386

where W is the social welfare function which depends on the utility function (i.e.,387

financial satisfaction) of both the consumers and generators, PL , PG are stacks of388

total electricity demand and supply in each area, respectively. Note that the solution389

to (7.23) may serve as the operational decision ri in (7.1), see Fig. 7.2. The inequality390

constraints in (7.23) include upper and lower bounds on demand and supply. If the391

utility function of consumer and generator are strictly concave and convex functions,392

respectively, then optimization (7.23) has a unique solution. The convergence analy-393

sis of market trading to the solution of (7.23) can be viewed as stability analysis of the394

interconnected system of consumers, generators, and ISO as illustrated in Fig. 7.11.395

In particular, dynamics of consumer demand, generator supply decisions and ISO396

price updating in Fig. 7.11 can be obtained by applying dual decomposition to the397

dual problem of (7.23) where its Lagrange multiplier represents the (electricity)398

price [38]. When the power demand curve representing input–output static mapping399

between (positive) price and demand in electricity market is given in Fig. 7.12a, it400

is shown in [39] that each block’s dynamics in Fig. 7.11 is (strictly) passive, and as401
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Fig. 7.11 Electricity market trading system in area l viewed as an interconnected system consisting
of consumers, generators, and ISO
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Fig. 7.12 Power demand curve with a normal (positive) price; b negative price

a result, the interconnected system is also passive and hence stable. This means that402

the market trading system will converge to the optimal solution of (7.23).403

However, the price in electricity market is not always positive especially when404

the number of renewable energy sources feeding into the power grid increases. For405

example, when high and inflexible power generation simultaneously appears and406

followed by low electricity demand, power prices may fall below zero (i.e., negative407

price) as can be often observed in Germany during public holidays such as Christmas.408

This means that power suppliers have to pay their customers to buy electric energy.409

The power demand curve when taking into account the negative price can be illus-410

trated in Fig. 7.12b. Comparing the figure with input–output diagram in Fig. 7.3a,411

it is obvious that dynamics of consumer demand decision system in Fig. 7.11 is412

not passive. It is shown in [38] that under power demand curve given in Fig. 7.12b,413

dynamics of consumer demand and generator supply decision systems in Fig. 7.11414

are passivity-short as can be observed by comparing Figs. 7.3c and 7.12b. As a result,415

stability of the electricity market, i.e., interconnected system can still be guaranteed.416
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The discussions above focus on consumer demand decision dynamics derived417

from the (static) optimization problem (7.23). Another important issue is the analy-418

sis of human decision-making dynamics, that is, how the human responds (in terms419

of electricity demand) to the price change with main application to demand response420

(e.g., dynamic electricity pricing). There have been some efforts in dynamic modeling421

of price-responsive demand in electricity market using real data. For example, empir-422

ical study in [1] using data acquired at ERCOT suggests that (i) demand response423

during normal and peak price periods may have qualitatively different behavior, and424

(ii) there is a demand response delay on a high price surge. From the empirical425

study, we can initially observe that the dynamics of price-responsive demand is not426

a passive system due to the delay of the response. Further analysis is still required to427

investigate whether the dynamics exhibit passivity-short properties.428

7.5.2 Transactive Control429

The above example on electricity (competitive) market is a special case of transactive430

control. Transactive control is a new type of framework to coordinate a large number431

of distributed generations/loads by combining concepts from microeconomic theory432

and control theory [32]. Transactive control extends the concept of demand response433

to both the demand and supply sides whose objective is to balance via incentives434

(pricing) the supply and demand autonomously, in real-time and a decentralized435

manner [46]. In comparison to demand response such as price-responsive control436

and direct load control, transactive control preserves customer privacy and has more437

predictable and reliable aggregated load response. The potential of transactive control438

framework, in particular transactive energy system, has been demonstrated through439

several demonstration projects such as the Olympic Peninsula Demonstration [20]440

and AEP gridSMART demonstration [53]. Moreover, transactive control framework441

has been applied to manage distributed energy resources for different purposes such442

as congestion and voltage management [25, 26], providing spinning reserves [52],443

and residential energy management [37].444

Broadly speaking, transactive control framework can be modeled using four key445

elements as proposed in [32]: payoff functions, control decisions, information, and446

solution concept. Consider a system consisting of (n + 1) agents, that is one coor-447

dinator (agent 0) and n distributed energy resources (DERs) where each DER can448

communicate with each other and also with the coordinator to perform local decision-449

making. Local objective of both coordinator and DERs is represented by a payoff450

function Ui which depends on price μi and energy consumption pi . Each DER aims451

at maximizing its own payoff function formulated as452

maximize Ui (μi , pi ; θi )

subject to hi (pi ; θi ) � 0,
453
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where θi denotes private information of the agent such as preference and local con-454

straints. Similarly, the coordinator aims to solve the following optimization problem:455

maximize U0(μ, p; θ)

subject to g(p, μ; θ) � 0; hi (pi ; θi ) � 0,
456

where p = [p1, . . . , pn]T , μ = [μ1, . . . , μn]T and θ = [θ1, . . . , θn]T . Note that the457

payoff function of coordinator depends on prices and consumption of all DERs.458

Moreover, the coordinator also has a global constraint such as power flow constraint459

in the whole network. Next, to optimize the payoff functions, control decision are460

defined for each agent denoted by πi ∈ �i where �i is the feasible control deci-461

sion of agent i . For example, by taking π0 = μ and πi = pi the payoff functions462

become Ui (πi , π0; θi ) and U0(π0, π1, . . . , πn; θ) which yields a coupling between463

decisions of DERs and coordinator. Another important element in transactive con-464

trol is information set available to each agent, denoted by �i . Information set �i465

consists of private information and information of control decision of each agent.466

Finally, information on control decisions provides a sequence of decision for the467

agents resulting in a multilevel decision problem. Within each layer, if the payoff468

function of each agent does not depend on decisions of other players then the solution469

is simply equal to the optimal solution to the standard optimization problem. On the470

other hand, if the payoff functions of each agent depends on the other agents, then471

we have a game problem whose solution corresponds to the game equilibrium. Two472

basic solution concepts to a game problem are Nash equilibrium (that is a collection473

of decisions from which no agent wants to deviate given that others stick to the equi-474

librium decision) and dominant strategy equilibrium (that is each agent will stick to475

the equilibrium strategy no matter what decisions other players make).476

The four elements described above dictate the class of transactive problems (type477

of games) under consideration. For example, if the agent’s payoff function is quasi-478

linear w.r.t. price and the coordinator’s objective is to minimize the overall operational479

cost while satisfying some constraints, then we have a social maximization problem480

described in the previous subsection. On the other hand, if the payoff function is not481

quasi-linear and the coordinator’s objective is different from maximizing the social482

welfare, we then have a Stackelberg game whose equilibrium computation is very483

challenging [6, 47, 49, 50].484

Research challenges in transactive control include investigating price-response485

behavior of DERs and ensuring convergence of transaction control. For example,486

it is shown in [40] that a simple price strategy may stabilize the power system487

operation. Dissipativity theory provides a framework to systematically analyze this488

complex system as demonstrated in the previous subsection. Further research need489

to be performed to investigate the application of dissipativity theory for analyzing490

different transactive control problems.491
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7.6 Role of Real-Time Big Data and Decision-Making492

The hierarchical control/optimization architecture presented in the previous subsec-493

tions relies on real-time big data. Rapid development of sensor, wireless transmission,494

network communication technologies, smart devices, and cloud computing makes495

it possible to collect large amounts of data in real time. To illustrate further this496

point, let us take a smart grid as an example. The main data source in smart grid is497

the advanced metering infrastructure (AMI) which deploys a large number of smart498

meters at the end-user side and collects, e.g., customers’ electricity consumption499

data every 15 min [28, 56]. It is estimated that the amount of data collected by AMI500

will increase from 24 million a year to 220 million per day for a large utility com-501

pany [56]. Moreover, the volume of data collected every 15 mins in a distribution502

network using 1 million devices will surge up to 2920 Tb [31]. In addition to AMI,503

PMUs are able to produce direct time-stamped voltage/current magnitudes and phase504

angle with sampling rate 30–60 samples per second, which is much faster than the505

data collection in Supervisory Control and Data Acquisition (SCADA) system [7].506

As an illustration, the amount of data per day generated by100 PMUs with 20 mea-507

surements and at the sampling rate of 60 Hz is equal to 100 GB [30]. Other sources of508

big data in smart grid include weather data, mobile data, thermal sensing data, energy509

database, electric vehicle data, transmission line sensor, and dynamic pricing [56].510

The increase of uncertainty (e.g., due to the high renewable energy penetration)511

and tight interconnection between and within the layers calls for real-time process-512

ing and decision-making. To this end, big data can be utilized for developing novel513

real-time learning, optimization, and decision-making (control) algorithms for cyber-514

physical-human systems as illustrated in the previous sections. For example, big data515

has many applications in the operation of smart grid [48]. A new algorithms using516

PMU data is proposed in [8] to accelerate the state estimation process. Moreover, a517

PMU based robust estimation method is presented in [55] to eliminate unwanted per-518

turbed data and thus increases the robustness of state estimation algorithm. Big data519

can also be used for fault detection and classification in micro-grid leading to a much520

better performance compared to model-based approach [36]. AMI and other sensors521

provide opportunity to realize line impedance calibration (i.e., parameters) for distri-522

bution power system which was not possible previously [41]. Weather data can also523

be used for predicting the power generation of renewable energy sources such as wind524

turbines which further can be utilized for voltage control and demand response [19].525

Furthermore, with the exponentially increasing number of PMUs deployed, and the526

resulting explosion in data volume, wide-area measurement systems (WAMS) tech-527

nology as the key to guaranteeing stability, reliability, situational awareness, state528

estimation, and control of next-generation power systems is bound to transcend from529

centralized to a distributed architecture within the next few years. Motivated by this530

fact, a distributed optimization based learning algorithm is proposed in [10] for one531

of the most critical wide-area monitoring applications—namely, estimation of mode532

shapes for inter-area oscillation modes.533
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The exposure to external network such as Internet comes at a price of data security534

and privacy [29, 34]. Cyber incidents or network intrusion may cause physical dam-535

age to the physical system due to the tight coupling between the physical system and536

the cyber-layer. Unfortunately, traditional security solutions in the ICT (information537

and communications technology) domain are not sufficient to ensure security and538

resilience of the network since they do not take into account the physical attacks539

through direct interaction with the components in physical systems. For example, by540

placing a shunt around a meter the integrity of a meter can be violated without the541

need of breaking the cybersecurity countermeasure. They may also introduce adverse542

effects on the operation of CPS. For example, while cryptography can enhance the543

confidentiality of data flows, it may result in unacceptable time latency and degrade544

the performance of time-critical functionalities in CPS. Moreover, coordinated net-545

work attacks by sophisticated adversaries undermine standard residual based detec-546

tion schemes. It is discussed in [13, 14] that control theoretic framework together547

with recent advancement in cloud computing and network management (e.g., soft-548

ware defined networking) show promises in ensuring the resilient operation of CPS549

against (coordinated and intelligent) cyberattacks.550

7.7 Conclusion551

The chapter presents a scalable and modular control-theoretical framework to model,552

analyze, optimize, and control cyber-physical-human systems. It is shown that effi-553

cient computational algorithms can be applied hierarchically to operate and optimize554

cyber-physical-human systems, first individually to quantify the dynamic behavior of555

every agent, then locally to describe the local interactions of neighboring agents, and556

finally to the overall system. All the three control levels deal with real-time big data,557

and the hierarchical structure makes the overall optimization and control problem558

scalable and solvable. In particular, we present and highlight two main tools whose559

combination shows a great promise to optimize and control such tightly intercon-560

nected system. The first tool is the concept of dissipativity theory which is a useful561

way of quantifying input–output properties of dynamical systems and whose com-562

positional property makes it a powerful tool to analyze and control CPS. The second563

tool is cooperative control which allows the designer to develop a scalable and robust564

optimization and control algorithms. Application to power system is investigated as565

an illustrative example.566
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