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EXECUTIVE SUMMARY 
The Pahute Mesa Corrective Action Unit on the Nevada National Security Site 

(NNSS) contains several fractured aquifers that can potentially provide high-permeability 
pathways for radionuclides to migrate away from underground nuclear testing locations. 
Although the geometric properties of fractures, such as length and orientation, can be found 
using geophysical methods and borehole image analyses, the hydraulic property of fractures 
(which are primarily influenced by apertures) are often unknown or have a high degree of 
uncertainty attached to their values. The aperture values have a profound impact on 
groundwater velocity and are critical to understanding transport scales at Pahute Mesa. 
Fracture aperture values and their distributions also have dominant control over radionuclide 
transport with potential for long-range correlations or scale-invariant dynamics. 
Understanding of the small-scale transport variability in fractures could lead to identification 
of distinct characteristics on larger scales. Furthermore, upscaling techniques need to be 
developed to adequately predict transport behavior at field scales by capturing the transport 
trends of smaller scale networks. This report explores these vital modeling needs to 
understand the role of fractures in Pahute Mesa. Discrete fracture network (DFN) models are 
the basis for constructing a well-calibrated model to ascertain aperture values of fractures in 
lava-flow aquifers. These models are also used to develop and compare the usefulness of 
several random-walk-based models to perform transport upscaling.        

Discrete fracture network approaches were designed to capture the high degree of 
heterogeneity that fractures impart on a flow system, particularly with respect to very broad 
ranges in fluid flow and solute transport behavior. By solving for flow and transport in 
individual elements of a fracture network, DFN approaches have an advantage over 
traditional methods of assigning an upscaled equivalent conductivity tensor and porosity to 
continuum grid cells because the local density of fracture networks is rarely high enough to 
satisfy the representative elementary volume criterion. This study used two-dimensional 
DFN models as the basis for developing random-walk-based upscaling techniques for 
fractured rocks. The random walk method provided a framework for modeling non-Fickian 
transport through fracture networks by using probability distributions to generate particle 
jump lengths and residence times spanning multiple orders of magnitude. The Markov-
directed random walk (MDRW), Monte Carlo solution of the Boltzmann transport equation 
(BTE), and spatial Markov model (SMM) were used to explicitly compare the predictive 
capability of these models in a variety of scenarios. These upscaling methods were applied in 
both correlated and uncorrelated forms. For DFNs with low heterogeneity in fracture 
transmissivity, accounting for correlation generally leads to less accurate predictions. 
However, as the fracture transmissivity distribution widens, preferential pathways  
form and correlating the modeling steps becomes important, particularly for early 
breakthrough predictions.  

The three-dimensional DFN code, dfnWorks, was used to develop a calibrated model 
(using fracture aperture as the calibration tool) for the lava-flow aquifer at the site of the 
BULLION forced-gradient experiment (FGE). This experiment injected and pumped tracers 
from a system of three wells to obtain site-specific information about radionuclide transport 
in fractured rock aquifers at Pahute Mesa in Area 20 of the NNSS. A well package was 
developed for dfnWorks to develop a high-fidelity model for the BULLION FGE. Six  
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parameters were introduced to define a well and the connectivity between the well and 
fracture network. Additionally, the particle tracking code in dfnWorks was modified to track 
particles to a pumping well.  

Verification of the well package against MODFLOW and MODPATH found an 
excellent match in simulated hydraulic head and particle tracking. By integrating the well 
package with dfnWorks, multiple conceptual models were developed to simulate flow and 
transport in subsurface fractured rocks downgradient from the BULLION test. The model 
domain included the three tracer-test wells of the BULLION FGE and the Pahute Mesa lava-
flow aquifer. The model scenarios considered differed from each other in terms of boundary 
conditions and fracture aperture conceptualizations. For each conceptual model, a number of 
statistically equivalent fracture network realizations were generated using data from fracture 
characterization studies. The aperture values in each model were estimated by performing 
model calibration. Calibrating the DFN model to hydraulic drawdown data limited the range 
of aperture values. These ranges were further constrained when the DFN models were 
calibrated to tracer breakthrough data using postprocessors to numerically include the effects 
of dispersion and matrix diffusion. The fracture aperture values resulting from this study will 
enhance our understanding of radionuclide transport in fractured rocks and support the 
development of improved large-scale flow and transport models in Pahute Mesa. 
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INTRODUCTION 
Fracture aperture has immense influence on flow and transport, and therefore 

reducing its uncertainty is key to developing a model that accurately describes groundwater 
velocity. The difficulty of establishing representative elementary volume is that fractured 
rocks, particularly in case of sparse to moderately dense networks, also necessitate the 
development of upscaling methodologies to successfully capture trends at smaller scales that 
can be used to predict behavior at larger scales. This report documents the development and 
application of two-dimensional (2-D) and three-dimensional (3-D) discrete fracture network 
(DFN) models using both site-specific fracture attributes from Western Pahute Mesa (WPM) 
and generic networks to study techniques for upscaling transport and calibrating DFN models 
with respect to observed field data. Fracture aperture was used as a calibration tool in the 
DFN models, which resulted in a more realistic and less uncertain measure of this important 
network property.  

Groundwater flow and transport within Pahute Mesa are largely dictated by the highly 
variable hydraulic properties of the volcanic rock within the area. The eruption and cooling 
patterns, degree of welding, and pervasiveness of primary and secondary fracturing 
determine these properties. Ash-flow tuff is prevalent in many of the volcanic rock aquifers 
in the northern portion of the Nevada National Security Site (NNSS). These units have a high 
tendency of fracturing and can form well-connected fracture networks if they are densely 
welded (Fenelon et al., 2010). As depositional welding increases between volcanic rocks, 
there is a reduction in bulk porosity but an increase in fracture permeability and connectivity. 
Complex stratigraphic sequences are produced and welded zones form between nonwelded 
segments. Partially/nonwelded tuff that has undergone burial in saturated conditions 
normally has a lower permeability and less extensive fracturing, which creates a volcanic 
confining unit (Drellack et al., 1997)). Because of the layering nature of the volcanic rocks, 
highly conductive units are often interbedded with less conductive units in an alternating 
pattern with frequent stratigraphic juxtapositions along faults (Fenelon et al., 2010). 
Rhyolitic lava-flow units are also found in Pahute Mesa as a caldera-filling unit and are 
characterized by a wide range of transmissivities and water yield potentials. Both lava-flow 
and partially to densely welded ash-flow tuffs often form aquifers because of their tendency 
to form highly permeable and connected fracture networks. These extensively layered 
volcanic aquifer systems may preclude the vertical flow of water and contaminants between 
units, resulting in a largely horizontal transport for each layer. 

In fractured geologic media, fractures (e.g., joints, faults, and veins) and fracture 
networks are often complex because of their naturally occurring discontinuities. Therefore, 
they are the principal pathways for fluids. Fractures are spatially discontinuous features that 
exhibit strong variability in geometric and hydraulic properties. This variability is a result of 
the complex interplay between current and past stress fields, rock mechanical properties (i.e., 
Young’s modulus and Poisson’s ratio), mechanical fracture interactions, and distributions of 
flaws or weakness in a rock mass. Fractures provide the bulk of transport for contaminants in 
many geologic formations. Movement of contaminants in fracture networks is often 
characterized by the presence of preferential pathways along which the plume moves rapidly. 
The linear motion of contaminants along fracture segments and their residence time in a 
fracture network depend on both the fluid flow and the fracture network characteristics 
(Reeves et al., 2008). The combination of randomly varying fracture attributes spread over 
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several orders of magnitude gives rise to a flow field, which is highly heterogeneous and 
anisotropic. Therefore, the resulting plume geometry can form highly variable shapes that are 
dramatically different from the ones observed in homogeneous porous media systems. 

The traditional advection-dispersion equation (ADE) was derived for transport in a 
relatively homogeneous geologic media that facilitates the dispersive growth described by 
Fick’s Law (Bear, 1972). In the case of a fractured media in which transport is driven by a 
heterogeneous and anisotropic permeability field, the classical ADE is often found to be 
inadequate in capturing the dynamics of contaminant migration (Schumer et al., 2001). In 
many cases, solute particles will move at a super-Fickian rate, meaning that the dispersive 
growth of the plume will be faster than the linear rate of growth of variance with respect to 
time as predicted by the classical ADE model (Elfeki et al., 1997). In a homogeneous 
geologic media, solute particles make short jumps in random directions guided by the flow 
field in a process akin to the Brownian motion, altering their path as they come in contact 
with the surrounding environment. In fractured rocks, the jump length (the linear motion 
along a single fracture) experienced by migrating particles may span multiple orders of 
magnitude. Therefore, the transport process in fractured media becomes more complex not 
only because of the large variations in length of the forward linear motions, but also because 
of the rate at which those motions occur.  

Fractured rock masses are typically characterized during field campaigns that 
measure fracture attributes from a number of sources, such as boreholes, rock outcrops, road 
cuts, and tunnel complexes. Seismic techniques can also be used to image fault structures in 
the subsurface. Hydraulic properties of fractured media can be either inferred from the 
fracture aperture or hydraulic tests performed on boreholes. Fracture length, density, 
orientation, aperture, and connectivity are all needed to construct an accurate representation 
of a fracture network in transport models (Parashar and Reeves, 2012). The distribution of 
fracture length is a factor that has a strong influence on the connectivity of a network 
(Wellman et al., 2009). Fracture lengths provide a control on the uninterrupted jump distance 
experienced by a particle moving through the system. Therefore, longer fractures tend to 
provide proportionally longer travel times than shorter fractures when transmissivity and 
aperture are constant (Darcel et al., 2003; Reeves et al., 2012). 

The fracture density of a network denotes the total length of all fracture segments in a 
given area. Increasing the fracture density increases connectivity in the network and the 
migrating particles tend to sample a higher number of fractures, resulting in transport that is 
more similar to that of movement through homogenous media. Variation in fracture density 
from a very sparse to highly dense network tends to have a nonmonotonous effect on particle 
arrival times. A sparse network may result in long arrival times because shorter pathways to 
the domain boundaries are often not available. A highly dense network may also result in 
long arrival times because of the many tortuous pathways that connect the source location to 
the domain boundary. This also affects the plume geometry and the amount of spreading 
because the fractures sampled by the particles play a key role in determining the relative 
distances between the particles as time progresses and the rate at which they converge or 
diverge in space (Smith and Schwartz, 1984; National Research Council, 1996; Darcel et al., 
2003). It is only at an extremely high fracture density that particles travelling through the 
network will experience enough unresolved heterogeneities that the transport pattern and 
plume growth rate will begin to resemble movement through a homogeneous medium. 
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Aperture is the characteristic length between two walls of a fracture. A larger aperture 
allows for a higher volume of fluid flow to occur through a particular segment of the 
network, whereas a smaller aperture restricts the occurrence of flow through a segment of the 
network (Smith and Schwartz, 1984).  

The orientation of a fracture is represented by its dip and strike angle in three 
dimensions and by the angle the fracture trace lengths make with the axis of reference in two 
dimensions. Fractures in a given set are typically grouped around a mean orientation with 
some amount of dispersion to represent variability about the mean. Less dispersion around 
the mean orientation results in a more uniform fracture ensemble (i.e., a higher number of 
fractures closer to the mean orientation) and can either decrease or increase arrival times 
depending on the relation of the fracture orientation with the hydraulic gradient. More 
dispersion in the distribution of angles typically leads to larger spread in the plume geometry 
in sparsely to intermediately dense networks (Rouleau and Gale, 1985; Wellman et al., 2009; 
Reeves et al., 2012). 

Of the approaches to solve for flow and transport through fractured rocks (Sahimi, 
2011; Hadgu et al., 2017), DFN modeling has advanced significantly with the increase in 
computational power and the wide availability of high-performance computing systems. The 
DFN explicitly represents individual fractures. It assumes the rock matrix is impermeable 
and fluid flow can only occur through a connected fracture network (Cacas et al., 1990a,b; 
Dershowitz et al., 1993; Erhel et al., 2009; Pichot et al., 2012; de Dreuzy et al., 2012; 
Parashar and Reeves, 2012; Reeves et al., 2013; Hyman et al., 2015a; Huang et al., 2016). 
By including a detailed geometric representation of the connectivity structure in a network, 
DFN models allow for more accurate predictive simulations of flow and transport through 
fractured rocks. Discrete fracture network approaches are favored in mechanistic studies 
because the local density of fracture networks is rarely sufficient for the representative 
elementary volume criterion to be satisfied, and traditional approaches of assigning an 
equivalent conductivity tensor and porosity to continuum grid cells tend to overly 
homogenize the representation of networks (Berkowitz, 2002; Hagdu et al., 2017; Neuman, 
2005, 2008; Klimczak et al., 2010). Despite their high computational expense, DFN 
simulations produce realistic distributions of velocity that result from multiscale 
heterogeneity and fracture connectivity that often manifest as rapid transport in longer, 
highly connected fracture segments and retention in weakly connected fractures. Using DFNs 
to develop high-fidelity models for fractured rocks is supported by several studies that have 
successfully linked fracture network attributes to fluid flow and solute transport behavior 
(Smith and Schwartz, 1984; Reeves et al., 2008b,c, 2014; Zhang et al., 2013; Kang et al., 
2015a; Parashar and Reeves, 2017).  

DFN METHODS FOR 2-D AND 3-D MODELS 
The DFN models were constructed by incrementally adding fractures with random 

attributes (e.g., orientation, length, aperture, and location) to a network until a specified 
density criterion was reached. Models included both deterministic and stochastic features, 
and the process consisted of selecting the length values and orientations from separate, 
specified distributions. This section provides a brief summary of Desert Research Institute’s 
(DRI) in-house 2-D DFN code and the 3-D DFN suite of software, dfnWorks, developed at 
the Los Alamos National Laboratory (LANL). A well package was developed at DRI for 
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dfnWorks, the details of which are also provided in this section. The 2-D DFN models, less 
computationally intensive than the 3-D models, allows for construction of large scale models 
and hence are used in this study to explore development of upscaling techniques for fractured 
media. The 3-D models on the other hand are used in this study to understand dynamics of 
flow and transport at more limited scale where the accuracy of predictions and investigation 
of the influence of various parameters on flow and transport simulations justifies the higher 
computational cost.  

2-D DFN 
The 2-D DFN flow and transport computation and fracture mapping code was 

developed at DRI during a previous project supported by the Department of Energy (DOE) at 
the NNSS (Reeves et al., 2014). The code was reviewed by Underground Test Area (UGTA) 
participants for: (1) correctness of equations algorithms and numerical solution techniques, 
(2) conformance of methods to accepted/published concepts, (3) code functional 
requirements and verification, (4) test problems and acceptance criteria, and (5) 
documentation to ensure proper installation.  

There are a number of inputs to the DFN code that allow the user to create network 
length characteristics through fracture generation. One of these inputs is the length of the 
initial fractures themselves. The input of a minimum fracture length allows the user to 
condition the smallest sizing of the initial fractures. Fractures can be stochastically generated 
until a user-designated network density threshold is reached. For a 2-D network, this is 
defined as the total length of all fractures divided by the domain area (Parashar and Reeves, 
2012). Using a seed number to initialize the random variates for each run allows the program 
to recreate a statistically similar network for a set of conditions. Once the raw fracture file is 
generated, further geometric analyses can be conducted to determine the number of times a 
fracture is intersected by other fractures in the network, and the corresponding distribution of 
segment lengths. The code is also designed to scan the network for clusters, individual 
fractures that are unconnected to the rest of the networks, and dead-end portions. Figure 1 
shows a process that removes these isolated fractures to help extract the connected portion of 
the network.  

     (a)     (b) 

  
Figure 1. (a) A fracture network on a 100 m2 size domain and (b) the connected portion of network 

after deleting isolated features and dead ends.  
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The DFN models are computationally intensive and the central feature of the code is 
computation of flow in fracture segments, which results in a set of N linear algebraic 
equations of hydraulic head h (N being the total number of points at which two fractures 
intersect). The equations are cast in matrix form , where A is an N x N diagonally 
dominant sparse matrix representing the connectedness of internal nodes, X is the vector of 
unknowns (the value of hydraulic head at the internal nodes), and B is the known vector 
defining the connection between the boundary nodes and the internal nodes. The sparsity 
pattern of the coefficient matrix is irregular and it is not unreasonable to expect that more 
than 99.9 percent of the matrix elements equal zero for a moderately sized network (see 
Figure 2). The eigenvalues of such matrices are spread over several orders and lack the 
clustering necessary for the fast convergence of iterative techniques for linear systems 
(Parashar and Reeves, 2012). The matrices are iteratively solved using either a biconjugate 
gradient solver or a minimum-residual method for sparse matrices. These methods are part of 
Krylov subspace’s Lacoz biorthogonalization methods, the details of which can be found in 
advance linear algebra texts. Figure 3 shows the verification check for the biconjugate 
gradient solver in the 2-D DFN code by comparing the solution obtained from the coded 
subroutine to the solution obtained using MATLAB.  

 

 
Figure 2. Location of nonzero elements is shown by solid dots in visual representation of the 

sparsity pattern of a coefficient matrix of size 5340 (99.92 percent elements are zero).  

BAX =
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Figure 3. Comparison between MATLAB and 2-D DFN code solutions for a linear system 

consisting of 586 fracture intersection points. 

 

3-D DFN: dfnWorks 
The computational suite dfnWorks (Hyman et al., 2015a) is a state-of-the-art DFN 

simulator that solves for fluid flow and Lagrangian solute transport within complex, 3-D 
fracture networks. dfnWorks has three modules: dfnGen, dfnFlow, and dfnTrans. dfnGen 
stochastically generates 3-D DFNs, removes isolated fractures using the feature rejection 
algorithm for meshing (FRAM) (Hyman et al., 2014), and creates high-quality conforming 
Delaunay triangular meshes on the generated DFNs using the LaGriT meshing toolbox 
(George et al., 1999). Near fracture intersections, the mesh is refined to allow for smooth and 
accurate representation of high-pressure gradients and sharp velocity contrasts. Discretization 
of the mesh coarsens farther away from fracture intersections to reduce computational costs. 
Once a network is constructed and meshed, the dfnFlow module solves for steady-state or 
transient saturated flow conditions using the massively parallel, open-source, subsurface flow 
and reactive transport finite volume code PFLOTRAN (Lichtner et al., 2015). dfnTrans, an 
extension of the Walkabout particle tracking method (Painter, 2011; Painter et al., 2012; 
Makedonska et al., 2015), is used to determine pathlines through the DFN and simulate 
solute transport. The dfnWorks suite has been successfully applied in the areas of nuclear 
waste repository science, hydraulic fracturing, and CO2 sequestration (Hyman et al., 2015b, 
2016; Karra et al., 2015; O’Malley et al., 2015; Makedonska et al., 2016; Hyman and 
Jiménez‐Martínez, 2018; Hyman et al., 2018). The entire workflow of dfnWorks 1.0 was 
validated in Hyman et al. (2015a).  
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In its current form, dfnWorks does not include a well package. Therefore, this study 
developed a method to represent wells in 3-D DFN models and applied it to site-specific 
models. The method was validated against numerical solutions using MODFLOW 
(Harbaugh, 2005), MODPATH (Pollock, 2012), and three hypothetical examples. The details 
of this well package are provided below. 

Representation of a Well in 3-D DFN 
In DFN models, fractures are randomly generated and placed in the model domain. 

The volume of fractures is often very small compared with the volume of the rock matrix. As 
a result, computational cells on a planar fracture may not be available at the necessary 
location to represent a well (Figure 4a, Well 1 has no intersections with the fracture 
backbone). Furthermore, fracture planes may only represent a small portion of the well 
screen (Figure 4a, Well 2 only intersects one fracture in the well screen interval). This study 
introduced a conceptualization that used two rectangular fractures to represent a well in a  
3-D DFN model, as shown in Figure 4. Alternative conceptualization of wells such as line 
elements (2-noded elements) are not amenable for integration with a finite elements based 
code such as dfnWorks. The two fractures were orthogonal and of equal width and length. 
Additional parameters used to define a well included: (1) well screen top (ztop), the top of the 
open, saturated well-screen interval equals the top of the two fractures (note that unsaturated 
conditions cannot be simulated here as the cubic law requires the void space between fracture 
walls to be completely filled by water); (2) well screen bottom (zbot), the bottom of the open 
well-screen interval equals the bottom of the two fractures; (3) well radius (rw), the distance 
from the center of the well to the inner edge of the well casing (as shown in Figure 4b), 
which is always kept equal to the actual well radius; and (4) the permeability of the well 
screen (kw). The area defined by ztop, zbot, and rw represents the well screen. The first three 
well parameters were determined based on well construction diagrams. The last parameter 
was used to assign high permeability to the well screen. Because the permeability of well-
sorted gravel can be as high as 10−7 m2 (Bear, 1988), this study assigned 710wk −=  m2 to 
allow free movement of water in the well screen area. The purpose of this conceptualization 
was to model a typical water well that had well casing and well screens with packing material 
in the annular space between the well screen and the borehole wall. For a well without well 
screens, ztop can be equal to the top of the saturated borehole and zbot can be equal to the 
bottom of the borehole. 
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Figure 4. Illustration of a well in a 3-D DFN model that shows: (a) intersections between the well 

and fractures, (b) the plan view of the well, and (c) the 3-D view of the well intersected 
by one horizontal fracture. Blue solid lines show the Delaunay triangulations. The mesh 
is coarsened as the distance from the well center increases. 
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In reality, a water well often has a small diameter (on the order of inches). However, 
small well diameters run the risk of having no intersection between a well and fractures in  
the DFNs. Additionally, a small well diameter requires an extremely small cell size in 
discretizing the well screen. As a result, dfnWorks may fail to converge when simulating a 
pumping well and resolving flux and hydraulic gradient over very small lengths. To 
overcome these issues, this study introduced two nonphysical parameters (i.e., a parameter 
not related to the physical design of the borehole or screen interval) to define a well. The first 
parameter was the well skin radius (rs), which is the distance from the axis of the well to the 
outer edge of the skin zone. The term ‘skin zone’ here should not be confused with the 
physical zone of enhanced or reduced permeability around a borehole formed during the 
completion of a well. The term ‘skin zone’ is an artificial construct here (without any 
connection to a physically measureable quantity) intended to be carefully adjusted in 
simulations to provide desired level of connection between a well and the rest of the fracture 
network. This parameter controls the connection between a well and fracture backbones, and 
it can be increased to enhance the connectivity. The well skin radius needs to be large enough 
to allow at least one intersection between the well and fracture backbones. Using too small of 
rs may lead to no intersections, or a small number of intersections between the well and the 
surrounding fractures. Using too large of rs may lead to an overestimation of intersections. 
Therefore, it is best to constrain this value to observed fracture intensity, P10 (i.e., the number 
of fractures per unit length of borehole), where possible. The second parameter is well skin 
permeability (ks), which represents the permeability of the area around a well screen. In 
practice, this parameter would mainly depend on the permeability of rock matrix, drilling 
equipment, and drilling methods. The well skin permeability is difficult to measure. A good 
starting point to fix the value of well skin permeability in DFN simulations is to make it 
equal to the value of the rock matrix permeability. The well skin radius and the well skin 
permeability are the most important components of this well package because they provide 
the necessary connection between a well and the fractured aquifer.  

Computational issues may arise from using rectangular orthogonal fractures to 
represent the well radius, rw. The DFN models assume that the rock matrix is impermeable 
and often ignore tiny fractures (submeter scale) to stay within computational constraints. In 
reality, rock matrix does conduct flow (albeit small), and tiny fractures do play a role in 
defining connectivity between a well and the fracture backbones. The roles of rock matrix 
and tiny fractures are especially important near pumping wells because the large head 
gradient can induce a significant amount of flow. In our conceptual model, the well skin zone 
was a substitute for the rock matrix and tiny fractures.  
Method Implementation in dfnWorks 

Defining two orthogonal rectangular fractures in dfnWorks is straightforward. Two 
additional tasks to successfully integrate a well in dfnWorks are: (1) to identify cells that 
represent a well and (2) to assign a pumping rate for each cell in the well zone.  

For the first task, LaGriT was used to identify the model cells that represented the 
well screen and the well skin zone in the same way that dfnWorks identifies boundary cells. 
The file “lagrit_scripts.py” in dfnWorks was modified to include this enhancement. Figure 4c 
shows the discretization of the well screen into multiple finite element cells. Total volumetric 
flow rate of a pumping well is: 
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 (1) 

where n is the total number of model cells representing the well screen, i is the index, and Qi 
is the flow at the ith cell of the well screen. For the second task, a built-in function in 
PFLOTRAN was used to assign a flow rate for a pumping well. Depending on which scaling 
options are selected, the total volumetric flow rate of a pumping well can be allocated for the 
pumping cells as: (1) a function of cell volume and permeability, (2) a function of the 
interfacial area and permeability of neighboring cells, and (3) a function of cell volume. 
Therefore, a pumping cell that has a large cell volume, high permeability, and/or large 
interfacial area of neighboring cells will be assigned a higher pumping rate. Because the 
permeability values assigned to all pumping cells are the same in our method, Option 1 is 
equivalent to Option 3. Option 2 is recommended when there is a significant difference in the 
permeability between ks and kw. Injection wells can be simulated in the same way as pumping 
wells, except that the flow rate is positive instead of negative.  

Tracking particles to a pumping well was modified in dfnWorks such that if any 
particles at any time intersected the well screen (i.e., the horizontal distance between a 
particle and pumping well is less than or equal to rw), they were removed from the system 
and the particle tracking for that particle ends. dfnWorks outputs flow solutions at all model 
cells in terms of hydrostatic pressures. This study developed a code to convert pressure 
values into hydraulic head because hydraulic head data are widely available for model 
calibration in groundwater modeling studies. Three dfnWorks source files (i.e., 
lagrit_scripts.py, flow.py, and TrackingPart1.c) were modified in this study to incorporate 
wells and track particles to a pumping well. Several new parameters were added to the input 
files of dfnWorks. To access the well package, a user would need to update these files before 
installing dfnWorks 2.0. 
Verification of the Method 

The proposed method was verified against U.S. Geological Survey (USGS) 
MODFLOW (Harbaugh, 2005) and MODPATH (Pollock, 2012) models. MODFLOW 
simulates groundwater flow through porous media using the equivalent porous medium 
(EPM) modeling approach. However, it can be used to design a numerical test to verify the 
methods and codes introduced, such as a system of two parallel rectangular fractures with a 
pumping well in the center. Fractures can be represented by a microscale-layer-thickness 
model and the impermeable rock matrix around the fractures can be represented as aquitards. 
MODPATH is a particle-tracking, postprocessing program that computes 3-D flow paths 
using output from MODFLOW. The verification focused on the accuracy of the hydraulic 
head simulations (excluding the heads at the location of the well) and tracking particles 
into a well.  

dfnWorks was used to create a simple DFN model with two deterministic rectangular 
fractures in a model domain of 100 m × 100 m × 10 m. The fractures were 100 m × 100 m, 
placed in the horizontal plane, and crosscut four sides of the model domain. The fracture 
apertures were fixed at 200 × 10−6 m. The well screen intervals were 10 m and spanned the 
entire domain thickness. The pumping well was placed in the middle and constant hydraulic 
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heads were assigned at the four sides of the model domain. The top and bottom of the model 
domain were assigned no-flow boundary conditions. Particles were released uniformly at the 
left of the model domain, on the edge of each fracture. 

This DFN model can be interpreted as an EPM model that includes five model layers. 
Layers 1, 3, and 5 are aquitards that represent impermeable rock matrix. Layers 2 and 4 are 
aquifers that represent the two fractures with the aquifer thickness equal to the fracture 
aperture. For the flow model, the layer property flow (LPF) package in MODFLOW was 
used to specify properties controlling flow between cells. The time-variant specified head 
(constant head boundary [CHB]) package was used to assign constant heads for all cells on 
the side boundaries. The well was represented by two model cells, one in Layer 2 and the 
other in Layer 4, and simulated using the WEL Package. MODPATH (Pollock, 2012) was 
used to track the movement of conservative particles to the pumping well. 

The cubic law (Witherspoon et al., 1980) was used to relate fracture aperture to 
fracture hydraulic conductivity: 

𝐾𝐾𝑓𝑓 =
𝑏𝑏2𝜌𝜌𝜌𝜌
12𝜇𝜇

 (2) 

where Kf is fracture hydraulic conductivity, a is fracture aperture, ρ is the water density, g is 
the acceleration because of gravity, and µ is the dynamic viscosity. Using b = 200x10−6 m, 

997.16ρ =  kg/m3, 9.81g =  (m/s2), and 48.9 10µ −= ×  kg/(m.s) at 250C resulted in 
Kf  = 3,163 m/day. By rearranging Equation 2 and using the relation of hydraulic conductivity 
to permeability, the fracture permeability is 2 9/ 12 3.33 10bκ −= = × m2. 

dfnWorks and MODFLOW were run in steady state and particle travel times were 
grouped into one-hour increments. The simulated hydraulic heads (Figure 5a) and 
breakthrough curves (BTCs) showed a perfect match at the pumping well (Figure 5b). This 
verified the successful implementation of the proposed method in dfnWorks.  
 

 

Figure 5. Comparison of simulation results of dfnWorks and MODFLOW and MODPATH for (a) 
simulated hydraulic heads (in meters) and (b) simulated BTCs at the pumping well. 
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The following section uses three hypothetical examples to investigate: (1) how to 
assign well skin radius and permeability values, and (2) determine the influence of these two 
parameters on transport simulations. 
Examples to Demonstrate Method Application 

Examples 1 and 2 use deterministic DFNs (which are different from the stochastic 
DFN used in Example 3) to investigate questions about the well skin radius and permeability 
given different model domain sizes. For Example 1, a DFN model was created using four 
deterministic rectangular fractures in a cubic model domain of 100 m in each dimension. Of 
these fractures, three were in the horizontal direction and one was in the vertical direction 
(Figure 6). All four fractures were 100 m × 100 m and crosscut four sides of the model 
domain. Two wells were placed at different depths within the model domain. The injection 
well was placed at x = −25 m, y = 0 m and the pumping well was placed at x = 25 m, y = 0 m. 
The well screens were 10 m long and located from z = −25 m for the pumping well and to  
z = 25 m for the injection well. Constant hydraulic heads were assigned to the four sides of 
the model domain. The top and the bottom of the model domain were assigned no-flow 
boundary conditions. Pumping rates were scaled by cell volume, which means that the 
assigned pumping rate of 10−4 m3/s was proportionally distributed among the pumping cells 
based on the cell volumes. For Example 2, a DFN similar to the one in Example 1 was 
generated, except the model domain was 500 m × 500 m × 100 m; the injection well was 
placed at x = −250 m, y = 0 m; and the pumping well was placed at x = 250 m, y = 0 m.  

Example 3 was inspired by a case study at the BULLION forced-gradient experiment 
(FGE) (IT Corporation, 1998; Reimus and Haga, 1999) with the hope that the method would 
mimic a tracer experiment in fractured geologic media. The BULLION FGE was a tracer 
experiment designed to obtain site-specific information about the transport of radionuclides 
in saturated fractured volcanic rock at Pahute Mesa in Area 20 of the NNSS. Three wells 
were installed downgradient from the location of the BULLION test. The well farthest from 
the test was pumped to produce a hydraulic gradient while tracers were injected into the other 
two wells. The model domain was 250 m × 250 m × 100 m in which fractures were 
uniformly distributed with random dip and random strike. Fracture sizes followed a  
truncated power law distribution with a power law exponent of 2.5 and had minimum and 
maximum sizes of 2 m and 500 m, respectively. The boundary conditions were the same as 
Example 1. In the steady-state condition (before pumping), a hydraulic head of 250 m was 
applied to the bottom face, which was converted to the equivalent hydrostatic pressure of 
2.446 × 106 pascal (Pa). Three wells were placed inside the model domain to represent the 
injection well (Wel-01), the monitoring well (Wel-02), and the pumping well (Wel-03). The 
well screens were 20 m long and located from z = −10 m to z = 10 m. Table 1 provides more 
information on the three examples. 

dfnWorks was used to generate fracture networks, and then simulate steady-state 
pressure. The codes developed in this study were used to simulate hydraulic heads and 
perform particle tracking to a pumping well. The results were analyzed with respect to 
simulated hydraulic heads, water balance, particle pathlines, and simulated 
breakthrough curves. 
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Table 1. Parameters used for three hypothetical examples. 

Parameters Example 1 Example 2 Example 3 
Model domain size (m) 100 × 100 × 100 500 × 500 × 100 250 × 250 × 100 
Fracture characteristics 4 deterministic 

rectangular 
fractures 

4 deterministic 
rectangular 
fractures 

Randomly distributed 
elliptical fractures 

Fracture density P32 (m2/m3) 0.040 0.032 0.35 
Number of wells 2 2 3 
Well screen interval (m) 10 10 20 
Well skin radius (m) 2 2 1 and 5 
Well permeability (m2) 10−7 10−7 10−7 
Constant fracture aperture (m) 200 × 10−6 200 × 10−6 200 × 10−6 
Constant fracture permeability* (m2) 3.33 × 10−9 3.33 × 10−9 3.33 × 10−9 
Number of initial particles 90,000 90,000 100,000 
Pumping rate (m3/s) 10−4 10−4 10−3 and 10−4 
Water column at bottom boundaries (m) 250 250 250 
Hydrostatic pressure at bottom 
boundaries z = −50 m (Pa) 

2.5 × 106 2.5 × 106 2.5 × 106 

*Fracture permeability is calculated from fracture aperture using the cubic law (Klimczak et al., 2010). 

 
Figure 6a shows the DFN in Example 1 and the locations of the two wells. This figure 

also illustrates the simulated steady-state hydraulic head converted from the pressure solution 
by PFLOTRAN. Figure 6b shows the high-resolution mesh around the pumping well and 
highlights (in red) the cells used to represent the actual well screen. The 121 red cells 
represent the well screen, with the small cell sizes near the well center and the coarser cell 
sizes farther away. The total volumetric flow from 121 pumping cells was 8.64 m3/day 
(0.1 L/sec). Inflows were from four sides of the model domain. The inflow from the north 
was equal to the inflow from the south (1.82 m3/d). The largest inflow (4.43 m3/d) was from 
the east, whereas the smallest inflow (0.57 m3/d) was from west.  
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Figure 6. The configuration of Example 1 showing (a) a DFN network with wells and simulated 

hydraulic head solution, and (b) a closer look at the pumping well with Delaunay 
triangulations. Red cells mark the pumping well screen and yellow cells represent the 
highly conductive area around the well. 

 
Figure 7a shows the particle pathlines for Example 1, in which 90,000 particles were 

instantaneously and uniformly released on three edges of each fracture at the west side of the 
model domain (30,000 particles on each left edge of fractures 1 to 3). Figure 7b shows the 
BTCs. All 90,000 particles were captured by the pumping well, resulting in a 100 percent 
recovery rate. The earliest and latest particle arrival times were 25.6 (hours) and 2,056.8 
(hours), respectively. The BTCs revealed three peaks owing to the release of particles from 
three different distances from the pumping well. The recovery rate was lower for the case in 
which the particles were released from the injection well (Figure 7c). Only 85,686 particles 
(95.21 percent) were captured at the pumping well in this scenario. Figure 7d shows the BTC 
with only one peak because all particles were initially released at the same location. 

Based on Examples 1 and 2, four experiments were designed to evaluate the 
influences of well skin permeability and radius on simulated BTCs at a pumping well. Given 
the fixed number of intersections between a well and the fracture backbones (which equals 
one in these examples), the two parameters control: (1) how quickly particles move into 
fracture backbones after they are released at an injection well and (2) how quickly particles 
are removed by a pumping well. Therefore, the two parameters will potentially affect the 
simulated BTC at a pumping well depending on: (1) how large the well skin radius is 
compared with the distance between an injection well and a pumping well, and (2) the flow 
dynamics around the injection well and the pumping well (i.e., a high flow velocity value 
around and along a well may make the BTCs less sensitive to these two parameters). In 
addition, the two parameters can affect the convergence of flow simulation.  
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Figure 7. Particle pathlines and BTCs for Example 1 that show particles uniformly distributed over 

the west side of the model domain ([a] and [b]) and particles uniformly distributed at the 
injection well ([c] and [d]). 

 
Table 2 shows detailed parameters for four numerical experiments. In these 

experiments, the permeability of both the injection well and the pumping well varied over a 
range of 10−7 m2 to 10−10 m2 at intervals of one order of magnitude. The well skin radius 
varied from 1 m to 5 m at 1 m intervals. All experiments were conducted for the 100 m DFN 
model domain in Example 1 and the 500 m DFN model domain in Example 2. The 
experiments focused on cases in which particles were released at an injection well.  
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Table 2. Configurations of Examples 1 and 2 to evaluate the influences of well skin radius  
and permeability on simulated BTCs at a pumping well. Particles are released at an 
injection well. 

Experiment 
Skin Permeability (m2) Skin Radius (m) 

Injection Well Pumping Well Injection Well Pumping Well 
1 10−7 to 10−10 10−7 2.0 2.0 
2 10−7 10−7 to 10-10 2.0 2.0 
3 10−7 10−7 1.0 to 5.0 2.0 
4 10−7 10−7 2.0 1.0 to 5.0 

 
Experiment 1 evaluated the effects of injection well skin permeabilities on simulated 

BTCs at the pumping well for both the 100 m and 500 m DFN model domains. Figure 8a 
shows that BTC of conservative particles at the pumping well gets delayed (i.e., transport 
time is longer) as the well skin permeability of the injection well reduces. The 500 m DFN 
model domain showed similar results (Figure 8b). In the second experiment, varying the 
pumping well skin permeabilities showed no effect on the simulated BTCs. Therefore, 
transport is sensitive to injection well permeability but not as sensitive to pumping well 
permeability. This was likely caused by the short range (less variability) of travel times in the 
vicinity of a pumping well (owing to the steep hydraulic gradient induced by the pumping), 
whereas the travel times were wide ranging in the vicinity of an injection well.  

 

 

Figure 8. Simulated BTCs using four different values of injection well skin permeability for:  
(a) Example 1, the 100 m DFN model; and (b) Example 2, the 500 m DFN model. 
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Experiment 3 examined the effects of injection well skin radii on simulated BTCs at 
the pumping well. The skin radius here is conceptualized as a calibrated parameter as it 
cannot be measured directly. The results showed that injection well skin radii had significant 
effects on simulated BTCs at the pumping well for the 100 m DFN model, as shown in 
Figure 9a. Reducing the injection well skin radii from 5 m to 1 m significantly decreased the 
peaks of the simulated BTCs. For the 500 m DFN model, the BTCs had similar trends when 
using injection well skin radii of 3 m, 4 m, and 5 m, as shown in Figure 9b. Using smaller 
values such as 1 m and 2 m resulted in different BTCs, potentially because of numerical 
issues. The results revealed that injection well radii had a significant impact on simulated 
BTCs and that the impact was less in a large model domain. In the fourth experiment, 
pumping well skin radii showed no effects on the simulated BTCs.  

For the BULLION FGE case study (Example 3), four stochastic DFNs were 
generated at two pumping rates (10−4 m3/s and 10−3 m3/s) and two well skin radius values 
(1 m and 5 m). This created 16 model scenarios. Using a 5 m well skin radius, the results 
showed that only one of the four stochastic DFNs had all three wells intersecting one or more 
fractures. For this DFN, the number of fractures that intersected Wel-01, Wel-02, and Wel-03 
were 2, 4, and 3, respectively. Figures 10a and 10b show the simulated hydraulic heads and 
particle tracks for this DFN using the low pumping rate of 10−4 m3/s. The results showed 
noncircular contours of simulated hydraulic heads around the pumping well exhibiting 
drawdown characteristics for this DFN. 

Particles were distributed uniformly along the vertical profile of the injection well 
(Wel-01) (Figure 10). Particles moved out of Wel-01 into the hydraulic backbone through a 
single preferential pathway. Most of the particles then migrated through Wel-02 (since  
Wel-02 was collinear with Well-01 and Wel-03 and was assigned a higher permeability than 
the surrounding fractures), and underwent enhanced spreading because of the higher number 
of intersections between Wel-02 and the backbone (Figures 10a and 10b). Finally, the 
particles exited the computational domain via the pumping well, Wel-03. 

 

 
Figure 9. Simulated BTCs using five different values of injection well skin radii for:  

(a) Example 1, the 100 m DFN model domain; and (b) Example 2, the 500 m  
DFN model domain. 
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Figure 10. Simulated steady-state hydraulic heads and particle pathlines for the 3-D DFN of 

Example 3: (a) 3-D perspective of the hydraulic head distribution, (b) a top view, and (c) 
a ZX cross-sectional view. Background colors illustrate the simulated hydraulic heads. 
Black lines are hydraulic head contours and colored lines depict particle tracks (color 
coded according to travel time). 
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The models failed to converge when using the high pumping rate of 10−3 m3/s. The 
convergence issues are likely related to the steep hydraulic gradients which are not properly 
resolved by the iterative solvers in the vicinity of a pumping well. Use of a 1 m well skin 
radius resulted in zero intersections between one or more wells and the hydraulic backbone. 
Discussion of the Method 

The method used in this study provided a way to integrate a well into a DFN model 
and ensure that the well was connected to the hydraulic backbone. Two orthogonal fractures 
were used to represent a well. Two new parameters, the well skin radius (rs) and the well skin 
permeability (ks), establish the connection between a well and the fracture network. This 
method is different from available DFN modeling codes such as HydroGeoSphere (Brunner 
and Simmons, 2012), in which a well is represented by a one-dimensional line, or FracMan 
(Dershowitz et al., 1993), in which a well is represented by model cells at the well location. 
The method presented in this section defines a physical screen interval and includes an 
injection/pumping well in a DFN via a discretized model grid. High-resolution mesh at a well 
improved the accuracy of flow and transport simulations. The meshes allowed for the smooth 
transition of pressure and particles from one fracture to another, from a well to the 
backbones, and from the backbones to a well. The method was implemented in dfnWorks 
and verified against the widely used MODFLOW and MODPATH codes. Modifications 
were made that allowed hydraulic heads to be simulated and particles to be tracked to a 
pumping well. A user needs to overwrite three source code files and recompile dfnWorks to 
use this method. 

Injection well skin radii and permeability affect the simulated BTCs when particles 
are released at an injection well. These effects lessen when applying the method to a larger 
domain DFN. In contrast, pumping well skin radii and permeability have a negligible effect 
on simulated BTCs. This is because the time taken by a particle to travel in the skin zone of a 
pumping well is extremely small compared with the overall ranges of transport time. 
Particles experience higher velocity in the pumping well skin zones, and therefore quickly 
exit the model after coming in close proximity to a pumping well. However, the pumping 
well skin radius has a more important role than well skin permeability. The radius could be 
increased to enhance connectivity between a pumping well and the hydraulic backbone, and 
improve numerical stability when conducting flow simulations.  

Pumping rates also influence the convergence of the flow solution. At higher 
pumping rates, the hydraulic gradient in the vicinity of a pumping well can increase to 
unrealistic values causing nonconvergence of the flow solution. To overcome this problem, 
the pumping well skin radius can be increased to enhance connectivity and numerical 
performance of the DFN model. 

Well skin radii play an important role in defining the connectivity between a well and 
fractures in complex and realistic networks (as shown in the BULLION FGE example). 
Using radii that are too small may result in no connection, but using radii that are too large 
may overestimate the connectivity. Well skin radii are case-specific parameters and depend 
on fracture density, orientation, and length. Ideally, the well skin radius should be determined 
by computing and comparing fracture intensity, P10, along the vertical profile of a well  
(by varying the well skin radius until a good match is found between simulated and 
observed P10).  



20 

UPSCALING OF TRANSPORT IN 2-D DFNs VIA RANDOM WALK MODELS 
Flow and transport in fractured rock are often characterized by a wide range of 

velocities. The velocity of solute within the fracture network can be several orders of 
magnitude higher than the velocity of solute within the surrounding rock matrix  
(Berkowitz, 2002; Neuman, 2005). This makes numerical solution of the transport behavior 
computationally intensive because high gradients require fine grids. Therefore, to model flow 
and transport in fractured rock, it is often desirable to upscale using some type of averaging 
procedure so that the fine details of the flow are accounted for in an effective way, rather 
than explicitly resolved. This can be done by establishing effective hydraulic conductivity 
tensors that account for both the fractures and the matrix (Klimczak et al., 2010; Liu et al., 
2016; Margolin et al., 1998; Oda, 1985). For transport, however, this type of approach is 
insufficient. Using effective hydraulic conductivity in transport models leads to the use of an 
advection dispersion equation, which assumes that transport is Fickian. Variations in  
small-scale velocity lead to enhanced solute spreading (as defined by the change in the 
variance of the solute plume), which scales faster than linear in time until it asymptotes to 
linear spreading. If the region of the domain over which the effective hydraulic conductivity 
is defined is large enough for this asymptotic behavior to occur, then this approach is valid 
(Klimczak et al., 2010). However, the higher the variation in velocity, the larger the region 
must be for the transport within it to become Fickian. 

An alternative approach is to model transport only within the high-velocity regions of 
the flow. In fractured rock, this is done using DFN models, which assume no flow within the 
rock matrix (Hyman et al., 2015; Painter and Cvetkovic, 2005; Parashar and Reeves, 2012). 
This approach gives a more accurate description of transport within the fractures, but it is 
restricted to small-scale use because of computational expense. Therefore, there is clearly a 
need for upscaling models that accurately extrapolate transport behavior from small-scale 
DFNs to larger scales. 

Many models, both Lagrangian and Eulerian, have been created for and applied to 
upscaled transport modeling in DFNs. This section focuses specifically on Lagrangian 
random walk models, which use particle trajectories from the DFN simulations to create 
empirical space and time step distributions that are sampled from in the random walk 
simulations. In a broad sense, these models can all be categorized as continuous time random 
walk (CTRW) models (Berkowitz et al., 2005; Berkowitz and Scher, 1997, 1998). However, 
the models have different definitions of what constitutes a step and have different ways of 
modeling correlations between steps. The three models discussed are the Markov-directed 
random walk (MDRW) (Painter and Cvetkovic, 2005), Monte Carlo solution of the 
Boltzmann transport equation (BTE) (Benke and Painter, 2003), and the Spatial Markov 
model (SMM) (Le Borgne et al., 2008). Each model successfully reproduced the results of 
full resolution transport simulations in DFNs (Benke and Painter, 2003; Kang et al., 2011, 
Painter and Cvetkovic, 2005). This section presents a side-by-side comparison of the 
predictive capability of these models in both correlated and uncorrelated forms. The 
correlated forms of all models use a Markov chain. A set of realizations of random 2-D 
DFNs for three different fracture transmissivity distributions were used to compare the 
models. As the variance of the transmissivity distribution increased, the range of velocities  
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within the DFN widened while the number of high flux fractures decreased (Reeves et al., 
2013). This had a profound effect on the predictive capability of the upscaled models, 
particularly with regard to comparing correlated and uncorrelated models. 

The ability of the upscaled models to predict transport in real fractured rock is 
dependent on both the accuracy of the DFN simulations and on how well the upscaled 
models match the DFN simulations. The scope of the work presented in this section is limited 
to the latter. The transport results of the DFN simulations were taken to be the truth, and the 
upscaled models were developed to capture features of DFN results. Although the upscaled 
models were analyzed based on their ability to match DFN simulations, this approach could 
be used to assess their predictive capabilities, assuming the accuracy of the DFN simulations.  

The “DFN Simulation Setup” section describes the DFN simulations, including the 
effect of widening the distribution of fracture transmissivity and what information was 
collected to parameterize the upscaled models. The “Upscaled Modeling” section describes 
the upscaled modeling. The “Results” section following the “Upscaled Modeling” section 
discusses both the correlated and uncorrelated versions of the models, with varying modeling 
scales. Finally, the “Discussion of Methods” section following the “Effect of Changing 
Modeling Scale” section covers the relevance of the results. 

DFN Simulation Setup 
The DFN simulations formed the basis of both testing and parametrizing the set of 

upscaled transport models. Large-scale DFN simulations were conducted, generating detailed 
transport behavior that the upscaled models were expected to predict. Another set of transport 
simulations was done on a smaller region of the DFN in which particle trajectories were 
analyzed to create empirical space and time step distributions, which were then used to 
develop predictions of the large-scale DFN transport using each upscaled random walk 
model. All fracture networks were generated and flow was solved using DRI’s in-house DFN 
generator, solver, and transport simulator (Parashar and Reeves, 2012). 

The first step was to create the large-scale fracture network itself. Discreet fracture 
networks were stochastically generated through the incremental addition of fractures with 
statistically defined random locations, lengths, and orientations until a specified density 
criterion was reached (Parashar and Reeves, 2012). Fracture network density was defined as 
the total length of all fractures normalized by the domain area. Once the fracture network was 
generated, the network was split into segments, which were defined as the part of a fracture 
between two fracture intersections (Berkowitz and Scher, 1997, 1998). Isolated fractures and 
dead-end segments were identified and deleted because they were not hydraulically 
connected to the boundaries, and therefore could not convey any flow. Several analyses of 
field data determined that fracture trace length often followed a power-law distribution 
(Bonnet et al., 2001; Davy, 1993; Odling, 1997; Renshaw, 1999). The assumption that the 
DFN was scale free supports the use of power law distributions for fracture trace length. 
Studies indicated that the values of the power law’s exponent, α, typically ranged between 1 
and 3 for natural rock fracture networks (Bonnet et al., 2001; Davy, 1993; Renshaw, 1999). 
Fracture angles were drawn from a von Mises distribution, which is analogous to a normal 
distribution on a circle. The fracture density was fixed at 1/2 m/m2 and the domain size was 
fixed at 1,000 m × 200 m. Figure 11 shows a realization of the DFN before the isolated 
segments were removed. The only fracture characteristic parameter that was varied between 
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Figure 11. Modeling domain: one realization of a DFN with injection region highlighted in red and parameterization region highlighted  

in yellow. 
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DFNs was the standard deviation, σ, of the transmissivity distribution. When σ = 0, the 
transmissivity of all fractures were the same, but as σ increased, the range of fracture 
transmissivity increased. 

Particle jump length in a fracture network was guided by the distribution of the length 
of fracture segments created because of the intersections between individual fractures of the 
network. It also depended on the connectivity of the network, because a poorly connected 
network precludes migrating particles from sampling the entire set of segment lengths 
available during transport across the model domain. Individual fractures that form the 
components of a network intersect each other to generate a large number of smaller fracture 
segments through which migrating inert particles travel linearly between two successive 
intersection points. 

The next step was to solve for the flow through the network. This was done by 
imposing CHB conditions such that the global hydraulic head gradient was ∂h/∂x = - 0.1 and 
∂h/∂y = 0, and therefore the dominant flow direction was from left to right. The steady state 
head distribution was then solved, and defined at each fracture intersection according to: 

∇2ℎ = 0 (3) 

This assumes that the fracture network is fully saturated with incompressible fluid. 
From the head distribution, we defined the flux of fluid through each fracture segment 
according to Darcy’s law: 

𝑞𝑞 = −
𝑇𝑇
𝑏𝑏 𝛻𝛻ℎ (4) 

where T is the fracture transmissivity and b is the fracture aperture. The fracture aperture is 
related to the transmissivity by way of the cubic law: 
 

𝑇𝑇 =
𝑏𝑏3𝜌𝜌𝜌𝜌
12𝜇𝜇  (5) 

where ρ and µ are the density and dynamic viscosity of the fluid (water) and g is gravitational 
acceleration (Klimczak et al., 2010; Witherspoon et al., 1980). In combination, these laws 
assume a low Reynolds number of flow through a fracture segment with a constant aperture 
(envisioned as the fracture being bounded by parallel plates). 

Finally, the transport through the DFNs was simulated. A random walk method was 
used in which the solute mass was discretized into particles of equal mass initially distributed 
over a 50 m × 50 m region along the upstream boundary (shown in Figure 11). The number 
of particles injected into each fracture segment was proportional to its flux (q). Each particle 
then proceeded through the segment at constant velocity: 
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𝐯𝐯 = 𝑞𝑞𝐮𝐮� (6) 

where u� is the unit vector parallel to the fracture segment. Once the particle reached the end 
of the fracture segment, it moved into a new segment (si) with a probability proportional to 
its flux (qi). That is: 

𝑃𝑃(𝑆𝑆𝑖𝑖) =
𝑞𝑞𝑖𝑖

∑ 𝑞𝑞𝑖𝑖
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=1

 (7) 

where nseg is the number of segments connected to the current segment. This treatment 
assumed that dispersion along the fracture length was negligible and that the concentration of 
solute across the fracture width was uniform. In other words, because of the fracture’s low 
aspect ratio, the velocity distribution within the fracture was assumed to be sampled 
relatively quickly by the solute compared with the amount of time it spent in the fracture. 
Once the particle reached the boundary of the DFN, it was removed from the system (i.e., all 
boundaries were absorbing). Each simulation was run until all particles were removed. This 
random walk method is distinct from the upscaled models discussed in the next section, 
because the particles have access to the full details of the DFN and all segment selections 
depend on the spatial location of the particles and the flux of the connecting segments. 

In addition to simulating transport over the entire DFN, a small 100 m × 100 m region 
along the upstream boundary was delineated to run another transport simulation. The particle 
trajectories obtained over this smaller region were then analyzed and used to create space and 
time step distributions for the set of upscaled models described in the “Upscaled Modeling” 
section. This region of the domain is referred as the “parameterization” region. To ensure that 
there were a large number of trajectories to analyze, 105 particles were used for the full DFN 
transport simulations and 106 particles were used for the parameterization simulations. For 
visualization purposes, Figure 11 shows the modeling domain and how it is partitioned into 
different regions. 
Effect of Transmissivity Distribution on DFN Simulations 

Equation 4 shows that an increase in the range of fracture fluxes occurs as the  
range of transmissivity increases (flux is proportional to transmissivity). The range of 
transmissivity is controlled by the standard deviation of the transmissivity distribution (σ). 
Figure 12 shows the probability density function (PDF) of the absolute value of fracture 
fluxes (f|q|(x = |q|) in m/s), where qi is the measured flux through segment i, obtained from  
all segments in fifty realizations of transmissivity distributions with σ = 0, 0.5, and 1. The 
PDFs are bimodal (high probability associated with two ranges of velocities), with peak 
values generally decreasing as σ increases, which spreads the PDF out toward high flux 
fractures. This nonmonotonicity is a property that each of the upscaled models must be 
capable of simulating.  
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Figure 12. Fracture flux magnitude for various values of the standard deviation of the transmissivity 

distribution (σ): (a) PDF (f|q|(x)) and (b) complementary cumulative density function 
(CCDF) ((1-F|q|(x)). 
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However, the effect of the transmissivity distribution on the presence of connected 
high-velocity flow channels, or preferential pathways, is more difficult to capture in upscaled 
models. Figure 13 shows log10(|q|) for one realization of a DFN for each transmissivity 
distribution (σ = 0, 0.5, and 1), in which all fracture properties are identical with the 
exception of transmissivity distribution. As σ increases, there are fewer high-velocity 
fractures but they are highly connected, so more preferential pathways form. This causes the 
fast-moving solute within the water to continue to move fast for long distances and times, 
which means the solute’s velocity at a given time or location is not independent of its prior 
velocity history. This correlation between velocities persists for long times and distances. 

In Figure 12 and in the remainder of this section, all results were derived from fifty 
realizations of the DFN for each value of σ. The number of realizations generated was chosen 
by comparing moments of breakthrough curves from each realization to moments of the 
ensemble breakthrough curve at the farthest distance from the inlet (1 km) and ensuring that 
the relative mean absolute deviation between moments were sufficiently minimized. 

 

 

Figure 13. Flux magnitude (log10(|q|)) distribution for one realization of each transmissivity 
distribution of the DFN (top) σ = 0, (center) σ = 0.5, and (bottom) σ = 1. To better 
highlight the differences in the high-velocity fractures, we set the color scale so that all 
fractures with |q| < 10−8 m/s are not seen. Numerical values on the color bar represents 
logarithm of the flux magnitude. 
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Upscaled Modeling 
Following the extraction of the trajectory data from the small DFN simulations (done 

over the parameterization region), the numerical data was used to create distributions for the 
three upscaled random walk models. The goal was to use these models to predict the 
breakthrough at locations outside of the parameterization region. Although the upscaled 
models can be assessed by their ability to match the full-scale DFN simulations, they do not 
have access to the statistics of the full DFN, so their results are referred to as predictions. 
This section briefly introduces each of the upscaled random walk models used to predict 
transport in the DFNs. 

Each of the models can be categorized as a CTRW (Berkowitz et al., 2006). In 
CTRWs, the solute is discretized into particles of equal mass that take steps in space and 
time, sampled from a density f(δx, δy, δt), in which δx, δy, and δt may or may not be coupled. 
For fracture networks, usually a step is considered to be the spatial and temporal jump a 
particle would make through a single fracture segment. To see the effect of modeling scale 
on the accuracy predictions, however, a variety of step definitions are considered. Once the 
concept of what constitutes a step is defined, particles are injected into the domain, and then 
each particle transitions through space and time according to: 

xn = xn−1 + δxn 
yn = yn−1 + δyn 
tn = tn−1 + δtn, n = 1, 2, 3, ... 

(8) 

where the random triplet (δxn, δyn, δtn) comes from f(δx, δy, δt) and may or may not depend 
on (δxn−1, δyn−1, δtn−1). There is no requirement that δx, δy or δt be decoupled or fixed. Most 
often, f(δx, δy, δt) is a parameterized probability density, which allows for analytical solution 
of concentration distributions in space and time if the space and time steps are uncoupled 
(Cortis et al., 2005). Although it is less convenient, the theory allows for more general 
empirical densities, including coupled space and time steps. The key creating any CTRW 
model is the parameterization of f(δx, δy, δt), which is assumed to be independent of particle 
position (i.e., statistically stationary in space). 

Generally, steps are assumed to be independent and identically distributed, but this 
study considered both correlated and uncorrelated steps. This distinction may affect model 
predictions depending on how much correlation exists between successive steps in the DFN 
simulations (Bolster et al., 2014; Sund et al., 2015), which in turn depends on the structure of 
the DFN. In all three of the upscaled random walk models described in this section, each step 
a particle makes in space and time depends on its previous step. This correlation between 
steps was accounted for using a Markov chain. The CTRW models, without the added 
complexity of a Markov chain, have been used successfully in past studies to describe 
transport through fracture networks (Berkowitz and Scher, 1997, 1998). Further information 
on the CTRW is available in Berkowitz et al. (2006). 

For each realization of all of the upscaled models, we injected 105 particles. The 
initial distribution of these particles matches the initial condition in the DFN simulations 
because they were initially distributed over a 50 m × 50 m region along the upstream 
boundary, where the number of particles that start at each location was weighted by fracture  
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segment flux. The absorbing boundary conditions were used to match those in the DFN 
simulations, meaning that particles that moved outside of the domain were removed from the 
simulation. Each simulation was run until all particles were removed from the domain. 
Markov-directed Random Walk (MDRW) 

The MDRW model was introduced in Painter and Cvetkovic (2005). In addition to 
modeling correlation between steps with a Markov chain, the model also provided further 
flexibility to explicitly model retention, a feature that was not required in this study because 
our DFN simulations did not model retention. The steps (δxn, δyn, δtn) were defined to 
correspond to transport through a fixed number of fracture segments, k. This was done by 
splitting every trajectory from our parameterization simulations into groups of k segments 
and recording the distance and travel time from the beginning of the first segment in each 
group to the end of the kth segment in each group. Therefore, from each trajectory, 
depending on the number of segments it goes through, multiple samples were extracted that 
could be used to construct f(δxn, δyn, δtn). Figure 14 shows the full path of an individual 
particle and how it was partitioned into steps. 

 

 

Figure 14. Method for partitioning particle trajectories into MDRW modeling steps. 

 
To account for correlation between steps, a set of 20 discrete equiprobable states 

based on speed was first defined. Each state was defined by a range of speed, which for state 
si is from li−1 to li, where l0 ≡ 0. A particle was in state si at step n if its speed: 

𝑞𝑞𝑛𝑛 =
�𝛿𝛿𝑥𝑥𝑛𝑛2 + 𝛿𝛿𝑦𝑦𝑛𝑛2

𝛿𝛿𝑡𝑡𝑛𝑛
 (9) 
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was within the range of li−1 to li. This means that low numbered states covered low speeds 
and high numbered states covered high speeds. 

Given this definition, a Markov chain could be created that consisted of the initial 
(now discretized) distribution and a transition matrix using the trajectories from the DFN 
simulations. The transition matrix was the conditional probability that the speed at step n was 
in state si given that the speed at step n − 1 was in state sj, P(qn ∈ si|qn−1 ∈ sj). Figure 15 
shows the transition matrix, P(qn ∈ si|qn−1 ∈ sj), averaged over all fifty realizations for each 
transmissivity distribution, using k = 1 fracture segment as the modeling step. All of the 
transition matrices were diagonally dominant, indicating a tendency for particles to remain in 
their current speed state. As the spread of the transmissivity distribution increased with σ, the 
probability of particles transitioning many states in one step decreased, which can be seen in 
the slendering of the bands around the diagonal. This indicates that particle speed does, in 
fact, increase with increasing σ. An MDRW model that uses only one speed state would have 
uncorrelated steps, so MDRW can easily be run in both correlated and uncorrelated forms. 
This is all the information necessary to run the MDRW simulations. Each particle transitions 
through space and time according to Equation 8, with: 

fMDRW(δx, δy, δt) = f(δxn, δyn, δtn|qn ∈ si) 

P(qn ∈ si|qn−1 ∈ sj) 
(10) 

 

 

Figure 15. Ensemble averaged transition matrix (P(qn ∈ si|qn−1 ∈ sj)) over all realizations with 
modeling step size k = 1 fracture segments for transmissivity distributions with (a) σ = 0, 
(b) σ = 0.5, and (c) σ = 1. 

 
Monte Carlo Solution of the Boltzmann Transport Equation (BTE) 

The BTE model was introduced in Benke and Painter (2003). It models the 
correlation between steps with a Markov chain based on velocity (both speed and direction). 
It defines steps (δxn, δyn, δtn) to correspond to transport through a fixed number of fracture 
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segments, k, so DFN particle trajectories are split in the same way as with the MDRW. 
Contrary to the MDRW methodology, the length of a particle’s step as it travels at the 
velocity sampled from the DFN trajectories is also random (albeit dependent on velocity 
state), rather than the step being the same length as the corresponding trajectory segment. To 
do this, spatial steps are put in polar form: 

δxn = dn cos θn  
δyn = dn sin θn (11) 

where dn is log uniformly distributed between limits that depend on the velocity class and θn 
is the angle of the randomly chosen trajectory. To account for correlation between steps, and 
to define the distribution of dn, a set of 10 discrete equiprobable states based on speed was 
first defined. Similar to MDRW, each state was defined by a range of speed, which for state 
sp is lp−1 to lp, where l0 ≡ 0. Then, the average jump length of trajectory segments 
corresponding to each state was found, which for state sp is rp. The distance a particle travels 
at its current velocity, dn is then generated as: 

dn = − ln(U)rp (12) 

where U is a uniform random number between 0 and 1. Therefore, in theory, a particle may 
continue at its current velocity until it travels a distance between 0 and ∞ times the length of 
the trajectory segment. 

Next, the distribution of speed states was further discretized by angle to create 
velocity states. For our purposes, each speed state was split into two equiprobable angle bins 
(for a total of 10 speed × 2 angle = 20 velocity states) because the BTE needed to have the 
same number of states as the MDRW. The full range of possible angles was [−π, π], with an 
angle of 0 aligned with the predominant flow direction. Because only two angle states for 
each speed bin were used, the angles were divided into “upstream” and “downstream,” 
meaning that the absolute value of the step angle was used to set angle bin limits. A particle 
was in velocity state si = 2(p−1) + q if its speed was in state sp and the absolute value of its 
angle was between angle limits lp,q−1 to lp,q, where lp,0 ≡ 0, which were defined separately for 
each speed state, p. Given this definition, the transition matrix was then approximated, which 
was the conditional probability P((qn, θn) ∈ si|(qn−1, θn−1) ∈ sj), using the trajectories from the 
DFN simulations. Figure 16 shows the transition matrix averaged over all realizations for 
each transmissivity distribution, using k = 1 fracture segment as the modeling step. As σ 
increases, the correlation between successive velocities also increases, though the bandwidth 
of the transition matrices for velocities was larger than the transition matrices for speeds. As 
with the MDRW, a BTE model that used only one velocity state would have uncorrelated 
steps, so BTE could be run in both correlated and uncorrelated forms for comparison. Each 
particle transitions through space and time according to Equation 8, with: 

fBTE(δx, δy, δt) = f(dn cosθn, dn sinθn, δtn|(qn, θn) ∈ si) 

P((qn, θn) ∈ si|(qn−1, θn−1) ∈ sj) 
(13) 
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Figure 16. Ensemble averaged transition matrix (P((qn, θn) ∈ si|(qn−1, θn−1) ∈ sj)) over all realizations 
with modeling step size k = 1 fracture segments for transmissivity distributions with (a) 
σ = 0, (b) σ = 0.5, and (c) σ = 1. 

 
Spatial Markov Model (SMM) 

The SMM model was introduced in Le Borgne et al. (2008). It models correlation 
between steps with a Markov chain based on speed over fixed longitudinal spatial increments 
of length L. It defines steps (δxn = L, δyn, δtn) to correspond to transport over increments of 
length L in the longitudinal direction. In a sense, this means that the correlations between 
velocities at different spatial locations are projected onto the axis longitudinal to transport 
and implicitly assumed to be the dominant correlations in the DFN. To keep the average 
modeling scale the same for all models, L = Lk was set to be the average longitudinal step 
taken by particles over k fracture segments:  

𝐿𝐿𝑘𝑘 =
1
𝑁𝑁�𝑟𝑟𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (14) 

where ri and θi are the length and angle of trajectory i over k segments, and N is the number 
of trajectories. For k = 1, 2, 3 fracture segments, Lk = 3, 5, 7 m, respectively. The trajectories 
from the DFN simulations were then used to create breakthrough curves along the 
parameterization region at increments of length Lk (e.g., for k = 2, we created 20 
breakthrough curves, each at 5 m increments). Then, for each location X, the distribution of 
travel times, fτ(X, t), was found using Equation 16. 

To account for correlation between steps, a set of 20 discrete equiprobable states was 
defined based on travel times. Because Lk was fixed, this was equivalent to defining states 
based on speed, as in the MDRW. Each state was defined by a travel time range, which for 
state si is li−1 to li, where l0 ≡ 0. The transition matrix was then approximated, which was the 
conditional probability P(δtn ∈ si|δtn−1 ∈ sj), using the trajectories from the DFN simulations. 
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Figure 17 shows the transition matrix averaged over all realizations for each transmissivity 
distribution. As with speeds (Figure 15) and velocities (Figure 16), as σ increased, the 
correlation between successive travel times also increased. The bandwidth of the SMM 
transition matrices was wider than that of the MDRW transition matrices, but smaller than 
that of the BTE transition matrices. As with both the MDRW and BTE models, an SMM 
model that used only one travel-time state would have uncorrelated steps, and therefore the 
SMM could also be run in both correlated and uncorrelated forms for comparison. Each 
particle transitions through space and time according to Equation 8, with: 

fSMM(δx, δy, δt) = δ(L− δxn)f(δyn, δtn|δtn ∈ si) 

P(δtn ∈ si|δtn−1 ∈ sj). 
(15) 

Versions of this model have been successfully applied to transport through DFNs 
(Kang et al., 2011, 2017), and even in real fractured rock (Kang et al., 2015). Further details 
of the model are provided in Le Borgne et al. (2008). 

All three upscaled random walk models are quite similar and they all rely on Markov 
chains. The states of the Markov chains differ between models, from the simplest model that 
relies on longitudinal flux (SMM), to total flux (MDRW), to the most complicated model that 
relies on full velocity (BTE). Model intercomparison allows us to determine the extent of the 
velocity information required to properly account for correlation, whereas model 
intracomparison allows us to determine whether correlation needs to be accounted for at all. 
The challenge with all of the models is to ensure sufficient parameterization. This challenge 
was reduced for the uncorrelated versions of the models because the transition matrices 
required more information than the distribution f(δx, δy, δt). 

 

 
Figure 17. Ensemble averaged transition matrix (P(δtn ∈ si|δtn−1 ∈ sj)) over all realizations with 

modeling step size Lk = 1 (the average length of 1 fracture segment) for transmissivity 
distributions with (a) σ = 0, (b) σ = .5, and (c) σ = 1. 
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Results 
This section compares the breakthrough results of the upscaled random walk models 

to the large-scale DFN simulations. Each upscaled model was run using three different 
modeling scales for which the number of fracture segments used to define a step was k = 1, 2, 
3. Furthermore, each model was run in both correlated and uncorrelated forms. The 
uncorrelated forms differ from the correlated forms in that their corresponding Markov 
chains consist of a single state. Here, these uncorrelated models are referred to as uMDRW, 
uBTE, and uSMM. 

A breakthrough curve at location X is a measure of concentration arriving at that 
location related to the distribution of the time it takes particles to arrive at the location by: 

𝑓𝑓𝜏𝜏(𝑋𝑋, 𝑡𝑡) = �
𝐶𝐶(𝑥𝑥 = 𝑋𝑋,𝑦𝑦, 𝑡𝑡)

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡(𝑋𝑋) 𝑑𝑑𝑦𝑦

∞

−∞

 (16) 

where fτ(X, t) is the probability of a particle arriving at location X at time t; C(x = X, y, t) is 
the concentration of solute arriving at location X, y at time t; and Ctot(X) is a normalization 
constant, which is the integral of C(x = X, y, t) over all time. Because of the constant head 
boundary conditions in the transverse direction (as opposed to no-flow boundary conditions), 
particles are free to leave the model through the transverse boundaries, and therefore Ctot is 
not equal to the amount of concentration initially injected. The metrics used to test the 
accuracy of each model are: 

1) Relative mean absolute error (MAE) in the ensemble cumulative travel time 
distributions, Fτ(X, t) at X = 500 m and X = 1 km.  

2) Relative MAE in total mass in ensemble breakthrough curves, Ctot(X), at ten 
intervals of 100 m length along the entire domain (X = 100,  
200, ... 900, 1,000 m). 

To calculate the relative MAE in Fτ (X, t), we discretize time into 100 one-day 
increments up to the longest travel time from the DFN simulations. The error is then 
defined as: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝐹𝐹𝜏𝜏,𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋)� =
∑ |𝐹𝐹𝜏𝜏,𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋, 𝑡𝑡𝑖𝑖) − 𝐹𝐹𝜏𝜏,𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋, 𝑡𝑡𝑖𝑖)|𝑛𝑛
𝑖𝑖=1

∑ 𝐹𝐹𝜏𝜏,𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋, 𝑡𝑡𝑖𝑖)𝑛𝑛
𝑖𝑖=1

 (17) 

where Fτ,DFN(X, ti) and Fτ,mod(X, ti) are the cumulative travel time distributions at time ti for 
the DFN and upscaled model simulations, respectively. The relative mean absolute error in 
Ctot(X) is defined as: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡) =
∑ |𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡,𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋𝑖𝑖) − 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋𝑖𝑖)|10
𝑖𝑖=1

∑ 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡,𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋𝑖𝑖)10
𝑖𝑖=1

 
(18) 



34 

where Ctot,DFN(Xi) and Ctot,mod(Xi) are the total mass in the breakthrough curves at location Xi 
for the DFN and upscaled model simulations, respectively. 

These metrics were chosen so that errors in prediction of longitudinal and transverse 
transport were kept separate. The errors in the cumulative travel time distribution reflected 
how well the models were predicting longitudinal transport, whereas the total mass in the 
breakthrough curves reflected how well the models were predicting transverse transport, 
because any mass not contained in the breakthrough curve escaped the domain through a 
transverse boundary. Because of the boundary conditions and the high aspect ratio of the 
domain, Ctot was found to be a better measure of transverse behavior than spatial moments. 
Longitudinal Predictions: Error in the Ensemble Cumulative Travel-time Distributions 

Figure 18 shows the cumulative and complementary cumulative (defined as the 
probability of a variable taking a value greater than a specific number) travel time 
distributions at x = 500 m of DFN simulations with each transmissivity distribution  
(σ = 0, .5, 1) and of upscaled random walk model simulations with modeling step k = 1 and 
the corresponding error (calculated using Equation 17). By looking at the cumulative density 
function (CDF) on a log-log scale, one can zoom in on how well each model captured the 
pre-peak portion of the breakthrough curve. For σ = 0 (Figure 18a), the SMM predicted too 
much early breakthrough and the uBTE predicted too little, meaning that fast particles were 
too fast in the SMM model and too slow in the uBTE model. The predictions of the other 
models were nearly identical and close to the DFN result. By looking at the complementary 
cumulative density function (CCDF) on the same scale, one can zoom in on how well each 
model captured the tail of the breakthrough curve. The uSMM and SMM captured the tail of 
the DFN result well, but all other models predicted too much late breakthrough, meaning that 
the slow particles in these models were too slow. For σ = 0.5 (Figure 18b), the CDF showed 
that the MDRW and BTE overpredicted early breakthrough almost as much as the SMM did. 
The predictive capability of each model on the tailing behavior was unchanged with 
changing σ. This can be seen in the relative error in Figure 18d by the error in the SMM 
dipping below those of the MDRW and BTE. This indicates that for σ = 0.5, correlation was 
negligible and accounting for correlation in this situation led to increased error, particularly 
at early times. For σ = 1 (Figure 18c), the CDF showed that the uncorrelated models severely 
under predicted the early breakthrough, whereas the correlated models come closer to 
capturing the true DFN behavior. This indicated that for σ = 1, correlation was important and 
accounting for it led to decreased error. For this situation, the BTE model predicted the 
tailing behavior best. Both SMM models initially predicted the tailing behavior well, but 
deviated from the DFN result at very long times (over 105 days), likely because the transport 
process was projected onto the longitudinal axis for the SMM. With the significant difference 
in early breakthrough predictions, the correlated models edged out their uncorrelated 
counterparts in relative error, as shown in Figure 18d. 

 The only model that predicted both the early and late breakthrough well was the 
uSMM, which had the lowest relative error, and the only model that predicted both 
breakthroughs poorly was the uBTE, which had the highest relative error, with the error of 
the other models falling in between. Figure 18d also shows the range of errors of each 
individual realization of the DFN simulations (yellow boxes). These were not typical error 
bars, because the error in the ensemble prediction could be below the error bar (in fact, the 
ensemble error of the DFN simulations was by definition 0, whereas the realization error 
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range, shown in yellow, was not). The ensemble predictions for all models were within the 
range of error of an individual DFN simulation. This suggests that the upscaled ensemble 
models can predict ensemble DFN behavior as well as individual DFN realizations can. 

The layout of Figure 19 is the same as Figure 18, but shows breakthrough results at  
X = 1 km. Qualitatively, model performance continued as shown in Figure 18, so how the 
models compared with each other didn’t change when considering this farther breakthrough 
curve. The early breakthrough behavior of the BTE model for σ = 0.5 began to improve, as 
shown in Figure 19b, but this change did not greatly affect the overall relative error (shown 
in Figure 19d). 

 

 

Figure 18. Ensemble cumulative and complementary cumulative travel time distributions at  
x = 500 m of DFN simulations and of upscaled random walk model simulations with 
modeling step size k = 1 with transmissivity distributions (a) σ = 0, (b) σ = .5, and  
(c) σ = 1, and (d) the corresponding relative error. The range of errors among individual 
realizations are also shown with error bars for the upscaled models and with a shaded 
yellow region for the DFN simulations. 



36 

 
Figure 19. Ensemble cumulative and complementary cumulative travel time distributions at 

x = 1 km of DFN simulations and of upscaled random walk model simulations with 
modeling step size k = 1 with transmissivity distributions (a) σ = 0, (b) σ = 0.5, and 
(c) σ = 1, and (d) the corresponding relative error. The range of errors among individual 
realizations are also shown with error bars for the upscaled models and with a shaded 
yellow region for the DFN simulations. 

 
Transverse Predictions: Error in Total Mass in Ensemble Breakthrough Curves 

Figure 20 shows the total mass in each ensemble breakthrough curve, taken at 100 m 
increments, for each fracture transmissivity distribution (σ = 0, .5, 1) and the corresponding 
error (calculated using Equation 18). These predictions were made again using k = 1 fracture 
segment. The mass was calculated by letting the initial injected concentration C0 = 1 so that 
if all particles arrived at the breakthrough location at some time, then Ctot = 1.  
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Figure 20. Total mass in ensemble breakthrough curves of DFN simulations and of upscaled random 

walk model simulations with modeling step size k = 1 with transmissivity distributions 
(a) σ = 0, (b) σ = 0.5, and (c) σ = 1, and (d) the corresponding average relative error. 

 
For σ = 0 (Figure 20a), at the first breakthrough location (X = 100 m) all model 

predictions came close to the total mass in the breakthrough curves of the DFN simulations, 
but at farther distances, most of the models began to underpredict the total mass. This means 
that most of the models predicted an overly high degree of spreading in the transverse 
direction. The SMM outperformed all of the models at all breakthrough locations, followed 
by the uSMM. As the spread of fracture transmissivity increased, from Figure 20a through 
20c, the total mass predictions of the uSMM and uMDRW improved and the results of the 
uSMM became similar to those of the SMM. These trends can also be seen in the error in 
Figure 20d. It was a surprise that the model that treated transverse behavior in the most 
trivial fashion (the SMM that takes δy from the transverse jump over fixed longitudinal steps, 
rather than from actual fracture segment geometry) was the one that best predicted the 
transverse behavior. 
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Effect of Changing Modeling Scale 
Figure 21 shows how the model predictions changed as the modeling scale increased 

from k = 1 to k = 3 fracture segments for simulations with constant transmissivity distribution 
(σ = 0). Although the longitudinal errors tended to decrease with larger modeling scales, the 
transverse behavior of each model was not significantly changed by varying the modeling 
scale over this range, as can be seen in the relatively constant errors of each model as k 
increases. This trend existed for all three values of σ. 

 

 
Figure 21. Relative errors in upscaled ensemble random walk model simulations as a function of 

modeling scale for σ = 0: (a) relative error in cumulative breakthrough at X = 1 km and 
(b) average relative error in mass. 
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Discussion of the Methods 
All of the upscaled random walk models were able to predict the ensemble DFN 

breakthrough as well as a single DFN realization could (see the yellow boxes in the error 
plots in Figures 18 and 19 showing the range of errors in individual DFN realizations). 
However, there were differences in model predictions, so the best model to use depends on 
what behavior the model is meant to capture. As the distribution of fracture transmissivity 
widens, preferential pathways for solute form, creating correlation in particle velocities over 
successive steps. For the log-normal transmissivity distributions used here, models which 
take correlation into account begin to gain an advantage over their uncorrelated counterparts 
when σ = 1. Early breakthrough is best predicted by the uncorrelated models (uMDRW and 
uSMM) for σ < 1 and by the correlated models (MDRW, BTE, SMM) for σ = 1. Tailing 
behavior is best predicted by the SMM models (uSMM, SMM) for σ < 1 and by the 
correlated BTE model for σ = 1. In comparison to the effects of model choice and 
correlation, the effect of modeling scale (number of fracture segments used to define 
modeling steps) on model predictive performance is negligible, at least over the range 
covered here. 

Throughout this section, particles represent a conservative solute. However, if  
the solute to be modeled is nonconservative and degrades over time, as in the case of 
radionuclides in Pahute Mesa, it is most important that the model predict early breakthrough 
well. Alternatively, for situations in which the solute is a contaminant and modeling pump-
and-treat remediation is desired, it is most important that the model predict the breakthrough 
curve tail well. In these cases, the best model depends on the fracture transmissivity 
distribution. If there are no-flow boundary conditions on the transverse sides of the domain, 
then the error in total mass can be ignored. Otherwise, using an SMM, either correlated or 
uncorrelated, will better capture the transverse spreading. 

CALIBRATION OF 3-D DFNs TO FLOW DATA 
Full characterization of fractured rock masses was not possible because known 

fracture locations and their attributes consisted of an extremely small sample of the overall 
fracture network (i.e., any fracture characterization effort grossly undersampled a field site 
because of limited accessibility to the fractures themselves). However, fracture data can be 
used to generate representative, site-specific fracture networks through the derivation of 
probabilistic descriptions of fracture location, orientation, spacing, length, aperture, and 
values of network density. Of these different fracture properties and the network, aperture is 
generally the parameter that cannot be easily inferred from field data or inspection of the 
cores. However, fracture aperture has immense influence on flow and transport, and reducing 
its uncertainty is key to developing a model with an accurate description of groundwater 
velocity. This section focuses on using 3-D DFN models—built with site-specific 
probabilistic descriptions of fracture length, orientation, and density—to obtain realistic 
ranges of fracture aperture values by calibrating the model to field data of the hydraulic head 
distribution. The fracture aperture here refers to the distance between opposite walls of a 
fracture in a parallel plate model (i.e., the mechanical aperture). The hydraulic aperture 
(related to the flow capacity) or the transport aperture (related to the residence time) are not 
explicitly modeled here. The conceptualization of the problem here hinges on the assumption 
of smooth parallel plates where the entire void space of fractures is available for water flow 
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and solute transport. The model development and calibration approach used in this study was 
general in nature, and it was applied to WPM’s BULLION FGE—a tracer test at the well 
field of ER-20-6 adjacent to the BULLION test conducted in the summer of 1997 (June 2 to 
August 28). The purpose of the BULLION FGE was to provide information relevant to the 
transport of radionuclides in groundwater. 

DFN Model Development and Parametrization 
Discrete fracture networks were generated stochastically, using the data from 

fractured rock characterizations studies. Data on the fracture attributes needed to generate a 
fracture network are: (1) mean fracture orientation for each fracture family and probability 
distribution for orientation; (2) fracture shape and size for each fracture family and 
probability distribution for fracture size; and (3) fracture intensity, P32 (m2/m3), defined as the 
ratio of total fracture surface area over volume, and relative intensity for each fracture family. 
The model was developed in dfnWorks, which has three modules: dfnGen, dfnFlow, and 
dfnTrans (see the “3-D DFN: dfnWorks” section). dfnGen stochastically generated 3-D 
DFNs, removed isolated fractures using the FRAM (Hyman et al., 2014), and created high-
quality conforming Delaunay triangular meshes on the generated DFNs using the LaGriT 
meshing toolbox (Los Alamos National Laboratory, 2013). Near fracture intersections, the 
mesh was refined to allow for smooth and accurate representation of high-pressure gradients 
and sharp velocity contrasts. Discretization of the mesh was coarsened farther away from 
fracture intersections to reduce computational costs. The FRAM overcame the principal issue 
of resolving a tiny feature in a DFN by prescribing a minimum length scale (h) and 
restricting the generation of the network to only create features of that size and larger. Once a 
network was constructed and meshed, the dfnFlow module solved for steady-state saturated 
flow conditions using the massively parallel, open-source, subsurface flow and reactive 
transport finite volume code PFLOTRAN (Lichtner et al., 2015). Finally, dfnTrans, an 
extension of the WALKABOUT particle tracking method (Makedonska et al., 2015; Painter 
et al., 2012) was used to determine pathlines through the DFN and simulate solute transport. 
dfnWorks does not currently have a well package to simulate groundwater levels and particle 
tracking to a well. This study used the method presented in the “Representation of a Well in 
3-D DFN” section to represent a well in a 3-D DFN. 

Fractures were conceptualized as two parallel planes in DFN models. Rock matrix 
was considered impermeable and fracture networks were simulated explicitly. Fracture 
permeability was related to fracture aperture using the Cubic law: 

𝑘𝑘𝑓𝑓 = 𝑏𝑏2/12 (19) 

where kf  is fracture permeability and b is fracture aperture. Popular conceptualizations of 
fracture apertures are: (1) constant fracture apertures (CFA) in which fractures are assigned 
the same aperture values regardless of their size or geologic origin (e.g., tectonic fractures 
and joins), (2) lognormal distribution apertures (LNAs) in which fractures follow a 
lognormal distribution, and (3) the length correlated aperture (LCA) model (Klimczak et al., 
2010). Fracture apertures in LCA models are a function of fracture sizes such as: 

𝑏𝑏 = 𝐹𝐹𝑅𝑅𝑘𝑘 (20) 
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where F is a first parameter in the LCA model, k is a second parameter, and R is a mean 
radius of a polygon.  

Boundaries in this study were either no flow, or constant values of hydraulic head 
were used to assign boundary conditions to a DFN model. For the scenario in which there 
was a pumping well, hydraulic head at the boundaries was adjusted to reflect increased 
drawdown because of water extraction. 

Model Calibration 
Model calibration was the process of adjusting model parameter values until a 

satisfactory fit between model outputs and field measurements (e.g., heads and 
concentrations) was achieved. Model calibration can be broadly grouped into manual model 
calibration based on trial-and-error methods, or automatic model calibration approaches. 
Manual model calibration based on trial-and-error methods was easy to apply but time-
consuming. Trial-and-error methods also may not guarantee finding the best solutions 
because manipulations by different users may produce dissimilar solutions. This method is 
suitable for a simple, linear model with a small number of uncorrelated model parameters. 

Automatic model calibration using optimization methods is efficient because of its 
ability to handle a high number of model parameters and the accuracy of solutions. 
Optimization methods can be classified as derivative-based and nonderivative-based search 
methods (global search methods). Derivative-based methods converge quickly, but solutions 
may be trapped to local optima. Global search methods have potential to find near-global 
solutions, as well as handle nondifferentiable and discontinuous functions. Popular global 
search methods applied to groundwater model calibration included genetic algorithms  
(El Harrouni et al., 1996; Wang, 1997; Karpouzos et al., 2001), simulated annealing and  
tabu search (Zheng and Wang, 1996), ant colony optimization (Abbaspour et al., 2001), 
particle swarm (Gill et al., 2006; Krauße and Cullmann, 2012), and shuffled complex 
evolution (SCE) (Vrugt et al., 2003). The common disadvantage of global search methods is 
that a large number of model runs and iterations are needed to reach a near-global solution. 
For a computationally expensive simulation model, this method may become impractical. 
Reviews and comparisons of methods for model calibration can be found in many books and 
articles (Cooley, 1985; Sun, 1994; Hunt et al., 2007; Hill and Tiedeman, 2007; Vrugt et al., 
2008; Hendricks Franssen et al., 2009; Fienen et al., 2009; Doherty, 2015; Yeh, 2015). 
Popular software for automatic groundwater model parameter estimation includes PEST 
(Doherty et al., 1994), UCODE (Poeter and Hill, 1999), or MGO (Zheng and Wang, 2003). 

Choosing a suitable approach depends on many factors, including the number of 
model parameters, the model run time, the model linearity (linear versus nonlinear). Two of 
the three aperture models used for this study (LNA and LCA) were two-parameter models. 
The CFA is a single-parameter model. dfnWorks, being a computationally intensive 
software, requires a long run time on parallel machines. However, the flow problem is linear 
because of the assumption of saturated conditions and Darcy flow. Because of these reasons, 
the simple trial-and-error based calibration method was used in this study. 
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Case Study: The BULLION Forced-gradient Experiment (FGE) 
The BULLION FGE was designed to use tracer migration in groundwater to provide 

information on transport parameters (IT Corporation, 1998). A set of three wells, installed 
into fractured lava-flow aquifer and in alignment with the orientation of the major fracture 
system, was subjected to a tracer test. The downgradient well was pumped at a long-term 
average pumping rate of 632.32 m3/day (116 gallons per minute). Tracers were injected into 
the other two wells, and tracer breakthrough curves were captured. The experiment was 
conducted for a long duration of 87 days to accommodate slower-than-predicted 
breakthrough of the tracers. Tracer concentrations for each well were determined at closely 
spaced time intervals to define the breakthrough curves. The objective was specifically to 
observe the transport process and characterize transport parameters (e.g., effective porosity, 
dispersivity, and matrix diffusion) for use in predictive modeling of contaminant transport  
(IT Corporation, 1998). Continuum models with regular structured meshing were used to 
meet this objective. The work presented here was motivated by the possibility of determining 
fracture properties more accurately when a DFN model was used in place of traditional 
approaches to simulate contaminant transport.  

Figure 22 shows the location of the BULLION FGE in Pahute Mesa downgradient of 
the BULLION test. The well farthest from the test was pumped to produce a hydraulic 
gradient while tracers were injected into the other two wells. Tracer breakthrough curves 
were obtained for different flow path segments. Several methods were adopted to simulate  

 

 
Figure 22. Location of the BULLION FGE in Pahute Mesa of the Nevada National Security Site. 
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the BULLION FGE (IT Corporation, 1998). The first method based on porous media theory 
(Theis analysis) indicated that the formation beneath the BULLION site could be modeled as 
a porous media, but is insufficient to fully capture the transport behavior of a fractured 
heterogeneous media. The second approach was based on dual-porosity analysis. Results 
revealed that the matrix conductivities were much lower than the fracture conductivities, 
supporting the conceptualization that fracture flow dominates groundwater movement.  
DFN Model for BULLION FGE 

This study focused on a portion of the BULLION FGE where particles were injected 
at well ER-20-6 #1 and pumping was conducted at well ER-20-6 #3 with a pumping rate of 
7.32 L/s (116 gallons per minute). The flow direction was from well ER-20-6 #1 to well  
ER-20-6 #3. The flow condition at the end of pumping reached steady state. The drawdowns 
are 1.44 m, 1.61 m, and ~7.0 m at the end of the pumping test (87 days) for wells ER-20-6 
#1, #2, and #3, respectively (Geldon, 2004). However, the observed drawdown was 
somewhat noisy and open to interpretation. IT Corporation (1998) estimated drawdowns at 
the three wells at approximately 1.15 m, 1.7 m, and 7 m, respectively. 

The volcanic rocks that control groundwater flow beneath Pahute Mesa can be 
grouped into four volcanic hydrogeologic units (HGUs) based mainly on lithology and 
secondary alteration. These units are lava-flow aquifers (LFAs), welded-tuff aquifers 
(WTAs), vitric-tuff aquifers (VTAs), and tuff confining units (TCUs). The LFA is divided 
into four cooling subunits (CSU), or layers. Each layer consists of a mix of orthogonal 
cooling joints and tectonic fractures, which represent five different fracture sets (Tech. Mem., 
2015). This study only focused on the thickest Stoney Lava interior layer. Three cooling joint 
sets are SP, DP (two steeply dipping, roughly orthogonally striking sets), and BP (gently to 
moderately dipping, bedding-related set). Two tectonic features were created during 
deformation across the Basin and Range Province: T1 and T2. Table 3 presents fracture 
characteristics for the LFA. The data were provided by Golder Associates. 

dfnWorks 2.0 (Hyman et al., 2015) was used to generate a 3-D fracture network and 
simulate flow and conservative transport of the BULLION FGE. Fractures were modeled as a 
rectangular plane. Three aperture conceptual models (CFA, LNA, LCA) were adopted to 
investigate fracture aperture and distribution, and how it affected flow and particle transport. 
Multiple DFN realizations were generated for each conceptual model. Model calibration was 
carried out for all DFN models.  
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Table 3. Fracture statistics used to generate 3-D fracture networks. 

Orientation set probability model for cooling joints and tectonic fracture. 

 
Size model for cooling joints and tectonic fracture. 

 
Alternative size model for cooling joints, based on outcrop and photographic observations in 
the Tiva Canyon Tuff. 

 
Relative set intensity 

 
 

3-D Fractured Network Generation and Meshing 
Each DFN has five fracture families (three cooling joint sets and two tectonic 

features). The mean fracture intensity (P32) is 0.446 (m2/m3). After 3-D DFNs were 
generated, meshing for fractures was done automatically by dfnWorks. The parameter h 
(minimum length scale) needed to be carefully considered while constructing the dfnWorks 
model. As discussed in Hyman et al. (2015), h should be chosen such that all physical 
phenomena of interest have natural scales greater than h, so they can be well resolved by the 
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computational mesh while limiting computational expenses. If h is too large, then it will be 
difficult to generate a DFN that meets the density requirements. If h is too small, then the 
computational cost associated with meshing and solving the governing equations will 
increase. This study used a small h value of 0.25 m. 

By gradually increasing the model domain sizes, this study found that the BULLION 
FGE could be simulated properly (in terms of the computational resources available) at a 
domain size of 250 m × 250 m × 100 m. This domain covers three wells and the entire LFA 
thickness at the BULLION site. Figure 22 shows the locations of the model domain and the 
three wells. The domain was simulated as one layer. The time required for generating the 
DFN network was short (roughly less than five minutes), but the time required for meshing 
was much longer (e.g., approximately four hours using four cores). To adequately capture the 
randomness in stochastically generated networks, a total of 30 statistically equivalent 
realizations of the network was generated. Table 4 summarizes the important statistics of the 
30 DFN realizations before and after eliminating isolated fractures. The results showed that 
the mean and standard deviation of the number of fractures are 10,750±266 fractures. In 
general, the number of fractures after the isolation process is 10,751, which is 39.4 percent of 
the number before the isolation (60.6 percent fractures were removed because they were 
isolated from the backbone).  

Figures 23 and 24 show examples of a 3-D DFN. This DFN realization generated 
27,729 fractures to obtain a fracture intensity of 0.446 m2/m3 (area of fractures/volume of 
rock mass). Eliminating isolated fractures resulted in 10,892 fractures. For fracture families 1 
through 5, the number of fractures were 5,450; 1,494; 306; 3,563; and 73, respectively. 
Fracture families 1 and 3 dominated the network. 

 

Table 4. Statistics of 30 DFN realizations before and after eliminating isolated fractures. 

 Mean 1-stdv 

Before   

Number of fractures 27,267 845 
Intersection length (m) 44,392 630 
Fracture area (m2) 2,801,080 4,408 
After   

Number of fractures 10,751 266 
Intersection length (m) 43,558 609 
Fracture area (m2) 2,221,164 15,630 
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Figure 23. Fracture sizes and their distributions for each of the five fracture families (plots from left to right correspond to families 1 through 5) 
for a realization. 
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Figure 24. A DFN realization showing (a) all five fracture families, (b) cooling joints SP, (c) cooling 
joints DP, (d) cooling joints BP, (e) tectonic fracture T1, and (f) tectonic fracture T2. 

 
Flow and Transport Simulation 

Constant head boundary conditions were assigned to four sides of the model domain. 
No-flow boundary conditions were assigned to the top and bottom of the model domain as 
the LFA was separated from other aquifers by impermeable layers. Because no observation 
wells were located close to the model boundary, this study interpolated groundwater levels at 
the boundaries using available groundwater level measurements in the study area. Two sets 
of head gradients in the north-south directions were specified to consider uncertainty in 
boundary conditions.  

In the first set of boundary conditions (BC1), groundwater levels at the north and 
south boundaries were extrapolated using observed static groundwater levels at the three 
wells on June 2, 1997. Groundwater levels at the east and west boundaries were interpolated 
using the groundwater levels from ER 20-6 #1, ER 20-6 #2, ER 20-6 #3, PM-1, U-20 WW, 
and UE-20bh 1. The first set represented a scenario of negligible drawdown at the model 
boundaries because of pumping at ER 20-6 #3. Because pumping would potentially cause 
drawdown at model boundaries, a second set (BC2) of hydraulic head values were developed 
to represent the uncertainty in boundary conditions. The second set was similar to BC1 
except that the groundwater levels at the end of the pumping test (87 days) were the data 
used in the interpolation. The north-south hydraulic gradients assigned for BC1 and BC2 
were 9/1000 and 11.3/1000, respectively. 
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An important step in modeling the BULLION FGE was to select a proper well skin 
radius using the well package described in the “DFN Methods for 2-D and 3-D Models” 
section to represent the three wells. Different well skin radii were tested by increasing the 
well skin radius incrementally from 1 m to 10 m. For each test, DFN flow and transport 
models were run and the number of active flow zones were identified. The study found that 
using a well skin radius of 10 m allowed adequate intersections between each well and the 
fracture backbone. One to five active flow zones were found by using the well skin radius of 
10 m. This result was consistent with flow zone analyses that used the thermal logs of the 
three wells in which less than three active flow zones were found for each well. 

Figure 25 presents the number of intersections between each well and the fracture 
backbone where each well was represented by two-orthogonal rectangular fractures of  
100 m × 10 m. The number of intersections between fracture backbones and three wells were 
11.87±2.42, 11.53±2.25, and 11.67±2.37 for wells ER 20-6 #1, ER 20-6 #2, and ER 20-6 #3, 
respectively. For the BULLION FGE, a single DFN flow simulation took roughly 50 minutes 
using four processors, but it only needed 15 minutes using 24 processors. Using the flow 
solution, dfnTrans was used to study conservative particle transport. For each DFN model 
run, 50,000 nonreactive particles were uniformly distributed along the well screen of the 
injection well ER 20-6 #1. Particles were collected at ER 20-6 #3 to analyze BTCs. Each 
dfnTrans simulation took roughly one hour using a single processor. The dfnTrans run time 
increased linearly with the number of particles injected and tracking of each particle was 
done sequentially in the code.  

Model calibration was performed to estimate fracture apertures both in terms of the 
values of their ranges and shape of their distributions. The objection function used in model 
calibration was the mean of absolute error (MAE between observed and simulated 
groundwater levels at the two observation wells: 

𝑀𝑀𝑀𝑀𝑀𝑀 = ��ℎ�𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 − ℎ𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜�
𝑛𝑛

𝑖𝑖=1

𝑛𝑛�  (21) 

where n is the number of groundwater level measurements, and ℎ𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜and ℎ�𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 are the 
observed groundwater levels and the mean of simulated groundwater levels found using 
30 DFN model realizations at the location of observation well i. 
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Figure 25. The simulated number of fracture intersections at three wells in the model domain. 
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Model calibration was conducted for 180 DFN models resulting from 30 realizations 
for each of the six modeling scenarios (three fracture aperture conceptual models and two 
sets of boundary conditions). We used the OASIS supercomputer housed at DRI to run 
model calibration in parallel. The parallel codes based on the embarrassingly parallel 
algorithm was adopted from Elshall et al. (2015). Trial-and-error model calibration was used 
because the linearity of the DFN models. Model calibration started with an initial guess of an 
aperture value or distribution and varying this value until the minimum MAE was found. 
Table 5 shows these results. 

Figure 26 presents the trial-and-error runs for three conceptual models of fracture 
apertures under BC2 boundary conditions. The CFA models were calibrated first because 
they were the simplest model with only one parameter. Five trial-and-error batches were 
completed to find an optimal aperture value. For each batch, 30 DFN models were executed 
and the MAEs were calculated using Equation 21. The CFA model with an aperture value of 
480 microns resulted in a minimum MAE of 0.10 m.  

Using the estimated apertures from CFA models as a starting point, the LNA and 
LCA conceptual models were calibrated. Each of these models had two parameters. The 
strategy was to calibrate one parameter at a time. For LNA models, the mean of the fracture 
apertures varied from −7.9940 to −7.6417 (natural log base), whereas the standard deviation 
was as fixed at 0.4. This was equivalent to the mean values from approximately 340 microns 
to 480 microns (prior to deletion of isolated fractures and segments from the network), 
whereas the standard deviation was roughly 45 percent of the mean value, varying from 
150 microns to 220 microns. The minimum MAE was 0.19 m. The lognormal distribution 
(−7.7063, 0.4) gave the best solution prior to deletion of isolated fractures and segments. This 
was equivalent to a fracture network with aperture values (over 30 DFN realizations and after 
deleting isolated fractures) of 487±203 microns. To calibrate the LCA models, the  
first parameter, F in Equation 20, was varied from 0.125x10-3 to 0.135x10-3. The  
second parameter was fixed at 0.4. The minimum MAE was 0.10 m. The mean and  
standard deviation of fracture apertures for each trial model calibration run ranged from 
227±61 microns to 255±69 microns. The optimized fracture aperture was 246±66 microns.  

 
Table 5. Optimized fracture apertures and errors between observed and simulated groundwater 

levels at two observation wells. Fracture apertures were averaged over 30 DFN 
realizations and after deleting isolated fractures.  

No. Conceptual 
models 

Aperture 
(microns) 

MAE and 1-std deviation (m) Overall 
MAE (m) ER 20-6 #1 ER 20-6 #2 

1 CFA_BC1 410±0 0.63±0.72 0.52±1.21 0.57 
2 LNA_BC1 411±171 0.64±1.04 0.89±2.33 0.77 
3 LCA_BC1 208±56 0.64±1.43 0.58±3.17 0.61 
4 CFA_BC2 480±0 0.19±0.41 0.01±0.73 0.10 
5 LNA_BC2 487±203 0.21±0.59 0.17±1.34 0.19 
6 LCA_BC2 241±65 0.14±0.87 0.14±2.01 0.14 
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Figure 26. Model calibration convergence profile for the three conceptual models under BC2 
boundary conditions. The x-axis shows the averaged fracture apertures by 30 DFN 
realizations. 

 
Table 5 summarizes the MAEs and estimated fracture values for six calibrated DFN 

models. The values in Table 5 corresponds to the reduced density network in dfnWorks 
found after deleting isolated fractures and segments. All calibrated models showed good 
agreements between observed and simulated groundwater levels represented by overall 
MAEs of less than 1 m. The MAEs for BC1 models were considerable higher than MAEs for 
BC2 models. Figure 27 shows the distribution of fracture apertures for three calibrated 
models under the BC2 boundary conditions.  
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Figure 27. Fracture apertures of three calibrated DFN models under the BC2 boundary conditions. 

Data are from 30 DFN realizations.  

 

Results 
Simulated Groundwater Levels 

Figure 28 presents the observed and simulated groundwater levels at observation well 
ER 20-6 #1 and ER 20-6 #2 for the six calibrated DFN models. Stochastically generated 
fracture networks showed significant impacts on simulated groundwater levels. Variances of 
simulated groundwater levels were found at both observation well locations for all six 
models. For example, the CFA-BC1 model showed one standard deviation of simulated 
groundwater of 0.72 m and 1.21 m at ER 20-6 #1 and ER 20-6 #2, respectively. The variance 
of simulated groundwater levels by CFA models were always lower than those simulated by 
LNA and LCA conceptual models. Uncertainty in groundwater levels at ER 20-6 #2 was 
always higher than ER 20-6 #1 because ER 20-6 #2 was closer to the pumping well  
ER 20-6 #3. Models with BC2 boundary conditions (i.e., MAEs varied from 0.10 m to 
0.19 m) simulated the groundwater levels better than the models with BC1 boundary 
conditions (i.e., MAEs varied from 0.57 m to 0.77 m). The second set (BC2) of head gradient 
boundary conditions accounted for drawdown at four sides of the model domain. Better 
results with BC2 indicated that the impact of pumping on the boundaries should be accounted 
for in some way in DFN models. The DFN models with BC2 boundary conditions were 
therefore used in remainder of this study. Figure 29 shows different views of groundwater 
level distributions in a calibrated CFA-BC2 model for illustration.  
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Figure 28. Model calibration results with the optimal model parameters: (a) CFA-BC1, (b) LOG-BC1, (c) LCA-BC1, (d) CFA-BC2,  
(e) LOG-BC2, and (f) LCA-BC2. Horizontal blue lines represents the observed groundwater level and the red lines represents  
the mean of the 30 realizations depicted by the yellow bars. 
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Figure 29. Simulated steady-state groundwater level solution for a calibrated model using the 

length-correlated fracture apertures. 

 
Impacts of Aperture Distributions 

Figure 30 shows the impacts of varying the second parameter of LNA and LCA 
models on simulated groundwater levels. This is the scale parameter in the context of LNA 
models and the parameter k in the context of LCA models (see Equation 20). The first 
parameter estimated during model calibration was fixed. The results showed that varying 
standard deviations of LNA models led to negligible impacts on simulated groundwater 
levels. For example, varying standard deviations of fracture apertures from 144.39 microns to 
271.81 microns (the first parameter was fixed at −7.7063, which is equal to 487 microns) 
resulted in MAE variations from 0.18 m to 0.21 m. However, varying the second parameter 
in LCA models led to measurable impacts on simulated groundwater levels. For example, 
MAEs increased from 0.50 m to 0.85 m when varying k from 0.35 to 0.45 (which is equal to 
apertures from 54.67 microns to 80.25 microns). 
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(a) 

 
 

(b) 

 

Figure 30. Impact of aperture distributions on simulated groundwater levels for (a) LNA models 
where standard deviations of fracture apertures were varied from 144.39 microns to 
271.81 microns. The mean was fixed at 487 microns; and (b) LCA models where 
standard deviations of fracture apertures were varied from 54.67 microns to 
80.25 microns. The mean was fixed at 241 microns. The solid red line and the solid cyan 
line show observed groundwater levels at ER 20-6 #1 and ER 20-6 #2, respectively.  

 
Water Flow and Mass Conservation 

The pumping well is at the center of the x-axis and the distance from the pumping 
well to the east and west boundary is 125 m (Figure 22). Figure 31 shows simulated flow 
from six faces of the model domain using calibrated models with BC2 boundary conditions. 
Inflows from the east were quite similar to inflows from west for all three models, which 
shows that the fractures are well connected. High uncertainty was found for simulated flow 
from east, west, and south. The LNA and LCA models showed higher uncertainty in 
simulated flow compared with CFA models. Additionally, the results revealed a key 
difference in simulated inflows and outflows among the three DFN conceptual models. For 
LCA models, inflows were from east, west, and from south with some probability; whereas 
inflows were only from east and west for CFA and LNA models. 
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Figure 31. Simulated water inflow and outflow from the model domain: (a) CFA-BC2, (b) LNA-BC2, and (c) LCA-BC2. 
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Tortuosity and Breakthroughs 
We define tortuosity as the actual travel length of particles normalized by the linear 

distance separating the source and the sink. Figure 32 presents tortuosity when particles were 
released at well ER 20-6 #1 and collected at well ER 20-6 #3 for 30 DFN realizations. Means 
of tortuosity varied from 1.53 to 2.48. The average of 30 DFN realizations was 1.89. One 
standard deviation of tortuosity varied from 0.17 to 0.50. The average of the standard 
deviation for 30 DFN realizations was 0.28. Figure 33 presents the observed and simulated 
BTCs at the pumping wells obtained from the three calibrated models under BC2. The results 
showed that the simulated BTCs did not match the observed BTC. The early arrival times for 
all six models ranged from 1.9 hours to 11.4 hours. This is significantly different from the 
observed BTC, for which the early arrival time was 150 hours. The peak of simulated BTCs 
were several orders of magnitude larger than the observed BTC. The observed deficiency of 
DFN models to produce site-specific, tracer-test breakthrough data forms the basis of 
developing a postprocessing methodology to account for matrix diffusion (which is presented 
in the next section). 

 

 

Figure 32. Simulated particle travel lengths from well ER 20-6 #1 to well ER 20-6 #3. The distance 
between the two wells is 131.4 m. 

 

0 5 10 15 20 25 30

DFN Realizations

0.5

1

1.5

2

2.5

3

3D
 T

or
tu

os
ity



58 

 

Figure 33. Simulated breakthrough curves for the three calibrated models under BC2 boundary 
conditions: (a) CFA-BC2, (b) LOG-BC2, and (c) LCA-BC2. Squares (in blue) are for the 
observed BTC, circles (in red) are the means of simulated BTCs obtained from 30 DFN 
realizations, and cyan lines are the 30 individual simulated BTCs. 



59 

Discussion 
Developing a 3-D DFN flow and transport model in a highly fractured rock  

aquifer, such as the example at the site of the BULLION FGE, was a challenging exercise. 
Thirty fracture network realizations were generated stochastically using Monte Carlo 
approaches. Together with the uncertainty in boundary conditions and fracture aperture 
conceptualizations, this study needed to calibrate and analyze 180 DFN models. Each model 
run required at least 32 gigabytes (GB) of memory (depending on the number of particles 
released during transport simulations) and outputted roughly 40 GB of results. The model 
domain was restricted to 250 m × 250 m in the lateral direction for the BULLION FGE  
given the high number of models that needed to be calibrated and the availability of 
computational resources.  

Boundary conditions showed significant impacts on simulated groundwater levels and 
estimated fracture aperture values. Using the BC1 and BC2 boundary conditions with CFA 
models, the optimal aperture values were estimated at 410 microns and 480 microns, 
respectively. Similar aperture values were found when using LNA and LCA models. The 
BC1 boundary conditions were less realistic than the BC2 boundary conditions, which 
accounts for drawdown at the model boundaries. Because BC2 provided a much better match 
between the simulated and observed groundwater levels (see Table 5), no more alterations of 
boundary conditions were considered for this study.  

Fracture aperture conceptualizations showed significant impacts on estimated fracture 
aperture values. The study found two significantly different ranges of fracture apertures using 
the three fracture aperture models. The CFA and LNA models produced larger apertures 
(410 microns to 487 microns) and the LCA models produced smaller apertures (208 microns 
to 241 microns). In the LCA models, fractures with large sizes were assigned large apertures. 
These fractures then exerted a dominant control on the network because of its large size and 
aperture. The resulting network was strongly connected and the flow was channelized along a 
few major features. In contrast, apertures were assigned randomly in LNA models, which 
potentially created weakly connected networks. Therefore, larger apertures were needed to 
conduct a similar volume of flow. The approach presented here builds up on mechanistic 
understanding of flow between fracture walls and avoids the over homogenization and 
physically unrealistic depiction of fracture networks found in traditional approaches based on 
representative elementary volume concept.  

High uncertainty was found in both the simulated groundwater levels and water 
balances based on 30 DFN realizations of network. The CFA models resulted in the lowest 
uncertainty and the LCA models resulted in highest uncertainty. Additionally, computed 
water balance values were found to be very sensitive to aperture changes in LNA and LCA 
models, but less sensitive to aperture changes in the CFA model. Multiple sets of model 
parameters produced good agreement with the observation data. For example, by adjusting 
apertures, this study found three aperture ranges that matched almost equally well with the 
observed groundwater levels (Figures 28a, 28b, and 28c). This showed the nonuniqueness of 
DFN solutions. Additional datasets are needed to discriminate among aperture conceptual 
models and identify the best choice for a site. 
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Simulated BTCs did not match well with the observed tracer test data. Simulated 
arrival times were shorter than the observed arrival time. The simulated recovery rates were 
higher than the observed recovery rate. The DFN models were designed to only simulate 
advective transport of particles. The poor match between the BTCs highlights the importance 
of other transport processes (e.g., dispersion and matrix diffusion) at the BULLION FGE.  

CALIBRATION OF 3-D DFNs TO TRANSPORT DATA 
As described in the previous section, using dfnWorks to develop a calibrated model 

for the BULLION FGE succeeded in capturing the trends of the groundwater levels in the 
observation wells but failed at matching the breakthrough curves of tracers arriving at the 
pumping well (see Figure 33). This poor match between simulated and observed BTCs was 
mainly attributed to the absence of capabilities in a DFN model to simulate transport 
processes other than advection through a connected set of fractures. The purpose of this 
section is to account for neglected transport processes in advection-only transport simulations 
by postprocessing the breakthrough curves. In this case, the neglected processes were 
diffusive. Solute diffuses in all directions throughout the field test, but does not diffuse in the 
DFN transport simulations. Mathematically, this manifests itself in two ways. In the direction 
longitudinal to the predominant flow, normal to plane where the breakthrough curve is 
measured, travel times to arrive at the plane are modified by dispersion. In the transverse 
directions, the travel times are modified by diffusion into the rock matrix. 

To account for dispersion, a kernel method was used to smooth the breakthrough 
curve, using the dispersion length scale as the bandwidth of the kernel. The contribution of 
each particle to the mass in the breakthrough curve was spread out using the kernel method, 
which is discussed in the following section. To account for matrix diffusion, a mobile-
immobile model is used. Of all the nonlocal-in-time random walk models, the mobile-
immobile model stands out because it leaves the physical meaning of the parameters of the 
spatial operator intact (i.e., the model is based on the premise that total concentration splits 
into mobile and immobile components, which interchange locally). The rock matrix was 
envisioned to be completely immobile (no flow) and infinite in extent. This led to the use of a 
fractional mobile-immobile model, which is discussed in the “Matrix Diffusion” section.  

Dispersion 
A kernel method, that is use of a functional tool to transform the concentrations into a 

new output, was used to distribute the mass of solute particles across time according to 
dispersion. Let there be 𝑛𝑛𝑝𝑝 particles, each with mass 𝑚𝑚𝑝𝑝. To calculate the breakthrough curve 
in the absence of the kernel, the contribution of this mass was distributed according to a delta 
distribution: 

𝐶𝐶(𝑡𝑡) =  �𝑚𝑚𝑝𝑝𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖),

𝑛𝑛𝑝𝑝

𝑖𝑖=1

 (22) 

where 𝑡𝑡𝑖𝑖 is the arrival time at the breakthrough plane of particle 𝑖𝑖. If the particle were to 
disperse, its arrival time would be uncertain. Dispersion was assumed to follow Fick’s law 
and was modeled using a normal distribution. Therefore, the random walk of the particle is: 
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∆𝑥𝑥 = 𝑣𝑣∆𝑡𝑡 +  √2𝐷𝐷∆𝑡𝑡𝜉𝜉 (23) 

where 𝑣𝑣 is the particle’s average velocity, 𝐷𝐷 is the dispersion coefficient, and 𝜉𝜉 is a random 
variable distributed according to a standard normal distribution (with mean 0 and variance 1). 
For this case, 𝐷𝐷 =  𝛼𝛼𝑣𝑣, where the dispersivity, 𝛼𝛼, comes from the field test report (Reimus 
and Haga, 1999). 

The parameters ∆𝑥𝑥 (the distance to the breakthrough plane) and ∆𝑡𝑡 (the arrival time) 
were known from the advection-only random walk on a discrete fracture network: 

∆𝑥𝑥 = 𝑣𝑣∆𝑡𝑡, (24) 

and were used to find 𝑣𝑣 (the average velocity). It was assumed that this average velocity was 
unaffected by the process of dispersion. To find the uncertainty in the breakthrough time of 
the particle, a random variable 𝜏𝜏 was inserted into the random walk equation: 

∆𝑥𝑥 = 𝑣𝑣(∆𝑡𝑡 − 𝜏𝜏) +  �2𝐷𝐷(∆𝑡𝑡 − 𝜏𝜏)𝜉𝜉. (25) 

To find the distribution of 𝜏𝜏, the above equation was reduced such that 𝜏𝜏 could 
explicitly be determined. The advective contribution was assumed to dominate the dispersive 
contribution, that is: 

𝑣𝑣(∆𝑡𝑡 − 𝜏𝜏) ≫  �2𝐷𝐷(∆𝑡𝑡 − 𝜏𝜏)𝜉𝜉. (26) 

Therefore, the contribution of 𝜏𝜏 to the dispersive jump was neglected, and we have: 

∆𝑥𝑥 = 𝑣𝑣(∆𝑡𝑡 − 𝜏𝜏) +  √2𝐷𝐷∆𝑡𝑡𝜉𝜉, (27) 

which can be rearranged to obtain: 

𝜏𝜏 =  ∆𝑡𝑡 −  
∆𝑥𝑥
𝑣𝑣

+  
√2𝐷𝐷∆𝑡𝑡𝜉𝜉

𝑣𝑣
 =  

√2𝐷𝐷∆𝑡𝑡
𝑣𝑣

𝜉𝜉. (28) 

Substituting for 𝐷𝐷 and 𝑣𝑣, we find: 

𝜏𝜏 =  �
2𝛼𝛼∆𝑡𝑡2

∆𝑥𝑥
𝜉𝜉 (29) 

and therefore 𝜏𝜏 is distributed according to a normal distribution with mean 0 and variance 
2𝛼𝛼∆𝑡𝑡2

∆𝑥𝑥
. The concentration can then be calculated according to: 

𝐶𝐶(𝑡𝑡) =  �
𝑚𝑚𝑝𝑝

𝜎𝜎𝑖𝑖√2𝜋𝜋
exp�−�

𝑡𝑡 − 𝑡𝑡𝑖𝑖
𝜎𝜎𝑖𝑖√2

�
2

� ,

𝑛𝑛𝑝𝑝

𝑖𝑖=1

 (30) 

where 𝜎𝜎𝑖𝑖 =  �2𝛼𝛼(𝑡𝑡−𝑡𝑡𝑖𝑖)2

∆𝑥𝑥
. 
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Matrix Diffusion 
A fractional mobile-immobile model was used to account for solute diffusion into and 

out of the rock matrix. It was assumed that solute that enters the rock matrix experiences no 
transport. In the absence of matrix diffusion, the governing equation for concentration of the 
solute is: 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐶𝐶 = 𝐴𝐴𝐴𝐴 (31) 

where 𝐴𝐴 is the spatial operator governing transport (advection and dispersion in this case). In 
the mobile-immobile model, the concentration was split into mobile and immobile phases, 
where the total concentration was the sum of the mobile and immobile concentrations: 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 =  𝜃𝜃𝑚𝑚𝐶𝐶𝑚𝑚 +   𝜃𝜃𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖 (32) 

The total concentration followed the same conservation equation, which is also the 
case with no matrix diffusion: 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐴𝐴𝐶𝐶𝑚𝑚 

   (33) 

except that transport only occurs for the mobile concentration, 𝐶𝐶𝑚𝑚. Using the relationship 
between the concentration phases (Eq. 32), we find: 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐶𝐶𝑚𝑚 +  

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐴𝐴𝐶𝐶𝑚𝑚 

 (34) 

The immobile concentration is further related to the mobile concentration by 
convolution with a memory kernel: 

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑘𝑘 ∗ 𝐶𝐶𝑚𝑚 (35) 

The memory kernel, k, encodes the rate of entry into and the distribution of exit times 
out of the immobile zone (rock matrix) and can be any monotonically decreasing function. 
The key modeling choice is the choice of the memory kernel, discussed below. 

Once 𝑘𝑘 is chosen, the equation for total concentration (Equation 34) is transformed 
into the Laplace domain: 

𝑠𝑠𝐶𝐶𝑚𝑚� +  𝑠𝑠𝑘𝑘�𝐶𝐶𝑚𝑚� +  𝐶𝐶0 = 𝐴𝐴𝐶𝐶𝑚𝑚�  (36) 

where 𝑠𝑠 is the Laplace variable, the hats signify transformed functions, and 𝐶𝐶0 is the initial 
concentration. The solution is: 

𝐶𝐶𝑚𝑚� =  
−𝐶𝐶0

𝑠𝑠�1 + 𝑘𝑘�� −  𝐴𝐴
 

(37) 
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Notice that the solution for concentration in the absence of matrix diffusion 
(Equation 31) is: 

𝐶̂𝐶 =  
−𝐶𝐶0
𝑠𝑠 − 𝐴𝐴

, (38) 

Therefore to account for diffusion, we shifted the Laplace variable by 𝑠𝑠𝑘𝑘�. Therefore, the 
breakthrough curve was numerically transformed into Laplace space with the Laplace 
variable 𝑠𝑠(1 + 𝑘𝑘�) and the inverse transform was performed to find the breakthrough curve, 
which accounts for matrix diffusion. 

For this study, the fractional case considered in Schumer et al. (2003) was assumed to 
model the memory kernel as: 

𝑘𝑘 =  
𝛽𝛽𝑡𝑡−𝛾𝛾

𝛤𝛤(1 − 𝛾𝛾)
, (39) 

where 𝛽𝛽 > 0 and 0 < 𝛾𝛾 ≤ 1 are constants and represent the ratio of porosity in the immobile 
and mobile zones, and the rate of mass transfer between mobile and immobile zones (when 
the memory function follows a power law), respectively. These two parameters are used in 
this study as curve fitting parameters to improve the match between observed and simulated 
breakthroughs. The term 𝛤𝛤 denotes the Gamma function. In this case, 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑘𝑘 ∗ 𝐶𝐶𝑚𝑚) is a 

fractional Riemann-Liouville derivative. Other commonly used cases are listed in Haggerty 
et al. (2000) (see Table 1 𝑔𝑔(𝑡𝑡) column) and in Ginn et al. (2017) (see Table 1 𝑔𝑔(𝑡𝑡) column 
times 𝛽𝛽).  

Metrics to Assess Model Error 
Using the best-fit values for 𝛽𝛽 and 𝛾𝛾 corresponding to the aperture distributions, the 

error in breakthrough was calculated over the time range [𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚], where 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 is the first 
point in time when solute was extracted in the pumping well (in the BULLION FGE) and 
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 is the point in time when the pumping test ended. A vector of times in this range was 
created with 1000 log spaced times to calculate breakthrough and error. At each of these 
times, the breakthrough of the ensemble of the simulations (𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)) and of the field test 
(𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡)) are calculated. 

The absolute error at that time is calculated at each time, 𝑡𝑡𝑗𝑗:  

𝐸𝐸�𝑡𝑡𝑗𝑗� = �𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑡𝑡𝑗𝑗� −  𝐶𝐶𝑎𝑎𝑐𝑐𝑡𝑡�𝑡𝑡𝑗𝑗�� (40) 

then summed and normalized to produce the breakthrough absolute relative error (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵): 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  
∑ 𝐸𝐸(𝑡𝑡𝑗𝑗)𝑗𝑗

∑ 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑗𝑗)𝑗𝑗
 (41) 

The head error, HE, is the absolute difference between the observed and the simulated 
head values computed using the dfnWorks model presented in the “Calibration of 3-D DFNs 
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to Flow Data” section. Weighted error, 𝑊𝑊𝑊𝑊, was calculated as the geometric mean of the 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and the 𝐻𝐻𝐻𝐻: 

𝑊𝑊𝑊𝑊 =  �(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)(𝐻𝐻𝐻𝐻) (42) 

Table 6 summarizes the best-fit values for various aperture models presented in the 
“Calibration of 3-D DFNs to Flow Data” section and the corresponding error metrics. 

 
Table 6. Best-fit values for the parameters of the memory kernel and the error metrics for various 

aperture distribution models under BC1 and BC2. 

BC Distribution 1st 
parameter 

2nd 
parameter 𝜷𝜷 𝜸𝜸 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝑯𝑯𝑯𝑯 𝑾𝑾𝑾𝑾 

1 CFA 410 ~ 10.2 .72 .1536 .57 .296 
2 CFA 480 ~ 9.1 .81 .1617 .10 .127 
1 LNA 380 0.1 10.2 .72 .2090 .80 .409 
1 LNA 380 0.3 10.2 .72 .1291 .78 .317 
1 LNA 380 0.4 10.2 .72 .1199 .80 .310 
2 LNA 450 0.3 9.1 .81 .1769 .21 .193 
2 LNA 450 0.4 9.1 .81 .1478 .21 .176 
2 LNA 450 0.5 9.1 .81 .1748 .18 .177 
1 LCA 1.1 0.3 10.2 .72 .2156 4.46 .981 
1 LCA 1.1 0.4 10.2 .72 .2186 .63 .371 
1 LCA 1.1 0.5 10.2 .72 .2168 1.67 .602 
2 LCA 1.275 0.35 9.1 .81 .4331 .93 .635 
2 LCA 1.275 0.4 9.1 .81 .2842 .15 .207 
2 LCA 1.275 0.45 9.1 .81 .2764 .65 .424 

 

Results 
To use the postprocessing technique, the two parameters for the fractional kernel 

(𝛽𝛽 and 𝛾𝛾) were found by curve fitting. The parameters were fitted from the breakthrough 
curves corresponding to the CFA model for each boundary condition. Figures 34a and 34b 
show the original breakthrough curve from dfnWorks for delta distributed aperture for each 
boundary condition (BC1 and BC2), which consistently predicts early arrivals. Also shown 
on each figure is the best-fit breakthrough curve after postprocessing, which is a significantly 
closer match to the field data. Table 6 shows the values of the parameters used in 
these simulations.  
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Figure 34. Comparison between observed breakthrough curve (actual) and postprocessed 

breakthrough curve for: (a) CFA model using BC1, (b) CFA model using BC2,  
(c) LNA model using BC1, (d) LNA model using BC2, (e) LCA model using BC1, and 
(f) LCA model using BC2. The CFA model results ([a] and [b]) also show the original 
(unprocessed) simulated breakthrough curves. 
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Figure 34c shows the postprocessed breakthrough curves for the LNA for various 
values of standard deviation (𝜎𝜎) using BC1. In this case, considering the error in head alone, 
it would be assumed that 𝜎𝜎 =  0.3 was closest to the standard deviation of the actual aperture 
distribution, even though all three choices have similar errors. However, the error in the 
breakthrough curve with 𝜎𝜎 =  0.4 was the lowest. Figure 34d is the same as Figure 34c, but 
for BC2. In this case, the lowest head error was for 𝜎𝜎 =  0.5 and the lowest breakthrough 
error was for 𝜎𝜎 =  0.4. By weighing the errors, the lowest error for 𝜎𝜎 =  0.4 was found 
for both cases.  

Figure 34e shows the postprocessed breakthrough curves for the LCA distributions 
for various values of the constant 𝑘𝑘 (see Equation 20) using BC1. In this case, considering 
the error in head alone, it would be assumed that 𝑘𝑘 =  0.4 was closest to the parameter of the 
actual aperture distribution. However, the error in the breakthrough curve with 𝑘𝑘 =  0.3 was 
the lowest, even though all three choices had similar errors. Figures 34f and 34e are the 
same, except for BC2. In this case, the lowest head error was for 𝑘𝑘 =  0.4 and the lowest 
breakthrough error was for 𝑘𝑘 =  0.45. By weighing the errors, the lowest error for 𝑘𝑘 =  0.4 
was found for both cases.  

Discussion 
By accounting for errors in both simulated hydraulic head and in postprocessed 

breakthrough curves, which accounted for diffusive processes, it was predicted that if the 
aperture distribution was lognormal, then 𝜎𝜎 =  0.4, and if the distribution was length 
correlated, then 𝑘𝑘 =  0.4. Furthermore, when comparing errors between aperture 
distributions, the lognormal distribution was more likely to perform better than the length-
correlated distribution. Finally, the weighted error in the CFA distributions was lower than 
the corresponding lognormal distributions (for both BCs). Although CFA breakthrough 
curves were used to fit the parameters of the fractional kernel in the postprocessor, this alone 
did not explain the lower errors because breakthrough errors were actually higher for the 
CFA models than the corresponding LNA models. 

The work presented in this section in conjunction with the flow calibration work 
presented in the “Calibration of 3-D DFNs to Flow Data” section establishes a method to 
develop calibrated models for fractured rock aquifers. These models are highly useful 
because they allow fracture aperture uncertainty to be reduced, which in turn helps to more 
accurately describe groundwater flow and transport. The flow calibration part alone 
(“Calibration of 3-D DFNs to Flow Data”) narrows down the choices of aperture distribution 
model and aperture ranges, but it does not provide a unique solution. Using the set of 
solutions obtained from the flow calibration, transport calibration was performed via 
postprocessing techniques (as described in this section), which helped to develop a high 
degree of confidence for specific aperture distributions and ranges of values. 

SUMMARY AND CONCLUSIONS 
Discrete fracture network modeling approaches were used to study techniques for 

upscaling transport in fractured rocks and to develop model calibrated to observed hydraulic 
head and transport data using fracture aperture as a calibration tool. The upscaling study was 
based on solutions obtained from 2-D DFN models (Parashar and Reeves, 2012). The flow 
and transport calibration part of the project was based on solutions obtained from dfnWorks, 
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a state-of-art, 3-D DFN simulator developed at the Los Alamos National Laboratory 
(Hyman et al., 2015a). Field data for the calibration study was obtained from the BULLION 
FGE, a tracer test experiment conducted over a span of 87 days in the summer of 1997 on 
Pahute Mesa in Area 20 of the NNSS (IT Corporation, 1998).  

An extensive model development exercise was undertaken to create a well package 
for dfnWorks. This well package was easy to implement in dfnWorks and was tested for 
accuracy against solutions obtained from examples in MODFLOW. The method modified 
three source code files, so a user would need to modify these files before compiling 
dfnWorks. The recompiling process was the same as the original dfnWorks. Two new 
parameters were introduced: a well skin radius and well skin permeability. Two examples of 
simple deterministic fracture networks and one example of a complex stochastic fracture 
network were constructed to test the functioning of dfnWorks with an integrated well 
package, as well as to test the influence of the new well parameters on flow and transport. 
The results of the three examples revealed that the method enhanced the connectivity 
between a well and fracture backbones, as well as simulated the physical process of flow and 
transport along and around the wells in DFNs. It was found that: 

1) The radius and permeability of well skin at an injection well had significant 
effects on simulated BTCs. Ideally, the radius of injection well skin could be 
determined using observed one-dimensional fracture intensity P10. If there 
were no available data on fracture intensity, the well skin parameters could be 
treated as adjustable model parameters to help produce a close match to field 
observations. 

2) The skin radius and skin permeability of a pumping well showed negligible 
effect on the BTCs. One could increase the pumping well skin radii to 
strengthen connection between the pumping well and backbone to reduce 
numerical issues. 

The random walk method provided a framework for modeling non-Fickian transport 
through fracture networks by using probability distributions to generate particle jump lengths 
and residence times spanning multiple orders of magnitude. Examples of random walk 
upscaling methods used in this study are: Markov directed random walk (MDRW), Monte 
Carlo solution of the Boltzmann transport equation (BTE), and the spatial Markov model 
(SMM). We focused specifically on random walk models to determine what aspects of the 
space and time step distributions (e.g., correlation and coupling) must be accounted for to get 
the most accurate predictions of transport in a 2-D fracture network. The solution obtained 
from a 2-D DFN model was treated as the ground truth, and the random-walk-based 
upscaling methods were evaluated for their performance under varying scenarios. By 
comparing scenarios with different fracture transmissivity distributions (with σ = 0, .5, 1), 
upscaling models, and modeling step definitions, we noted the following major highlights: 

1) As the distribution of fracture transmissivity widened, preferential pathways 
for solute formed, creating correlation in particle velocities over successive 
steps. For the lognormal transmissivity distributions, models that incorporate 
correlation gained an advantage over their uncorrelated counterparts when  
σ = 1. 
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2) Early breakthrough was best predicted by the uncorrelated models (uMDRW 
and uSMM) for σ < 1 and by the correlated models (MDRW, BTE, SMM)  
for σ = 1. 

3) Tailing behavior was best predicted by the SMM models (uSMM, SMM)  
for σ < 1 and by the correlated BTE model for σ = 1. 

4) Comparing the effects of model choice and correlation showed that the effect 
of modeling scale (number of fracture segments used to define modeling 
steps) on model predictive performance was negligible, at least over the range 
(~ 1 km) covered in this study. 

For each DFN realization of the 2-D network, upscaled simulations for six different 
models (MDRW, uMDRW, BTE, uBTE, SMM, and uSMM) at three different length scales 
were conducted. The uBTE performed the poorest, and all three length scales gave similar 
predictions. For future research, more than two-thirds of the model runs can be eliminated by 
excluding uBTE and the two smaller length scales for all models, leaving just five models 
and one length scale, which will allow us to assess the effect of varying DFN parameters 
other than transmissivity distribution and to expand the model to 3-D. 

For the site-specific calibration part of the project, DFN models were developed using 
dfnWorks and calibrated to drawdowns obtained from the BULLION FGE. Fracture aperture 
was used as a calibration parameter. Thirty DFN realizations of fracture network, three 
conceptual models of fracture apertures, and two sets of boundary conditions were 
considered in model calibration and in uncertainty quantification. The results showed that 
fracture network structures, fracture aperture conceptualization, and the boundary conditions 
had significant impacts on the estimated values of fracture apertures and simulated 
groundwater levels and water budgets. It was found that the boundary conditions in a DFN 
model needed to be adequately adjusted when a pumping well was included.  

Constant fracture aperture models showed the least uncertainty in simulated 
groundwater levels and water budgets and were a good starting point for developing 
calibrated 3-D DFN models. Model calibration found optimal fracture apertures at the 
BULLION site ranging from 241±65 microns to 487±203 depending on the conceptual 
model selected for the fracture apertures. The estimated apertures could be used to compute 
the equivalent permeability of fractured rock masses.  

Although the flow calibration exercise in a DFN modeling framework led to a fairly 
constrained range of aperture values, the solution was not completely unique. More than one 
model conceptualization and magnitude of fracture apertures could give rise to similar 
matches with the field-observed values of hydraulic drawdowns. The simulated BTCs by 
dfnWorks were also not in good agreement with the observed tracer test data because the 
DFN models were designed to simulate only advective transport through the connected sets 
of fractures in a network. To include the influence of longitudinal dispersion and matrix 
diffusion in breakthrough responses, a set of postprocessing methods were developed to 
numerically transform the BTC data. The postprocessor was based on a memory kernel 
method that relies on two parameters. The best-fit parameters resulted in a good match of the 
simulated BTC with the observed BTC. This also allowed to the aperture ranges to be further 
constrained, and therefore it greatly reduced the uncertainty present in the model prior to 
application of the postprocessor. The latest version of dfnWorks has incorporated a Time 
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Domain Random Walk (TDRW) methodology to provide correction to a particle’s travel 
time because of matrix diffusion. In TDRW, the time a particle spends in a fracture, T, is 
found as the sum of advective time and a time related to diffusion process between fracture 
and matrix. In future studies, it will be worthwhile to compare the results from TDRW based 
simulations to results of the post-processing techniques presented in this report. 

The work presented in this report is expected to constrain fracture aperture values in 
Pahute Mesa to realistic ranges, inform and support other flow and transport models in the 
Corrective Action Unit, help understand the key transport trends that are manifested in 
fractured aquifer units, and provide ways to effectively upscale transport for potential 
integration to large-scale models. 
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