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EXECUTIVE SUMMARY

The Pahute Mesa Corrective Action Unit on the Nevada National Security Site
(NNSS) contains several fractured aquifers that can potentially provide high-permeability
pathways for radionuclides to migrate away from underground nuclear testing locations.
Although the geometric properties of fractures, such as length and orientation, can be found
using geophysical methods and borehole image analyses, the hydraulic property of fractures
(which are primarily influenced by apertures) are often unknown or have a high degree of
uncertainty attached to their values. The aperture values have a profound impact on
groundwater velocity and are critical to understanding transport scales at Pahute Mesa.
Fracture aperture values and their distributions also have dominant control over radionuclide
transport with potential for long-range correlations or scale-invariant dynamics.
Understanding of the small-scale transport variability in fractures could lead to identification
of distinct characteristics on larger scales. Furthermore, upscaling techniques need to be
developed to adequately predict transport behavior at field scales by capturing the transport
trends of smaller scale networks. This report explores these vital modeling needs to
understand the role of fractures in Pahute Mesa. Discrete fracture network (DFN) models are
the basis for constructing a well-calibrated model to ascertain aperture values of fractures in
lava-flow aquifers. These models are also used to develop and compare the usefulness of
several random-walk-based models to perform transport upscaling.

Discrete fracture network approaches were designed to capture the high degree of
heterogeneity that fractures impart on a flow system, particularly with respect to very broad
ranges in fluid flow and solute transport behavior. By solving for flow and transport in
individual elements of a fracture network, DFN approaches have an advantage over
traditional methods of assigning an upscaled equivalent conductivity tensor and porosity to
continuum grid cells because the local density of fracture networks is rarely high enough to
satisfy the representative elementary volume criterion. This study used two-dimensional
DFN models as the basis for developing random-walk-based upscaling techniques for
fractured rocks. The random walk method provided a framework for modeling non-Fickian
transport through fracture networks by using probability distributions to generate particle
jump lengths and residence times spanning multiple orders of magnitude. The Markov-
directed random walk (MDRW), Monte Carlo solution of the Boltzmann transport equation
(BTE), and spatial Markov model (SMM) were used to explicitly compare the predictive
capability of these models in a variety of scenarios. These upscaling methods were applied in
both correlated and uncorrelated forms. For DFNs with low heterogeneity in fracture
transmissivity, accounting for correlation generally leads to less accurate predictions.
However, as the fracture transmissivity distribution widens, preferential pathways
form and correlating the modeling steps becomes important, particularly for early
breakthrough predictions.

The three-dimensional DFN code, dfnWorks, was used to develop a calibrated model
(using fracture aperture as the calibration tool) for the lava-flow aquifer at the site of the
BULLION forced-gradient experiment (FGE). This experiment injected and pumped tracers
from a system of three wells to obtain site-specific information about radionuclide transport
in fractured rock aquifers at Pahute Mesa in Area 20 of the NNSS. A well package was
developed for dfnWorks to develop a high-fidelity model for the BULLION FGE. Six
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parameters were introduced to define a well and the connectivity between the well and
fracture network. Additionally, the particle tracking code in dfnWorks was modified to track
particles to a pumping well.

Verification of the well package against MODFLOW and MODPATH found an
excellent match in simulated hydraulic head and particle tracking. By integrating the well
package with dfnWorks, multiple conceptual models were developed to simulate flow and
transport in subsurface fractured rocks downgradient from the BULLION test. The model
domain included the three tracer-test wells of the BULLION FGE and the Pahute Mesa lava-
flow aquifer. The model scenarios considered differed from each other in terms of boundary
conditions and fracture aperture conceptualizations. For each conceptual model, a number of
statistically equivalent fracture network realizations were generated using data from fracture
characterization studies. The aperture values in each model were estimated by performing
model calibration. Calibrating the DFN model to hydraulic drawdown data limited the range
of aperture values. These ranges were further constrained when the DFN models were
calibrated to tracer breakthrough data using postprocessors to numerically include the effects
of dispersion and matrix diffusion. The fracture aperture values resulting from this study will
enhance our understanding of radionuclide transport in fractured rocks and support the
development of improved large-scale flow and transport models in Pahute Mesa.
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INTRODUCTION

Fracture aperture has immense influence on flow and transport, and therefore
reducing its uncertainty is key to developing a model that accurately describes groundwater
velocity. The difficulty of establishing representative elementary volume is that fractured
rocks, particularly in case of sparse to moderately dense networks, also necessitate the
development of upscaling methodologies to successfully capture trends at smaller scales that
can be used to predict behavior at larger scales. This report documents the development and
application of two-dimensional (2-D) and three-dimensional (3-D) discrete fracture network
(DFN) models using both site-specific fracture attributes from Western Pahute Mesa (WPM)
and generic networks to study techniques for upscaling transport and calibrating DFN models
with respect to observed field data. Fracture aperture was used as a calibration tool in the
DFN models, which resulted in a more realistic and less uncertain measure of this important
network property.

Groundwater flow and transport within Pahute Mesa are largely dictated by the highly
variable hydraulic properties of the volcanic rock within the area. The eruption and cooling
patterns, degree of welding, and pervasiveness of primary and secondary fracturing
determine these properties. Ash-flow tuff is prevalent in many of the volcanic rock aquifers
in the northern portion of the Nevada National Security Site (NNSS). These units have a high
tendency of fracturing and can form well-connected fracture networks if they are densely
welded (Fenelon et al., 2010). As depositional welding increases between volcanic rocks,
there is a reduction in bulk porosity but an increase in fracture permeability and connectivity.
Complex stratigraphic sequences are produced and welded zones form between nonwelded
segments. Partially/nonwelded tuff that has undergone burial in saturated conditions
normally has a lower permeability and less extensive fracturing, which creates a volcanic
confining unit (Drellack et al., 1997)). Because of the layering nature of the volcanic rocks,
highly conductive units are often interbedded with less conductive units in an alternating
pattern with frequent stratigraphic juxtapositions along faults (Fenelon ef al., 2010).
Rhyolitic lava-flow units are also found in Pahute Mesa as a caldera-filling unit and are
characterized by a wide range of transmissivities and water yield potentials. Both lava-flow
and partially to densely welded ash-flow tuffs often form aquifers because of their tendency
to form highly permeable and connected fracture networks. These extensively layered
volcanic aquifer systems may preclude the vertical flow of water and contaminants between
units, resulting in a largely horizontal transport for each layer.

In fractured geologic media, fractures (e.g., joints, faults, and veins) and fracture
networks are often complex because of their naturally occurring discontinuities. Therefore,
they are the principal pathways for fluids. Fractures are spatially discontinuous features that
exhibit strong variability in geometric and hydraulic properties. This variability is a result of
the complex interplay between current and past stress fields, rock mechanical properties (i.e.,
Young’s modulus and Poisson’s ratio), mechanical fracture interactions, and distributions of
flaws or weakness in a rock mass. Fractures provide the bulk of transport for contaminants in
many geologic formations. Movement of contaminants in fracture networks is often
characterized by the presence of preferential pathways along which the plume moves rapidly.
The linear motion of contaminants along fracture segments and their residence time in a
fracture network depend on both the fluid flow and the fracture network characteristics
(Reeves et al., 2008). The combination of randomly varying fracture attributes spread over



several orders of magnitude gives rise to a flow field, which is highly heterogeneous and
anisotropic. Therefore, the resulting plume geometry can form highly variable shapes that are
dramatically different from the ones observed in homogeneous porous media systems.

The traditional advection-dispersion equation (ADE) was derived for transport in a
relatively homogeneous geologic media that facilitates the dispersive growth described by
Fick’s Law (Bear, 1972). In the case of a fractured media in which transport is driven by a
heterogeneous and anisotropic permeability field, the classical ADE is often found to be
inadequate in capturing the dynamics of contaminant migration (Schumer ef al., 2001). In
many cases, solute particles will move at a super-Fickian rate, meaning that the dispersive
growth of the plume will be faster than the linear rate of growth of variance with respect to
time as predicted by the classical ADE model (Elfeki et al., 1997). In a homogeneous
geologic media, solute particles make short jumps in random directions guided by the flow
field in a process akin to the Brownian motion, altering their path as they come in contact
with the surrounding environment. In fractured rocks, the jump length (the linear motion
along a single fracture) experienced by migrating particles may span multiple orders of
magnitude. Therefore, the transport process in fractured media becomes more complex not
only because of the large variations in length of the forward linear motions, but also because
of the rate at which those motions occur.

Fractured rock masses are typically characterized during field campaigns that
measure fracture attributes from a number of sources, such as boreholes, rock outcrops, road
cuts, and tunnel complexes. Seismic techniques can also be used to image fault structures in
the subsurface. Hydraulic properties of fractured media can be either inferred from the
fracture aperture or hydraulic tests performed on boreholes. Fracture length, density,
orientation, aperture, and connectivity are all needed to construct an accurate representation
of a fracture network in transport models (Parashar and Reeves, 2012). The distribution of
fracture length is a factor that has a strong influence on the connectivity of a network
(Wellman et al., 2009). Fracture lengths provide a control on the uninterrupted jump distance
experienced by a particle moving through the system. Therefore, longer fractures tend to
provide proportionally longer travel times than shorter fractures when transmissivity and
aperture are constant (Darcel et al., 2003; Reeves et al., 2012).

The fracture density of a network denotes the total length of all fracture segments in a
given area. Increasing the fracture density increases connectivity in the network and the
migrating particles tend to sample a higher number of fractures, resulting in transport that is
more similar to that of movement through homogenous media. Variation in fracture density
from a very sparse to highly dense network tends to have a nonmonotonous effect on particle
arrival times. A sparse network may result in long arrival times because shorter pathways to
the domain boundaries are often not available. A highly dense network may also result in
long arrival times because of the many tortuous pathways that connect the source location to
the domain boundary. This also affects the plume geometry and the amount of spreading
because the fractures sampled by the particles play a key role in determining the relative
distances between the particles as time progresses and the rate at which they converge or
diverge in space (Smith and Schwartz, 1984; National Research Council, 1996; Darcel et al.,
2003). It is only at an extremely high fracture density that particles travelling through the
network will experience enough unresolved heterogeneities that the transport pattern and
plume growth rate will begin to resemble movement through a homogeneous medium.



Aperture is the characteristic length between two walls of a fracture. A larger aperture
allows for a higher volume of fluid flow to occur through a particular segment of the
network, whereas a smaller aperture restricts the occurrence of flow through a segment of the
network (Smith and Schwartz, 1984).

The orientation of a fracture is represented by its dip and strike angle in three
dimensions and by the angle the fracture trace lengths make with the axis of reference in two
dimensions. Fractures in a given set are typically grouped around a mean orientation with
some amount of dispersion to represent variability about the mean. Less dispersion around
the mean orientation results in a more uniform fracture ensemble (i.e., a higher number of
fractures closer to the mean orientation) and can either decrease or increase arrival times
depending on the relation of the fracture orientation with the hydraulic gradient. More
dispersion in the distribution of angles typically leads to larger spread in the plume geometry
in sparsely to intermediately dense networks (Rouleau and Gale, 1985; Wellman et al., 2009;
Reeves et al., 2012).

Of the approaches to solve for flow and transport through fractured rocks (Sahimi,
2011; Hadgu et al., 2017), DFN modeling has advanced significantly with the increase in
computational power and the wide availability of high-performance computing systems. The
DFN explicitly represents individual fractures. It assumes the rock matrix is impermeable
and fluid flow can only occur through a connected fracture network (Cacas et al., 1990a,b;
Dershowitz et al., 1993; Erhel et al., 2009; Pichot et al., 2012; de Dreuzy et al., 2012;
Parashar and Reeves, 2012; Reeves et al., 2013; Hyman et al., 2015a; Huang et al., 2016).
By including a detailed geometric representation of the connectivity structure in a network,
DFN models allow for more accurate predictive simulations of flow and transport through
fractured rocks. Discrete fracture network approaches are favored in mechanistic studies
because the local density of fracture networks is rarely sufficient for the representative
elementary volume criterion to be satisfied, and traditional approaches of assigning an
equivalent conductivity tensor and porosity to continuum grid cells tend to overly
homogenize the representation of networks (Berkowitz, 2002; Hagdu et al., 2017; Neuman,
2005, 2008; Klimczak et al., 2010). Despite their high computational expense, DFN
simulations produce realistic distributions of velocity that result from multiscale
heterogeneity and fracture connectivity that often manifest as rapid transport in longer,
highly connected fracture segments and retention in weakly connected fractures. Using DFNs
to develop high-fidelity models for fractured rocks is supported by several studies that have
successfully linked fracture network attributes to fluid flow and solute transport behavior
(Smith and Schwartz, 1984; Reeves et al., 2008b,c, 2014; Zhang et al., 2013; Kang et al.,
2015a; Parashar and Reeves, 2017).

DFN METHODS FOR 2-D AND 3-D MODELS

The DFN models were constructed by incrementally adding fractures with random
attributes (e.g., orientation, length, aperture, and location) to a network until a specified
density criterion was reached. Models included both deterministic and stochastic features,
and the process consisted of selecting the length values and orientations from separate,
specified distributions. This section provides a brief summary of Desert Research Institute’s
(DRI) in-house 2-D DFN code and the 3-D DFN suite of software, dfnWorks, developed at
the Los Alamos National Laboratory (LANL). A well package was developed at DRI for



dfnWorks, the details of which are also provided in this section. The 2-D DFN models, less
computationally intensive than the 3-D models, allows for construction of large scale models
and hence are used in this study to explore development of upscaling techniques for fractured
media. The 3-D models on the other hand are used in this study to understand dynamics of
flow and transport at more limited scale where the accuracy of predictions and investigation
of the influence of various parameters on flow and transport simulations justifies the higher
computational cost.

2-D DFN

The 2-D DFN flow and transport computation and fracture mapping code was
developed at DRI during a previous project supported by the Department of Energy (DOE) at
the NNSS (Reeves et al., 2014). The code was reviewed by Underground Test Area (UGTA)
participants for: (1) correctness of equations algorithms and numerical solution techniques,
(2) conformance of methods to accepted/published concepts, (3) code functional
requirements and verification, (4) test problems and acceptance criteria, and (5)
documentation to ensure proper installation.

There are a number of inputs to the DFN code that allow the user to create network
length characteristics through fracture generation. One of these inputs is the length of the
initial fractures themselves. The input of a minimum fracture length allows the user to
condition the smallest sizing of the initial fractures. Fractures can be stochastically generated
until a user-designated network density threshold is reached. For a 2-D network, this is
defined as the total length of all fractures divided by the domain area (Parashar and Reeves,
2012). Using a seed number to initialize the random variates for each run allows the program
to recreate a statistically similar network for a set of conditions. Once the raw fracture file is
generated, further geometric analyses can be conducted to determine the number of times a
fracture is intersected by other fractures in the network, and the corresponding distribution of
segment lengths. The code is also designed to scan the network for clusters, individual
fractures that are unconnected to the rest of the networks, and dead-end portions. Figure 1
shows a process that removes these isolated fractures to help extract the connected portion of
the network.

Figure 1.  (a) A fracture network on a 100 m? size domain and (b) the connected portion of network
after deleting isolated features and dead ends.
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The DFN models are computationally intensive and the central feature of the code is

computation of flow in fracture segments, which results in a set of V linear algebraic

dominant sparse matrix representing the connectedness of internal nodes, X is the vector of

equations of hydraulic head 4 (N being the total number of points at which two fractures
unknowns (the value of hydraulic head at the internal nodes), and B is the known vector

intersect). The equations are cast in matrix form AX

defining the connection between the boundary nodes and the internal nodes. The sparsity
pattern of the coefficient matrix is irregular and it is not unreasonable to expect that more

(Parashar and Reeves, 2012). The matrices are iteratively solved using either a biconjugate
gradient solver or a minimum-residual method for sparse matrices. These methods are part of
Krylov subspace’s Lacoz biorthogonalization methods, the details of which can be found in
advance linear algebra texts. Figure 3 shows the verification check for the biconjugate
gradient solver in the 2-D DFN code by comparing the solution obtained from the coded

than 99.9 percent of the matrix elements equal zero for a moderately sized network (see
subroutine to the solution obtained using MATLAB.

Figure 2). The eigenvalues of such matrices are spread over several orders and lack the
clustering necessary for the fast convergence of iterative techniques for linear systems

Location of nonzero elements is shown by solid dots in visual representation of the

Figure 2.

sparsity pattern of a coefficient matrix of size 5340 (99.92 percent elements are zero).
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Figure 3. Comparison between MATLAB and 2-D DFN code solutions for a linear system
consisting of 586 fracture intersection points.

3-D DFN: dfnWorks

The computational suite dfnWorks (Hyman ez al., 2015a) is a state-of-the-art DFN
simulator that solves for fluid flow and Lagrangian solute transport within complex, 3-D
fracture networks. dfnWorks has three modules: dfnGen, dfnFlow, and dfnTrans. dfnGen
stochastically generates 3-D DFNs, removes isolated fractures using the feature rejection
algorithm for meshing (FRAM) (Hyman et al., 2014), and creates high-quality conforming
Delaunay triangular meshes on the generated DFNs using the LaGriT meshing toolbox
(George et al., 1999). Near fracture intersections, the mesh is refined to allow for smooth and
accurate representation of high-pressure gradients and sharp velocity contrasts. Discretization
of the mesh coarsens farther away from fracture intersections to reduce computational costs.
Once a network is constructed and meshed, the dfnFlow module solves for steady-state or
transient saturated flow conditions using the massively parallel, open-source, subsurface flow
and reactive transport finite volume code PFLOTRAN (Lichtner et al., 2015). dfnTrans, an
extension of the Walkabout particle tracking method (Painter, 2011; Painter et al., 2012;
Makedonska et al., 2015), is used to determine pathlines through the DFN and simulate
solute transport. The dfnWorks suite has been successfully applied in the areas of nuclear
waste repository science, hydraulic fracturing, and CO; sequestration (Hyman et al., 2015b,
2016; Karra et al., 2015; O’Malley et al., 2015; Makedonska et al., 2016; Hyman and
Jiménez-Martinez, 2018; Hyman et al., 2018). The entire workflow of dfnWorks 1.0 was
validated in Hyman et al. (2015a).



In its current form, dfnWorks does not include a well package. Therefore, this study
developed a method to represent wells in 3-D DFN models and applied it to site-specific
models. The method was validated against numerical solutions using MODFLOW
(Harbaugh, 2005), MODPATH (Pollock, 2012), and three hypothetical examples. The details
of this well package are provided below.

Representation of a Well in 3-D DFN

In DFN models, fractures are randomly generated and placed in the model domain.
The volume of fractures is often very small compared with the volume of the rock matrix. As
a result, computational cells on a planar fracture may not be available at the necessary
location to represent a well (Figure 4a, Well 1 has no intersections with the fracture
backbone). Furthermore, fracture planes may only represent a small portion of the well
screen (Figure 4a, Well 2 only intersects one fracture in the well screen interval). This study
introduced a conceptualization that used two rectangular fractures to represent a well in a
3-D DFN model, as shown in Figure 4. Alternative conceptualization of wells such as line
elements (2-noded elements) are not amenable for integration with a finite elements based
code such as dfnWorks. The two fractures were orthogonal and of equal width and length.
Additional parameters used to define a well included: (1) well screen top (ztp), the top of the
open, saturated well-screen interval equals the top of the two fractures (note that unsaturated
conditions cannot be simulated here as the cubic law requires the void space between fracture
walls to be completely filled by water); (2) well screen bottom (zvot), the bottom of the open
well-screen interval equals the bottom of the two fractures; (3) well radius (rw), the distance
from the center of the well to the inner edge of the well casing (as shown in Figure 4b),
which is always kept equal to the actual well radius; and (4) the permeability of the well
screen (kw). The area defined by ziop, zbot, and ry represents the well screen. The first three
well parameters were determined based on well construction diagrams. The last parameter
was used to assign high permeability to the well screen. Because the permeability of well-

sorted gravel can be as high as 10" m? (Bear, 1988), this study assigned k,, =107 m? to

allow free movement of water in the well screen area. The purpose of this conceptualization
was to model a typical water well that had well casing and well screens with packing material
in the annular space between the well screen and the borehole wall. For a well without well
screens, zip can be equal to the top of the saturated borehole and zyoc can be equal to the
bottom of the borehole.
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Figure 4. Illustration of a well in a 3-D DFN model that shows: (a) intersections between the well
and fractures, (b) the plan view of the well, and (c) the 3-D view of the well intersected
by one horizontal fracture. Blue solid lines show the Delaunay triangulations. The mesh
is coarsened as the distance from the well center increases.



In reality, a water well often has a small diameter (on the order of inches). However,
small well diameters run the risk of having no intersection between a well and fractures in
the DFNs. Additionally, a small well diameter requires an extremely small cell size in
discretizing the well screen. As a result, dfnWorks may fail to converge when simulating a
pumping well and resolving flux and hydraulic gradient over very small lengths. To
overcome these issues, this study introduced two nonphysical parameters (i.e., a parameter
not related to the physical design of the borehole or screen interval) to define a well. The first
parameter was the well skin radius (rs), which is the distance from the axis of the well to the
outer edge of the skin zone. The term ‘skin zone’ here should not be confused with the
physical zone of enhanced or reduced permeability around a borehole formed during the
completion of a well. The term ‘skin zone’ is an artificial construct here (without any
connection to a physically measureable quantity) intended to be carefully adjusted in
simulations to provide desired level of connection between a well and the rest of the fracture
network. This parameter controls the connection between a well and fracture backbones, and
it can be increased to enhance the connectivity. The well skin radius needs to be large enough
to allow at least one intersection between the well and fracture backbones. Using too small of
rsmay lead to no intersections, or a small number of intersections between the well and the
surrounding fractures. Using too large of 7s may lead to an overestimation of intersections.
Therefore, it is best to constrain this value to observed fracture intensity, Pio (i.e., the number
of fractures per unit length of borehole), where possible. The second parameter is well skin
permeability (ks), which represents the permeability of the area around a well screen. In
practice, this parameter would mainly depend on the permeability of rock matrix, drilling
equipment, and drilling methods. The well skin permeability is difficult to measure. A good
starting point to fix the value of well skin permeability in DFN simulations is to make it
equal to the value of the rock matrix permeability. The well skin radius and the well skin
permeability are the most important components of this well package because they provide
the necessary connection between a well and the fractured aquifer.

Computational issues may arise from using rectangular orthogonal fractures to
represent the well radius, 7. The DFN models assume that the rock matrix is impermeable
and often ignore tiny fractures (submeter scale) to stay within computational constraints. In
reality, rock matrix does conduct flow (albeit small), and tiny fractures do play a role in
defining connectivity between a well and the fracture backbones. The roles of rock matrix
and tiny fractures are especially important near pumping wells because the large head
gradient can induce a significant amount of flow. In our conceptual model, the well skin zone
was a substitute for the rock matrix and tiny fractures.

Method Implementation in dfnWorks

Defining two orthogonal rectangular fractures in dfnWorks is straightforward. Two
additional tasks to successfully integrate a well in dfnWorks are: (1) to identify cells that
represent a well and (2) to assign a pumping rate for each cell in the well zone.

For the first task, LaGriT was used to identify the model cells that represented the
well screen and the well skin zone in the same way that dfnWorks identifies boundary cells.
The file “lagrit_scripts.py” in dfnWorks was modified to include this enhancement. Figure 4c
shows the discretization of the well screen into multiple finite element cells. Total volumetric
flow rate of a pumping well is:



0=>0, (1)

where 7 is the total number of model cells representing the well screen, i is the index, and Q;
is the flow at the ith cell of the well screen. For the second task, a built-in function in
PFLOTRAN was used to assign a flow rate for a pumping well. Depending on which scaling
options are selected, the total volumetric flow rate of a pumping well can be allocated for the
pumping cells as: (1) a function of cell volume and permeability, (2) a function of the
interfacial area and permeability of neighboring cells, and (3) a function of cell volume.
Therefore, a pumping cell that has a large cell volume, high permeability, and/or large
interfacial area of neighboring cells will be assigned a higher pumping rate. Because the
permeability values assigned to all pumping cells are the same in our method, Option 1 is
equivalent to Option 3. Option 2 is recommended when there is a significant difference in the
permeability between k; and 4., Injection wells can be simulated in the same way as pumping
wells, except that the flow rate is positive instead of negative.

Tracking particles to a pumping well was modified in dfnWorks such that if any
particles at any time intersected the well screen (i.e., the horizontal distance between a
particle and pumping well is less than or equal to rv), they were removed from the system
and the particle tracking for that particle ends. dfnWorks outputs flow solutions at all model
cells in terms of hydrostatic pressures. This study developed a code to convert pressure
values into hydraulic head because hydraulic head data are widely available for model
calibration in groundwater modeling studies. Three dfnWorks source files (i.e.,
lagrit_scripts.py, flow.py, and TrackingPartl.c) were modified in this study to incorporate
wells and track particles to a pumping well. Several new parameters were added to the input
files of dfnWorks. To access the well package, a user would need to update these files before
installing dfnWorks 2.0.

Verification of the Method

The proposed method was verified against U.S. Geological Survey (USGS)
MODFLOW (Harbaugh, 2005) and MODPATH (Pollock, 2012) models. MODFLOW
simulates groundwater flow through porous media using the equivalent porous medium
(EPM) modeling approach. However, it can be used to design a numerical test to verify the
methods and codes introduced, such as a system of two parallel rectangular fractures with a
pumping well in the center. Fractures can be represented by a microscale-layer-thickness
model and the impermeable rock matrix around the fractures can be represented as aquitards.
MODPATH is a particle-tracking, postprocessing program that computes 3-D flow paths
using output from MODFLOW. The verification focused on the accuracy of the hydraulic
head simulations (excluding the heads at the location of the well) and tracking particles
into a well.

dfnWorks was used to create a simple DFN model with two deterministic rectangular
fractures in a model domain of 100 m X 100 m x 10 m. The fractures were 100 m x 100 m,
placed in the horizontal plane, and crosscut four sides of the model domain. The fracture
apertures were fixed at 200 x 10~ m. The well screen intervals were 10 m and spanned the
entire domain thickness. The pumping well was placed in the middle and constant hydraulic
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heads were assigned at the four sides of the model domain. The top and bottom of the model
domain were assigned no-flow boundary conditions. Particles were released uniformly at the
left of the model domain, on the edge of each fracture.

This DFN model can be interpreted as an EPM model that includes five model layers.
Layers 1, 3, and 5 are aquitards that represent impermeable rock matrix. Layers 2 and 4 are
aquifers that represent the two fractures with the aquifer thickness equal to the fracture
aperture. For the flow model, the layer property flow (LPF) package in MODFLOW was
used to specify properties controlling flow between cells. The time-variant specified head
(constant head boundary [CHB]) package was used to assign constant heads for all cells on
the side boundaries. The well was represented by two model cells, one in Layer 2 and the
other in Layer 4, and simulated using the WEL Package. MODPATH (Pollock, 2012) was
used to track the movement of conservative particles to the pumping well.

The cubic law (Witherspoon et al., 1980) was used to relate fracture aperture to
fracture hydraulic conductivity:

b’pg
K; = 2
= T (2)

where Kt is fracture hydraulic conductivity, a is fracture aperture, p is the water density, g is
the acceleration because of gravity, and y is the dynamic viscosity. Using b = 200x10~° m,
p=997.16 kg/m*, g=9.81 (m/s?), and x=8.9x10" kg/(m.s) at 25°C resulted in

Kr=3,163 m/day. By rearranging Equation 2 and using the relation of hydraulic conductivity
to permeability, the fracture permeability is & =b* /12 =3.33x10" m>.

dfnWorks and MODFLOW were run in steady state and particle travel times were
grouped into one-hour increments. The simulated hydraulic heads (Figure 5a) and
breakthrough curves (BTCs) showed a perfect match at the pumping well (Figure 5b). This
verified the successful implementation of the proposed method in dfnWorks.
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Figure 5. Comparison of simulation results of dfnWorks and MODFLOW and MODPATH for (a)
simulated hydraulic heads (in meters) and (b) simulated BTCs at the pumping well.
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The following section uses three hypothetical examples to investigate: (1) how to
assign well skin radius and permeability values, and (2) determine the influence of these two
parameters on transport simulations.

Examples to Demonstrate Method Application

Examples 1 and 2 use deterministic DFNs (which are different from the stochastic
DFN used in Example 3) to investigate questions about the well skin radius and permeability
given different model domain sizes. For Example 1, a DFN model was created using four
deterministic rectangular fractures in a cubic model domain of 100 m in each dimension. Of
these fractures, three were in the horizontal direction and one was in the vertical direction
(Figure 6). All four fractures were 100 m x 100 m and crosscut four sides of the model
domain. Two wells were placed at different depths within the model domain. The injection
well was placed at x = -25 m, y = 0 m and the pumping well was placed at x =25 m, y =0 m.
The well screens were 10 m long and located from z = —25 m for the pumping well and to
z =25 m for the injection well. Constant hydraulic heads were assigned to the four sides of
the model domain. The top and the bottom of the model domain were assigned no-flow
boundary conditions. Pumping rates were scaled by cell volume, which means that the
assigned pumping rate of 10~* m*/s was proportionally distributed among the pumping cells
based on the cell volumes. For Example 2, a DFN similar to the one in Example 1 was
generated, except the model domain was 500 m x 500 m % 100 m; the injection well was
placed at x = -250 m, y = 0 m; and the pumping well was placed at x =250 m, y = 0 m.

Example 3 was inspired by a case study at the BULLION forced-gradient experiment
(FGE) (IT Corporation, 1998; Reimus and Haga, 1999) with the hope that the method would
mimic a tracer experiment in fractured geologic media. The BULLION FGE was a tracer
experiment designed to obtain site-specific information about the transport of radionuclides
in saturated fractured volcanic rock at Pahute Mesa in Area 20 of the NNSS. Three wells
were installed downgradient from the location of the BULLION test. The well farthest from
the test was pumped to produce a hydraulic gradient while tracers were injected into the other
two wells. The model domain was 250 m x 250 m x 100 m in which fractures were
uniformly distributed with random dip and random strike. Fracture sizes followed a
truncated power law distribution with a power law exponent of 2.5 and had minimum and
maximum sizes of 2 m and 500 m, respectively. The boundary conditions were the same as
Example 1. In the steady-state condition (before pumping), a hydraulic head of 250 m was
applied to the bottom face, which was converted to the equivalent hydrostatic pressure of
2.446 x 10° pascal (Pa). Three wells were placed inside the model domain to represent the
injection well (Wel-01), the monitoring well (Wel-02), and the pumping well (Wel-03). The
well screens were 20 m long and located from z=—-10 m to z = 10 m. Table 1 provides more
information on the three examples.

dfnWorks was used to generate fracture networks, and then simulate steady-state
pressure. The codes developed in this study were used to simulate hydraulic heads and
perform particle tracking to a pumping well. The results were analyzed with respect to
simulated hydraulic heads, water balance, particle pathlines, and simulated
breakthrough curves.

12



Table 1.  Parameters used for three hypothetical examples.
Parameters Example 1 Example 2 Example 3
Model domain size (m) 100 x 100 x 100 500 x 500 x 100 250 x 250 x 100
Fracture characteristics 4 deterministic 4 deterministic =~ Randomly distributed

rectangular rectangular
fractures fractures

Fracture density P3; (m*/m?®) 0.040 0.032
Number of wells 2 2
Well screen interval (m) 10 10
Well skin radius (m) 2 2
Well permeability (m?) 1077 1077
Constant fracture aperture (m) 200 x 107¢ 200 x 10°°
Constant fracture permeability” (m?) 3.33x107° 3.33x107°
Number of initial particles 90,000 90,000
Pumping rate (m*/s) 10 107
Water column at bottom boundaries (m) 250 250
Hydrostatic pressure at bottom 2.5x10° 2.5x10°

boundaries z = —-50 m (Pa)

elliptical fractures

0.35
3
20
land 5
107
200 x 107°
3.33x107°
100,000
10 and 107
250
2.5%10°

“Fracture permeability is calculated from fracture aperture using the cubic law (Klimczak et al., 2010).

Figure 6a shows the DFN in Example 1 and the locations of the two wells. This figure
also illustrates the simulated steady-state hydraulic head converted from the pressure solution
by PFLOTRAN. Figure 6b shows the high-resolution mesh around the pumping well and
highlights (in red) the cells used to represent the actual well screen. The 121 red cells
represent the well screen, with the small cell sizes near the well center and the coarser cell
sizes farther away. The total volumetric flow from 121 pumping cells was 8.64 m*/day
(0.1 L/sec). Inflows were from four sides of the model domain. The inflow from the north
was equal to the inflow from the south (1.82 m3/d). The largest inflow (4.43 m>/d) was from

the east, whereas the smallest inflow (0.57 m*/d) was from west.
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Figure 6.  The configuration of Example 1 showing (a) a DFN network with wells and simulated
hydraulic head solution, and (b) a closer look at the pumping well with Delaunay

triangulations. Red cells mark the pumping well screen and yellow cells represent the
highly conductive area around the well.

Figure 7a shows the particle pathlines for Example 1, in which 90,000 particles were
instantaneously and uniformly released on three edges of each fracture at the west side of the
model domain (30,000 particles on each left edge of fractures 1 to 3). Figure 7b shows the
BTCs. All 90,000 particles were captured by the pumping well, resulting in a 100 percent
recovery rate. The earliest and latest particle arrival times were 25.6 (hours) and 2,056.8
(hours), respectively. The BTCs revealed three peaks owing to the release of particles from
three different distances from the pumping well. The recovery rate was lower for the case in
which the particles were released from the injection well (Figure 7¢). Only 85,686 particles
(95.21 percent) were captured at the pumping well in this scenario. Figure 7d shows the BTC
with only one peak because all particles were initially released at the same location.

Based on Examples 1 and 2, four experiments were designed to evaluate the
influences of well skin permeability and radius on simulated BTCs at a pumping well. Given
the fixed number of intersections between a well and the fracture backbones (which equals
one in these examples), the two parameters control: (1) how quickly particles move into
fracture backbones after they are released at an injection well and (2) how quickly particles
are removed by a pumping well. Therefore, the two parameters will potentially affect the
simulated BTC at a pumping well depending on: (1) how large the well skin radius is
compared with the distance between an injection well and a pumping well, and (2) the flow
dynamics around the injection well and the pumping well (i.e., a high flow velocity value
around and along a well may make the BTCs less sensitive to these two parameters). In
addition, the two parameters can affect the convergence of flow simulation.
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Figure 7.  Particle pathlines and BTCs for Example 1 that show particles uniformly distributed over

the west side of the model domain ([a] and [b]) and particles uniformly distributed at the
injection well ([c] and [d]).

Table 2 shows detailed parameters for four numerical experiments. In these
experiments, the permeability of both the injection well and the pumping well varied over a
range of 10~7 m?to 10~!® m? at intervals of one order of magnitude. The well skin radius
varied from 1 m to 5 m at 1 m intervals. All experiments were conducted for the 100 m DFN
model domain in Example 1 and the 500 m DFN model domain in Example 2. The
experiments focused on cases in which particles were released at an injection well.
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Table 2.  Configurations of Examples 1 and 2 to evaluate the influences of well skin radius

and permeability on simulated BTCs at a pumping well. Particles are released at an
injection well.

) Skin Permeability (m?) Skin Radius (m)
Experiment — 5 . .
Injection Well Pumping Well  Injection Well Pumping Well
1 107 to 1071° 1077 2.0 2.0
2 1077 107 to 10°1° 2.0 2.0
3 10”7 10”7 1.0to0 5.0 2.0
4 1077 1077 2.0 1.0t0 5.0

Experiment 1 evaluated the effects of injection well skin permeabilities on simulated
BTCs at the pumping well for both the 100 m and 500 m DFN model domains. Figure 8a
shows that BTC of conservative particles at the pumping well gets delayed (i.e., transport
time is longer) as the well skin permeability of the injection well reduces. The 500 m DFN
model domain showed similar results (Figure 8b). In the second experiment, varying the
pumping well skin permeabilities showed no effect on the simulated BTCs. Therefore,
transport is sensitive to injection well permeability but not as sensitive to pumping well
permeability. This was likely caused by the short range (less variability) of travel times in the
vicinity of a pumping well (owing to the steep hydraulic gradient induced by the pumping),
whereas the travel times were wide ranging in the vicinity of an injection well.
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Figure 8.  Simulated BTCs using four different values of injection well skin permeability for:
(a) Example 1, the 100 m DFN model; and (b) Example 2, the 500 m DFN model.
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Experiment 3 examined the effects of injection well skin radii on simulated BTCs at
the pumping well. The skin radius here is conceptualized as a calibrated parameter as it
cannot be measured directly. The results showed that injection well skin radii had significant
effects on simulated BTCs at the pumping well for the 100 m DFN model, as shown in
Figure 9a. Reducing the injection well skin radii from 5 m to 1 m significantly decreased the
peaks of the simulated BTCs. For the 500 m DFN model, the BTCs had similar trends when
using injection well skin radii of 3 m, 4 m, and 5 m, as shown in Figure 9b. Using smaller
values such as 1 m and 2 m resulted in different BTCs, potentially because of numerical
issues. The results revealed that injection well radii had a significant impact on simulated
BTCs and that the impact was less in a large model domain. In the fourth experiment,
pumping well skin radii showed no effects on the simulated BTCs.

For the BULLION FGE case study (Example 3), four stochastic DFNs were
generated at two pumping rates (10~ m*/s and 10~> m®/s) and two well skin radius values
(1 m and 5 m). This created 16 model scenarios. Using a 5 m well skin radius, the results
showed that only one of the four stochastic DFNs had all three wells intersecting one or more
fractures. For this DFN, the number of fractures that intersected Wel-01, Wel-02, and Wel-03
were 2, 4, and 3, respectively. Figures 10a and 10b show the simulated hydraulic heads and
particle tracks for this DFN using the low pumping rate of 10~* m?/s. The results showed
noncircular contours of simulated hydraulic heads around the pumping well exhibiting
drawdown characteristics for this DFN.

Particles were distributed uniformly along the vertical profile of the injection well
(Wel-01) (Figure 10). Particles moved out of Wel-01 into the hydraulic backbone through a
single preferential pathway. Most of the particles then migrated through Wel-02 (since
Wel-02 was collinear with Well-01 and Wel-03 and was assigned a higher permeability than
the surrounding fractures), and underwent enhanced spreading because of the higher number
of intersections between Wel-02 and the backbone (Figures 10a and 10b). Finally, the
particles exited the computational domain via the pumping well, Wel-03.
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Figure 9.  Simulated BTCs using five different values of injection well skin radii for:
(a) Example 1, the 100 m DFN model domain; and (b) Example 2, the 500 m
DFN model domain.
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Figure 10. Simulated steady-state hydraulic heads and particle pathlines for the 3-D DFN of
Example 3: (a) 3-D perspective of the hydraulic head distribution, (b) a top view, and (c)
a ZX cross-sectional view. Background colors illustrate the simulated hydraulic heads.
Black lines are hydraulic head contours and colored lines depict particle tracks (color
coded according to travel time).
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The models failed to converge when using the high pumping rate of 10~ m>/s. The
convergence issues are likely related to the steep hydraulic gradients which are not properly
resolved by the iterative solvers in the vicinity of a pumping well. Use of a I m well skin
radius resulted in zero intersections between one or more wells and the hydraulic backbone.

Discussion of the Method

The method used in this study provided a way to integrate a well into a DFN model
and ensure that the well was connected to the hydraulic backbone. Two orthogonal fractures
were used to represent a well. Two new parameters, the well skin radius (75) and the well skin
permeability (ks), establish the connection between a well and the fracture network. This
method is different from available DFN modeling codes such as HydroGeoSphere (Brunner
and Simmons, 2012), in which a well is represented by a one-dimensional line, or FracMan
(Dershowitz et al., 1993), in which a well is represented by model cells at the well location.
The method presented in this section defines a physical screen interval and includes an
injection/pumping well in a DFN via a discretized model grid. High-resolution mesh at a well
improved the accuracy of flow and transport simulations. The meshes allowed for the smooth
transition of pressure and particles from one fracture to another, from a well to the
backbones, and from the backbones to a well. The method was implemented in dfnWorks
and verified against the widely used MODFLOW and MODPATH codes. Modifications
were made that allowed hydraulic heads to be simulated and particles to be tracked to a
pumping well. A user needs to overwrite three source code files and recompile dfnWorks to
use this method.

Injection well skin radii and permeability affect the simulated BTCs when particles
are released at an injection well. These effects lessen when applying the method to a larger
domain DFN. In contrast, pumping well skin radii and permeability have a negligible effect
on simulated BTCs. This is because the time taken by a particle to travel in the skin zone of a
pumping well is extremely small compared with the overall ranges of transport time.
Particles experience higher velocity in the pumping well skin zones, and therefore quickly
exit the model after coming in close proximity to a pumping well. However, the pumping
well skin radius has a more important role than well skin permeability. The radius could be
increased to enhance connectivity between a pumping well and the hydraulic backbone, and
improve numerical stability when conducting flow simulations.

Pumping rates also influence the convergence of the flow solution. At higher
pumping rates, the hydraulic gradient in the vicinity of a pumping well can increase to
unrealistic values causing nonconvergence of the flow solution. To overcome this problem,
the pumping well skin radius can be increased to enhance connectivity and numerical
performance of the DFN model.

Well skin radii play an important role in defining the connectivity between a well and
fractures in complex and realistic networks (as shown in the BULLION FGE example).
Using radii that are too small may result in no connection, but using radii that are too large
may overestimate the connectivity. Well skin radii are case-specific parameters and depend
on fracture density, orientation, and length. Ideally, the well skin radius should be determined
by computing and comparing fracture intensity, P10, along the vertical profile of a well
(by varying the well skin radius until a good match is found between simulated and
observed P1o).
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UPSCALING OF TRANSPORT IN 2-D DFNs VIA RANDOM WALK MODELS

Flow and transport in fractured rock are often characterized by a wide range of
velocities. The velocity of solute within the fracture network can be several orders of
magnitude higher than the velocity of solute within the surrounding rock matrix
(Berkowitz, 2002; Neuman, 2005). This makes numerical solution of the transport behavior
computationally intensive because high gradients require fine grids. Therefore, to model flow
and transport in fractured rock, it is often desirable to upscale using some type of averaging
procedure so that the fine details of the flow are accounted for in an effective way, rather
than explicitly resolved. This can be done by establishing effective hydraulic conductivity
tensors that account for both the fractures and the matrix (Klimczak et al., 2010; Liu et al.,
2016; Margolin et al., 1998; Oda, 1985). For transport, however, this type of approach is
insufficient. Using effective hydraulic conductivity in transport models leads to the use of an
advection dispersion equation, which assumes that transport is Fickian. Variations in
small-scale velocity lead to enhanced solute spreading (as defined by the change in the
variance of the solute plume), which scales faster than linear in time until it asymptotes to
linear spreading. If the region of the domain over which the effective hydraulic conductivity
is defined is large enough for this asymptotic behavior to occur, then this approach is valid
(Klimezak et al., 2010). However, the higher the variation in velocity, the larger the region
must be for the transport within it to become Fickian.

An alternative approach is to model transport only within the high-velocity regions of
the flow. In fractured rock, this is done using DFN models, which assume no flow within the
rock matrix (Hyman et al., 2015; Painter and Cvetkovic, 2005; Parashar and Reeves, 2012).
This approach gives a more accurate description of transport within the fractures, but it is
restricted to small-scale use because of computational expense. Therefore, there is clearly a
need for upscaling models that accurately extrapolate transport behavior from small-scale
DFNs to larger scales.

Many models, both Lagrangian and Eulerian, have been created for and applied to
upscaled transport modeling in DFNs. This section focuses specifically on Lagrangian
random walk models, which use particle trajectories from the DFN simulations to create
empirical space and time step distributions that are sampled from in the random walk
simulations. In a broad sense, these models can all be categorized as continuous time random
walk (CTRW) models (Berkowitz et al., 2005; Berkowitz and Scher, 1997, 1998). However,
the models have different definitions of what constitutes a step and have different ways of
modeling correlations between steps. The three models discussed are the Markov-directed
random walk (MDRW) (Painter and Cvetkovic, 2005), Monte Carlo solution of the
Boltzmann transport equation (BTE) (Benke and Painter, 2003), and the Spatial Markov
model (SMM) (Le Borgne et al., 2008). Each model successfully reproduced the results of
full resolution transport simulations in DFNs (Benke and Painter, 2003; Kang et al., 2011,
Painter and Cvetkovic, 2005). This section presents a side-by-side comparison of the
predictive capability of these models in both correlated and uncorrelated forms. The
correlated forms of all models use a Markov chain. A set of realizations of random 2-D
DFNs for three different fracture transmissivity distributions were used to compare the
models. As the variance of the transmissivity distribution increased, the range of velocities
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within the DFN widened while the number of high flux fractures decreased (Reeves et al.,
2013). This had a profound effect on the predictive capability of the upscaled models,
particularly with regard to comparing correlated and uncorrelated models.

The ability of the upscaled models to predict transport in real fractured rock is
dependent on both the accuracy of the DFN simulations and on how well the upscaled
models match the DFN simulations. The scope of the work presented in this section is limited
to the latter. The transport results of the DFN simulations were taken to be the truth, and the
upscaled models were developed to capture features of DFN results. Although the upscaled
models were analyzed based on their ability to match DFN simulations, this approach could
be used to assess their predictive capabilities, assuming the accuracy of the DFN simulations.

The “DFN Simulation Setup” section describes the DFN simulations, including the
effect of widening the distribution of fracture transmissivity and what information was
collected to parameterize the upscaled models. The “Upscaled Modeling” section describes
the upscaled modeling. The “Results” section following the “Upscaled Modeling” section
discusses both the correlated and uncorrelated versions of the models, with varying modeling
scales. Finally, the “Discussion of Methods” section following the “Effect of Changing
Modeling Scale” section covers the relevance of the results.

DFN Simulation Setup

The DFN simulations formed the basis of both testing and parametrizing the set of
upscaled transport models. Large-scale DFN simulations were conducted, generating detailed
transport behavior that the upscaled models were expected to predict. Another set of transport
simulations was done on a smaller region of the DFN in which particle trajectories were
analyzed to create empirical space and time step distributions, which were then used to
develop predictions of the large-scale DFN transport using each upscaled random walk
model. All fracture networks were generated and flow was solved using DRI’s in-house DFN
generator, solver, and transport simulator (Parashar and Reeves, 2012).

The first step was to create the large-scale fracture network itself. Discreet fracture
networks were stochastically generated through the incremental addition of fractures with
statistically defined random locations, lengths, and orientations until a specified density
criterion was reached (Parashar and Reeves, 2012). Fracture network density was defined as
the total length of all fractures normalized by the domain area. Once the fracture network was
generated, the network was split into segments, which were defined as the part of a fracture
between two fracture intersections (Berkowitz and Scher, 1997, 1998). Isolated fractures and
dead-end segments were identified and deleted because they were not hydraulically
connected to the boundaries, and therefore could not convey any flow. Several analyses of
field data determined that fracture trace length often followed a power-law distribution
(Bonnet et al., 2001; Davy, 1993; Odling, 1997; Renshaw, 1999). The assumption that the
DFN was scale free supports the use of power law distributions for fracture trace length.
Studies indicated that the values of the power law’s exponent, o, typically ranged between 1
and 3 for natural rock fracture networks (Bonnet et al., 2001; Davy, 1993; Renshaw, 1999).
Fracture angles were drawn from a von Mises distribution, which is analogous to a normal
distribution on a circle. The fracture density was fixed at 1/2 m/m? and the domain size was
fixed at 1,000 m x 200 m. Figure 11 shows a realization of the DFN before the isolated
segments were removed. The only fracture characteristic parameter that was varied between
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Figure 11. Modeling domain: one realization of a DFN with injection region highlighted in red and parameterization region highlighted
in yellow.
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DFNs was the standard deviation, o, of the transmissivity distribution. When ¢ = 0, the
transmissivity of all fractures were the same, but as ¢ increased, the range of fracture
transmissivity increased.

Particle jump length in a fracture network was guided by the distribution of the length
of fracture segments created because of the intersections between individual fractures of the
network. It also depended on the connectivity of the network, because a poorly connected
network precludes migrating particles from sampling the entire set of segment lengths
available during transport across the model domain. Individual fractures that form the
components of a network intersect each other to generate a large number of smaller fracture
segments through which migrating inert particles travel linearly between two successive
intersection points.

The next step was to solve for the flow through the network. This was done by
imposing CHB conditions such that the global hydraulic head gradient was ch/0x = - 0.1 and
oh/0y = 0, and therefore the dominant flow direction was from left to right. The steady state
head distribution was then solved, and defined at each fracture intersection according to:

V’h =0 3)

This assumes that the fracture network is fully saturated with incompressible fluid.
From the head distribution, we defined the flux of fluid through each fracture segment
according to Darcy’s law:

__ I (4)
=7y

where 7 is the fracture transmissivity and b is the fracture aperture. The fracture aperture is
related to the transmissivity by way of the cubic law:

b3pg

T =
12u

()

where p and u are the density and dynamic viscosity of the fluid (water) and g is gravitational
acceleration (Klimczak et al., 2010; Witherspoon ef al., 1980). In combination, these laws
assume a low Reynolds number of flow through a fracture segment with a constant aperture
(envisioned as the fracture being bounded by parallel plates).

Finally, the transport through the DFNs was simulated. A random walk method was
used in which the solute mass was discretized into particles of equal mass initially distributed
over a 50 m x 50 m region along the upstream boundary (shown in Figure 11). The number
of particles injected into each fracture segment was proportional to its flux (¢). Each particle
then proceeded through the segment at constant velocity:
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vV =gqu (6)

where 1l is the unit vector parallel to the fracture segment. Once the particle reached the end
of the fracture segment, it moved into a new segment (s;) with a probability proportional to
its flux (¢;). That is:

. q
P(S;) = ZnT (7)

where 7y 1s the number of segments connected to the current segment. This treatment
assumed that dispersion along the fracture length was negligible and that the concentration of
solute across the fracture width was uniform. In other words, because of the fracture’s low
aspect ratio, the velocity distribution within the fracture was assumed to be sampled
relatively quickly by the solute compared with the amount of time it spent in the fracture.
Once the particle reached the boundary of the DFN, it was removed from the system (i.e., all
boundaries were absorbing). Each simulation was run until all particles were removed. This
random walk method is distinct from the upscaled models discussed in the next section,
because the particles have access to the full details of the DFN and all segment selections
depend on the spatial location of the particles and the flux of the connecting segments.

In addition to simulating transport over the entire DFN, a small 100 m x 100 m region
along the upstream boundary was delineated to run another transport simulation. The particle
trajectories obtained over this smaller region were then analyzed and used to create space and
time step distributions for the set of upscaled models described in the “Upscaled Modeling”
section. This region of the domain is referred as the “parameterization” region. To ensure that
there were a large number of trajectories to analyze, 10° particles were used for the full DFN
transport simulations and 10° particles were used for the parameterization simulations. For
visualization purposes, Figure 11 shows the modeling domain and how it is partitioned into
different regions.

Effect of Transmissivity Distribution on DFN Simulations

Equation 4 shows that an increase in the range of fracture fluxes occurs as the
range of transmissivity increases (flux is proportional to transmissivity). The range of
transmissivity is controlled by the standard deviation of the transmissivity distribution (o).
Figure 12 shows the probability density function (PDF) of the absolute value of fracture
fluxes (fiy((x = |g|) in m/s), where g, is the measured flux through segment i, obtained from
all segments in fifty realizations of transmissivity distributions with ¢ =0, 0.5, and 1. The
PDFs are bimodal (high probability associated with two ranges of velocities), with peak
values generally decreasing as ¢ increases, which spreads the PDF out toward high flux
fractures. This nonmonotonicity is a property that each of the upscaled models must be
capable of simulating.
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Figure 12. Fracture flux magnitude for various values of the standard deviation of the transmissivity
distribution (o): (a) PDF (f;,(x)) and (b) complementary cumulative density function
(CCDF) ((1-Fig(x)).
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However, the effect of the transmissivity distribution on the presence of connected
high-velocity flow channels, or preferential pathways, is more difficult to capture in upscaled
models. Figure 13 shows logio(|g|) for one realization of a DFN for each transmissivity
distribution (¢ = 0, 0.5, and 1), in which all fracture properties are identical with the
exception of transmissivity distribution. As ¢ increases, there are fewer high-velocity
fractures but they are highly connected, so more preferential pathways form. This causes the
fast-moving solute within the water to continue to move fast for long distances and times,
which means the solute’s velocity at a given time or location is not independent of its prior
velocity history. This correlation between velocities persists for long times and distances.

In Figure 12 and in the remainder of this section, all results were derived from fifty
realizations of the DFN for each value of 6. The number of realizations generated was chosen
by comparing moments of breakthrough curves from each realization to moments of the
ensemble breakthrough curve at the farthest distance from the inlet (1 km) and ensuring that
the relative mean absolute deviation between moments were sufficiently minimized.
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Figure 13. Flux magnitude (logio(|g|)) distribution for one realization of each transmissivity
distribution of the DFN (top) ¢ = 0, (center) o = 0.5, and (bottom) ¢ = 1. To better
highlight the differences in the high-velocity fractures, we set the color scale so that all
fractures with |g| < 107® m/s are not seen. Numerical values on the color bar represents
logarithm of the flux magnitude.
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Upscaled Modeling

Following the extraction of the trajectory data from the small DFN simulations (done
over the parameterization region), the numerical data was used to create distributions for the
three upscaled random walk models. The goal was to use these models to predict the
breakthrough at locations outside of the parameterization region. Although the upscaled
models can be assessed by their ability to match the full-scale DFN simulations, they do not
have access to the statistics of the full DFN, so their results are referred to as predictions.
This section briefly introduces each of the upscaled random walk models used to predict
transport in the DFNs.

Each of the models can be categorized as a CTRW (Berkowitz et al., 2006). In
CTRWs, the solute is discretized into particles of equal mass that take steps in space and
time, sampled from a density f{dx, dy, Jt), in which oJx, dy, and ot may or may not be coupled.
For fracture networks, usually a step is considered to be the spatial and temporal jump a
particle would make through a single fracture segment. To see the effect of modeling scale
on the accuracy predictions, however, a variety of step definitions are considered. Once the
concept of what constitutes a step is defined, particles are injected into the domain, and then
each particle transitions through space and time according to:

Xn = Xn—1t Oxn
VYn =Yn-1T 5yn (8)
th = th-1t+ §tn, n= 1, 2, 3,

where the random triplet (dx,, 0ys, dt,) comes from f{Jx, Jy, ot) and may or may not depend
on (0xx-1, Oyn—1, 0tn—1). There is no requirement that ox, dy or d¢ be decoupled or fixed. Most
often, f(ox, dy, df) is a parameterized probability density, which allows for analytical solution
of concentration distributions in space and time if the space and time steps are uncoupled
(Cortis et al., 2005). Although it is less convenient, the theory allows for more general
empirical densities, including coupled space and time steps. The key creating any CTRW
model is the parameterization of f{Jx, dy, of), which is assumed to be independent of particle
position (i.e., statistically stationary in space).

Generally, steps are assumed to be independent and identically distributed, but this
study considered both correlated and uncorrelated steps. This distinction may affect model
predictions depending on how much correlation exists between successive steps in the DFN
simulations (Bolster et al., 2014; Sund et al., 2015), which in turn depends on the structure of
the DFN. In all three of the upscaled random walk models described in this section, each step
a particle makes in space and time depends on its previous step. This correlation between
steps was accounted for using a Markov chain. The CTRW models, without the added
complexity of a Markov chain, have been used successfully in past studies to describe
transport through fracture networks (Berkowitz and Scher, 1997, 1998). Further information
on the CTRW is available in Berkowitz et al. (2006).

For each realization of all of the upscaled models, we injected 10° particles. The
initial distribution of these particles matches the initial condition in the DFN simulations
because they were initially distributed over a 50 m x 50 m region along the upstream
boundary, where the number of particles that start at each location was weighted by fracture
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segment flux. The absorbing boundary conditions were used to match those in the DFN
simulations, meaning that particles that moved outside of the domain were removed from the
simulation. Each simulation was run until all particles were removed from the domain.

Markov-directed Random Walk (MDRW)

The MDRW model was introduced in Painter and Cvetkovic (2005). In addition to
modeling correlation between steps with a Markov chain, the model also provided further
flexibility to explicitly model retention, a feature that was not required in this study because
our DFN simulations did not model retention. The steps (dxn, dyn, dt,) were defined to
correspond to transport through a fixed number of fracture segments, k. This was done by
splitting every trajectory from our parameterization simulations into groups of k£ segments
and recording the distance and travel time from the beginning of the first segment in each
group to the end of the kth segment in each group. Therefore, from each trajectory,
depending on the number of segments it goes through, multiple samples were extracted that
could be used to construct f{dxn, dyn, ts). Figure 14 shows the full path of an individual
particle and how it was partitioned into steps.
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Figure 14. Method for partitioning particle trajectories into MDRW modeling steps.

To account for correlation between steps, a set of 20 discrete equiprobable states
based on speed was first defined. Each state was defined by a range of speed, which for state
s; 1s from /-7 to [;, where /o = 0. A particle was in state s; at step » if its speed:

JOx2 + 8y?
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was within the range of /;—; to /;. This means that low numbered states covered low speeds
and high numbered states covered high speeds.

Given this definition, a Markov chain could be created that consisted of the initial
(now discretized) distribution and a transition matrix using the trajectories from the DFN
simulations. The transition matrix was the conditional probability that the speed at step n was
in state s; given that the speed at step n — / was in state s;, P(q» € si|gn-1 € s)). Figure 15
shows the transition matrix, P(g. € silg.-1 € s;), averaged over all fifty realizations for each
transmissivity distribution, using k£ = 1 fracture segment as the modeling step. All of the
transition matrices were diagonally dominant, indicating a tendency for particles to remain in
their current speed state. As the spread of the transmissivity distribution increased with o, the
probability of particles transitioning many states in one step decreased, which can be seen in
the slendering of the bands around the diagonal. This indicates that particle speed does, in
fact, increase with increasing . An MDRW model that uses only one speed state would have
uncorrelated steps, so MDRW can easily be run in both correlated and uncorrelated forms.
This is all the information necessary to run the MDRW simulations. Each particle transitions
through space and time according to Equation 8, with:

fMDRW(dx’ 5)/’ 5t) :f(éx’l’ 5yn’ 5t’1|q” € Si)

10
P(gn € silgn-1 € 5) (19)
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Figure 15. Ensemble averaged transition matrix (P(q. € siq.-1 € s;)) over all realizations with
modeling step size £ = 1 fracture segments for transmissivity distributions with (a) o =0,

(b)e=0.5,and (c) o= 1.

Monte Carlo Solution of the Boltzmann Transport Equation (BTE)

The BTE model was introduced in Benke and Painter (2003). It models the
correlation between steps with a Markov chain based on velocity (both speed and direction).
It defines steps (0xu, dyu, dt4) to correspond to transport through a fixed number of fracture
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segments, k, so DFN particle trajectories are split in the same way as with the MDRW.
Contrary to the MDRW methodology, the length of a particle’s step as it travels at the
velocity sampled from the DFN trajectories is also random (albeit dependent on velocity
state), rather than the step being the same length as the corresponding trajectory segment. To
do this, spatial steps are put in polar form:

0xn = dy cos Oy

Syn = d sin 6, a1

where d, is log uniformly distributed between limits that depend on the velocity class and 6,
is the angle of the randomly chosen trajectory. To account for correlation between steps, and
to define the distribution of d,, a set of 10 discrete equiprobable states based on speed was
first defined. Similar to MDRW, each state was defined by a range of speed, which for state
Sp 18 [,-1to 1,, where [y = 0. Then, the average jump length of trajectory segments
corresponding to each state was found, which for state s, is 7. The distance a particle travels
at its current velocity, d, is then generated as:

dn=—In(U)r, (12)

where U is a uniform random number between 0 and 1. Therefore, in theory, a particle may
continue at its current velocity until it travels a distance between 0 and oo times the length of
the trajectory segment.

Next, the distribution of speed states was further discretized by angle to create
velocity states. For our purposes, each speed state was split into two equiprobable angle bins
(for a total of 10 speed % 2 angle = 20 velocity states) because the BTE needed to have the
same number of states as the MDRW. The full range of possible angles was [—=, 7], with an
angle of 0 aligned with the predominant flow direction. Because only two angle states for
each speed bin were used, the angles were divided into “upstream” and “downstream,”
meaning that the absolute value of the step angle was used to set angle bin limits. A particle
was in velocity state s;= 2(p—1) + g if its speed was in state s, and the absolute value of its
angle was between angle limits /, 41 to /, 4, where [, o = 0, which were defined separately for
each speed state, p. Given this definition, the transition matrix was then approximated, which
was the conditional probability P((qn, 1) € sil(gn-1, On-1) € s)), using the trajectories from the
DFN simulations. Figure 16 shows the transition matrix averaged over all realizations for
each transmissivity distribution, using k£ = 1 fracture segment as the modeling step. As o
increases, the correlation between successive velocities also increases, though the bandwidth
of the transition matrices for velocities was larger than the transition matrices for speeds. As
with the MDRW, a BTE model that used only one velocity state would have uncorrelated
steps, so BTE could be run in both correlated and uncorrelated forms for comparison. Each
particle transitions through space and time according to Equation 8, with:

f‘BTE(éx, 5y, 5t) :ﬂdn COS@n, dn Slnen, 5tn|(Qn, 9}1) E Sl)

P((qna 0’1) € Sil(q;a—l, gn—]) € Sj) (13)
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Figure 16. Ensemble averaged transition matrix (P((gn, 1) € si|(gs-1, 04-1) € 5;)) over all realizations
with modeling step size k = 1 fracture segments for transmissivity distributions with (a)
0=0,(b)c=0.5,and (c) o= 1.

Spatial Markov Model (SMM)

The SMM model was introduced in Le Borgne et al. (2008). It models correlation
between steps with a Markov chain based on speed over fixed longitudinal spatial increments
of length L. It defines steps (dx, = L, dyn, 0t,) to correspond to transport over increments of
length L in the longitudinal direction. In a sense, this means that the correlations between
velocities at different spatial locations are projected onto the axis longitudinal to transport
and implicitly assumed to be the dominant correlations in the DFN. To keep the average
modeling scale the same for all models, L = L, was set to be the average longitudinal step
taken by particles over k fracture segments:

N
1
L, = NZ r;c0S806; (14)
=1

where r; and 6; are the length and angle of trajectory i over k segments, and N is the number
of trajectories. For k=1, 2, 3 fracture segments, Ly = 3, 5, 7 m, respectively. The trajectories
from the DFN simulations were then used to create breakthrough curves along the
parameterization region at increments of length Ly (e.g., for k =2, we created 20
breakthrough curves, each at 5 m increments). Then, for each location X, the distribution of
travel times, f/(X, ), was found using Equation 16.

To account for correlation between steps, a set of 20 discrete equiprobable states was
defined based on travel times. Because L; was fixed, this was equivalent to defining states
based on speed, as in the MDRW. Each state was defined by a travel time range, which for
state s;1s /;-; to [, where /o = 0. The transition matrix was then approximated, which was the
conditional probability P(d¢, € si|0t.-1 € s;), using the trajectories from the DFN simulations.
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Figure 17 shows the transition matrix averaged over all realizations for each transmissivity
distribution. As with speeds (Figure 15) and velocities (Figure 16), as ¢ increased, the
correlation between successive travel times also increased. The bandwidth of the SMM
transition matrices was wider than that of the MDRW transition matrices, but smaller than
that of the BTE transition matrices. As with both the MDRW and BTE models, an SMM
model that used only one travel-time state would have uncorrelated steps, and therefore the
SMM could also be run in both correlated and uncorrelated forms for comparison. Each
particle transitions through space and time according to Equation 8, with:

Forni(Ox, Oy, 51) = S(L— Sxn)(0Vn, Ol € 57)

P(Jty € s5i|otu-1 € s)). (15)
Versions of this model have been successfully applied to transport through DFNs
(Kang et al., 2011, 2017), and even in real fractured rock (Kang et al., 2015). Further details

of the model are provided in Le Borgne et al. (2008).

All three upscaled random walk models are quite similar and they all rely on Markov
chains. The states of the Markov chains differ between models, from the simplest model that
relies on longitudinal flux (SMM), to total flux (MDRW), to the most complicated model that
relies on full velocity (BTE). Model intercomparison allows us to determine the extent of the
velocity information required to properly account for correlation, whereas model
intracomparison allows us to determine whether correlation needs to be accounted for at all.
The challenge with all of the models is to ensure sufficient parameterization. This challenge
was reduced for the uncorrelated versions of the models because the transition matrices
required more information than the distribution f{dx, dy, dt).
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Figure 17. Ensemble averaged transition matrix (P(d¢, € si|dt,-; € s;)) over all realizations with
modeling step size Ly= 1 (the average length of 1 fracture segment) for transmissivity
distributions with (a) 6 =0, (b) 6=.5, and (¢) o = 1.
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Results

This section compares the breakthrough results of the upscaled random walk models
to the large-scale DFN simulations. Each upscaled model was run using three different
modeling scales for which the number of fracture segments used to define a step was k=1, 2,
3. Furthermore, each model was run in both correlated and uncorrelated forms. The
uncorrelated forms differ from the correlated forms in that their corresponding Markov
chains consist of a single state. Here, these uncorrelated models are referred to as uMDRW,
uBTE, and uSMM.

A breakthrough curve at location X is a measure of concentration arriving at that
location related to the distribution of the time it takes particles to arrive at the location by:

B Cx=X,y,t)
X, t) = jwd}’ (16)

where f(X, ¢) is the probability of a particle arriving at location X at time #; C(x = X, y, f) is
the concentration of solute arriving at location X, y at time #; and Cy,(X) is a normalization
constant, which is the integral of C(x =X, y, ¢) over all time. Because of the constant head
boundary conditions in the transverse direction (as opposed to no-flow boundary conditions),
particles are free to leave the model through the transverse boundaries, and therefore Cio: 1s
not equal to the amount of concentration initially injected. The metrics used to test the
accuracy of each model are:

1) Relative mean absolute error (MAE) in the ensemble cumulative travel time
distributions, F«(X, ) at X =500 m and X = 1 km.

2) Relative MAE in total mass in ensemble breakthrough curves, Ci,(X), at ten
intervals of 100 m length along the entire domain (X' = 100,
200, ... 900, 1,000 m).

To calculate the relative MAE in F; (X, ¢), we discretize time into 100 one-day
increments up to the longest travel time from the DFN simulations. The error is then
defined as:

Yici |Fprn (X ) — Frmoa (X, )]
rMAE (F,,. (X)) = : : 17
( rmod ) 1 Foprn (X, t)) 1n

where Frprv(X, t;) and Frmod(X, ;) are the cumulative travel time distributions at time ¢ for

the DFN and upscaled model simulations, respectively. The relative mean absolute error in
CiodX) 1s defined as:

2321 |Ctot,DFN (Xi) - Ctot,mod(Xi)I (18)

rMAE(C =
( tOt) 2321 Ctot,DFN(Xi)
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where Cror,prv(Xi) and Crormoa(X:) are the total mass in the breakthrough curves at location X;
for the DFN and upscaled model simulations, respectively.

These metrics were chosen so that errors in prediction of longitudinal and transverse
transport were kept separate. The errors in the cumulative travel time distribution reflected
how well the models were predicting longitudinal transport, whereas the total mass in the
breakthrough curves reflected how well the models were predicting transverse transport,
because any mass not contained in the breakthrough curve escaped the domain through a
transverse boundary. Because of the boundary conditions and the high aspect ratio of the
domain, Cr; was found to be a better measure of transverse behavior than spatial moments.

Longitudinal Predictions: Error in the Ensemble Cumulative Travel-time Distributions

Figure 18 shows the cumulative and complementary cumulative (defined as the
probability of a variable taking a value greater than a specific number) travel time
distributions at x = 500 m of DFN simulations with each transmissivity distribution
(6=0,.5, 1) and of upscaled random walk model simulations with modeling step £ =1 and
the corresponding error (calculated using Equation 17). By looking at the cumulative density
function (CDF) on a log-log scale, one can zoom in on how well each model captured the
pre-peak portion of the breakthrough curve. For ¢ = 0 (Figure 18a), the SMM predicted too
much early breakthrough and the uBTE predicted too little, meaning that fast particles were
too fast in the SMM model and too slow in the uBTE model. The predictions of the other
models were nearly identical and close to the DFN result. By looking at the complementary
cumulative density function (CCDF) on the same scale, one can zoom in on how well each
model captured the tail of the breakthrough curve. The uSMM and SMM captured the tail of
the DFN result well, but all other models predicted too much late breakthrough, meaning that
the slow particles in these models were too slow. For ¢ = 0.5 (Figure 18b), the CDF showed
that the MDRW and BTE overpredicted early breakthrough almost as much as the SMM did.
The predictive capability of each model on the tailing behavior was unchanged with
changing o. This can be seen in the relative error in Figure 18d by the error in the SMM
dipping below those of the MDRW and BTE. This indicates that for ¢ = 0.5, correlation was
negligible and accounting for correlation in this situation led to increased error, particularly
at early times. For o = 1 (Figure 18c), the CDF showed that the uncorrelated models severely
under predicted the early breakthrough, whereas the correlated models come closer to
capturing the true DFN behavior. This indicated that for ¢ = 1, correlation was important and
accounting for it led to decreased error. For this situation, the BTE model predicted the
tailing behavior best. Both SMM models initially predicted the tailing behavior well, but
deviated from the DFN result at very long times (over 105 days), likely because the transport
process was projected onto the longitudinal axis for the SMM. With the significant difference
in early breakthrough predictions, the correlated models edged out their uncorrelated
counterparts in relative error, as shown in Figure 18d.

The only model that predicted both the early and late breakthrough well was the
uSMM, which had the lowest relative error, and the only model that predicted both
breakthroughs poorly was the uBTE, which had the highest relative error, with the error of
the other models falling in between. Figure 18d also shows the range of errors of each
individual realization of the DFN simulations (yellow boxes). These were not typical error
bars, because the error in the ensemble prediction could be below the error bar (in fact, the
ensemble error of the DFN simulations was by definition 0, whereas the realization error
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range, shown in yellow, was not). The ensemble predictions for all models were within the
range of error of an individual DFN simulation. This suggests that the upscaled ensemble
models can predict ensemble DFN behavior as well as individual DFN realizations can.

The layout of Figure 19 is the same as Figure 18, but shows breakthrough results at
X =1 km. Qualitatively, model performance continued as shown in Figure 18, so how the
models compared with each other didn’t change when considering this farther breakthrough
curve. The early breakthrough behavior of the BTE model for ¢ = 0.5 began to improve, as
shown in Figure 19b, but this change did not greatly affect the overall relative error (shown
in Figure 19d).
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Figure 18. Ensemble cumulative and complementary cumulative travel time distributions at

x =500 m of DFN simulations and of upscaled random walk model simulations with
modeling step size £ = 1 with transmissivity distributions (a) o =0, (b) o =.5, and

(c) 0= 1, and (d) the corresponding relative error. The range of errors among individual
realizations are also shown with error bars for the upscaled models and with a shaded
yellow region for the DFN simulations.
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Figure 19. Ensemble cumulative and complementary cumulative travel time distributions at
x =1 km of DFN simulations and of upscaled random walk model simulations with
modeling step size k£ = 1 with transmissivity distributions (a) ¢ =0, (b) 6 =0.5, and

(c) 0= 1, and (d) the corresponding relative error. The range of errors among individual

realizations are also shown with error bars for the upscaled models and with a shaded
yellow region for the DFN simulations.

Transverse Predictions: Error in Total Mass in Ensemble Breakthrough Curves

Figure 20 shows the total mass in each ensemble breakthrough curve, taken at 100 m
increments, for each fracture transmissivity distribution (¢ =0, .5, 1) and the corresponding
error (calculated using Equation 18). These predictions were made again using k = 1 fracture
segment. The mass was calculated by letting the initial injected concentration Cp =1 so that

if all particles arrived at the breakthrough location at some time, then Cyr = 1.
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Figure 20. Total mass in ensemble breakthrough curves of DFN simulations and of upscaled random
walk model simulations with modeling step size k£ = 1 with transmissivity distributions
(a)o0=0, (b) 6=0.5, and (¢) o =1, and (d) the corresponding average relative error.

For ¢ = 0 (Figure 20a), at the first breakthrough location (X = 100 m) all model
predictions came close to the total mass in the breakthrough curves of the DFN simulations,
but at farther distances, most of the models began to underpredict the total mass. This means
that most of the models predicted an overly high degree of spreading in the transverse
direction. The SMM outperformed all of the models at all breakthrough locations, followed
by the uSMM. As the spread of fracture transmissivity increased, from Figure 20a through
20c, the total mass predictions of the uSMM and uMDRW improved and the results of the
uSMM became similar to those of the SMM. These trends can also be seen in the error in
Figure 20d. It was a surprise that the model that treated transverse behavior in the most
trivial fashion (the SMM that takes dy from the transverse jump over fixed longitudinal steps,
rather than from actual fracture segment geometry) was the one that best predicted the
transverse behavior.
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Effect of Changing Modeling Scale

Figure 21 shows how the model predictions changed as the modeling scale increased
from k=1 to k = 3 fracture segments for simulations with constant transmissivity distribution
(o =0). Although the longitudinal errors tended to decrease with larger modeling scales, the
transverse behavior of each model was not significantly changed by varying the modeling
scale over this range, as can be seen in the relatively constant errors of each model as &
increases. This trend existed for all three values of o.
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Figure 21. Relative errors in upscaled ensemble random walk model simulations as a function of
modeling scale for o = 0: (a) relative error in cumulative breakthrough at X' =1 km and
(b) average relative error in mass.
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Discussion of the Methods

All of the upscaled random walk models were able to predict the ensemble DFN
breakthrough as well as a single DFN realization could (see the yellow boxes in the error
plots in Figures 18 and 19 showing the range of errors in individual DFN realizations).
However, there were differences in model predictions, so the best model to use depends on
what behavior the model is meant to capture. As the distribution of fracture transmissivity
widens, preferential pathways for solute form, creating correlation in particle velocities over
successive steps. For the log-normal transmissivity distributions used here, models which
take correlation into account begin to gain an advantage over their uncorrelated counterparts
when ¢ = 1. Early breakthrough is best predicted by the uncorrelated models (UMDRW and
uSMM) for 6 < 1 and by the correlated models (MDRW, BTE, SMM) for ¢ = 1. Tailing
behavior is best predicted by the SMM models (uSMM, SMM) for ¢ < 1 and by the
correlated BTE model for 6 = 1. In comparison to the effects of model choice and
correlation, the effect of modeling scale (number of fracture segments used to define
modeling steps) on model predictive performance is negligible, at least over the range
covered here.

Throughout this section, particles represent a conservative solute. However, if
the solute to be modeled is nonconservative and degrades over time, as in the case of
radionuclides in Pahute Mesa, it is most important that the model predict early breakthrough
well. Alternatively, for situations in which the solute is a contaminant and modeling pump-
and-treat remediation is desired, it is most important that the model predict the breakthrough
curve tail well. In these cases, the best model depends on the fracture transmissivity
distribution. If there are no-flow boundary conditions on the transverse sides of the domain,
then the error in total mass can be ignored. Otherwise, using an SMM, either correlated or
uncorrelated, will better capture the transverse spreading.

CALIBRATION OF 3-D DFNs TO FLOW DATA

Full characterization of fractured rock masses was not possible because known
fracture locations and their attributes consisted of an extremely small sample of the overall
fracture network (i.e., any fracture characterization effort grossly undersampled a field site
because of limited accessibility to the fractures themselves). However, fracture data can be
used to generate representative, site-specific fracture networks through the derivation of
probabilistic descriptions of fracture location, orientation, spacing, length, aperture, and
values of network density. Of these different fracture properties and the network, aperture is
generally the parameter that cannot be easily inferred from field data or inspection of the
cores. However, fracture aperture has immense influence on flow and transport, and reducing
its uncertainty is key to developing a model with an accurate description of groundwater
velocity. This section focuses on using 3-D DFN models—built with site-specific
probabilistic descriptions of fracture length, orientation, and density—to obtain realistic
ranges of fracture aperture values by calibrating the model to field data of the hydraulic head
distribution. The fracture aperture here refers to the distance between opposite walls of a
fracture in a parallel plate model (i.e., the mechanical aperture). The hydraulic aperture
(related to the flow capacity) or the transport aperture (related to the residence time) are not
explicitly modeled here. The conceptualization of the problem here hinges on the assumption
of smooth parallel plates where the entire void space of fractures is available for water flow
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and solute transport. The model development and calibration approach used in this study was
general in nature, and it was applied to WPM’s BULLION FGE—a tracer test at the well
field of ER-20-6 adjacent to the BULLION test conducted in the summer of 1997 (June 2 to
August 28). The purpose of the BULLION FGE was to provide information relevant to the
transport of radionuclides in groundwater.

DFN Model Development and Parametrization

Discrete fracture networks were generated stochastically, using the data from
fractured rock characterizations studies. Data on the fracture attributes needed to generate a
fracture network are: (1) mean fracture orientation for each fracture family and probability
distribution for orientation; (2) fracture shape and size for each fracture family and
probability distribution for fracture size; and (3) fracture intensity, P32 (m?/m?), defined as the
ratio of total fracture surface area over volume, and relative intensity for each fracture family.
The model was developed in dfnWorks, which has three modules: dfnGen, dfnFlow, and
dfnTrans (see the “3-D DFN: dfnWorks” section). dfnGen stochastically generated 3-D
DFNs, removed isolated fractures using the FRAM (Hyman et al., 2014), and created high-
quality conforming Delaunay triangular meshes on the generated DFNs using the LaGriT
meshing toolbox (Los Alamos National Laboratory, 2013). Near fracture intersections, the
mesh was refined to allow for smooth and accurate representation of high-pressure gradients
and sharp velocity contrasts. Discretization of the mesh was coarsened farther away from
fracture intersections to reduce computational costs. The FRAM overcame the principal issue
of resolving a tiny feature in a DFN by prescribing a minimum length scale (h) and
restricting the generation of the network to only create features of that size and larger. Once a
network was constructed and meshed, the dfnFlow module solved for steady-state saturated
flow conditions using the massively parallel, open-source, subsurface flow and reactive
transport finite volume code PFLOTRAN (Lichtner et al., 2015). Finally, dfnTrans, an
extension of the WALKABOUT particle tracking method (Makedonska et al., 2015; Painter
et al., 2012) was used to determine pathlines through the DFN and simulate solute transport.
dfnWorks does not currently have a well package to simulate groundwater levels and particle
tracking to a well. This study used the method presented in the “Representation of a Well in
3-D DFN” section to represent a well in a 3-D DFN.

Fractures were conceptualized as two parallel planes in DFN models. Rock matrix
was considered impermeable and fracture networks were simulated explicitly. Fracture
permeability was related to fracture aperture using the Cubic law:

kp = b2/12 (19)

where kr is fracture permeability and b is fracture aperture. Popular conceptualizations of
fracture apertures are: (1) constant fracture apertures (CFA) in which fractures are assigned
the same aperture values regardless of their size or geologic origin (e.g., tectonic fractures
and joins), (2) lognormal distribution apertures (LNAs) in which fractures follow a
lognormal distribution, and (3) the length correlated aperture (LCA) model (Klimczak et al.,
2010). Fracture apertures in LCA models are a function of fracture sizes such as:

b = FR* (20)
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where F'is a first parameter in the LCA model, £ is a second parameter, and R is a mean
radius of a polygon.

Boundaries in this study were either no flow, or constant values of hydraulic head
were used to assign boundary conditions to a DFN model. For the scenario in which there
was a pumping well, hydraulic head at the boundaries was adjusted to reflect increased
drawdown because of water extraction.

Model Calibration

Model calibration was the process of adjusting model parameter values until a
satisfactory fit between model outputs and field measurements (e.g., heads and
concentrations) was achieved. Model calibration can be broadly grouped into manual model
calibration based on trial-and-error methods, or automatic model calibration approaches.
Manual model calibration based on trial-and-error methods was easy to apply but time-
consuming. Trial-and-error methods also may not guarantee finding the best solutions
because manipulations by different users may produce dissimilar solutions. This method is
suitable for a simple, linear model with a small number of uncorrelated model parameters.

Automatic model calibration using optimization methods is efficient because of its
ability to handle a high number of model parameters and the accuracy of solutions.
Optimization methods can be classified as derivative-based and nonderivative-based search
methods (global search methods). Derivative-based methods converge quickly, but solutions
may be trapped to local optima. Global search methods have potential to find near-global
solutions, as well as handle nondifferentiable and discontinuous functions. Popular global
search methods applied to groundwater model calibration included genetic algorithms
(El1 Harrouni et al., 1996; Wang, 1997; Karpouzos et al., 2001), simulated annealing and
tabu search (Zheng and Wang, 1996), ant colony optimization (Abbaspour et al., 2001),
particle swarm (Gill et al., 2006; Krauf3e and Cullmann, 2012), and shuffled complex
evolution (SCE) (Vrugt et al., 2003). The common disadvantage of global search methods is
that a large number of model runs and iterations are needed to reach a near-global solution.
For a computationally expensive simulation model, this method may become impractical.
Reviews and comparisons of methods for model calibration can be found in many books and
articles (Cooley, 1985; Sun, 1994; Hunt et al., 2007; Hill and Tiedeman, 2007; Vrugt et al.,
2008; Hendricks Franssen et al., 2009; Fienen et al., 2009; Doherty, 2015; Yeh, 2015).
Popular software for automatic groundwater model parameter estimation includes PEST
(Doherty et al., 1994), UCODE (Poeter and Hill, 1999), or MGO (Zheng and Wang, 2003).

Choosing a suitable approach depends on many factors, including the number of
model parameters, the model run time, the model linearity (linear versus nonlinear). Two of
the three aperture models used for this study (LNA and LCA) were two-parameter models.
The CFA is a single-parameter model. dfnWorks, being a computationally intensive
software, requires a long run time on parallel machines. However, the flow problem is linear
because of the assumption of saturated conditions and Darcy flow. Because of these reasons,
the simple trial-and-error based calibration method was used in this study.
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Case Study: The BULLION Forced-gradient Experiment (FGE)

The BULLION FGE was designed to use tracer migration in groundwater to provide
information on transport parameters (IT Corporation, 1998). A set of three wells, installed
into fractured lava-flow aquifer and in alignment with the orientation of the major fracture
system, was subjected to a tracer test. The downgradient well was pumped at a long-term
average pumping rate of 632.32 m*/day (116 gallons per minute). Tracers were injected into
the other two wells, and tracer breakthrough curves were captured. The experiment was
conducted for a long duration of 87 days to accommodate slower-than-predicted
breakthrough of the tracers. Tracer concentrations for each well were determined at closely
spaced time intervals to define the breakthrough curves. The objective was specifically to
observe the transport process and characterize transport parameters (e.g., effective porosity,
dispersivity, and matrix diffusion) for use in predictive modeling of contaminant transport
(IT Corporation, 1998). Continuum models with regular structured meshing were used to
meet this objective. The work presented here was motivated by the possibility of determining
fracture properties more accurately when a DFN model was used in place of traditional
approaches to simulate contaminant transport.

Figure 22 shows the location of the BULLION FGE in Pahute Mesa downgradient of
the BULLION test. The well farthest from the test was pumped to produce a hydraulic
gradient while tracers were injected into the other two wells. Tracer breakthrough curves
were obtained for different flow path segments. Several methods were adopted to simulate
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Figure 22. Location of the BULLION FGE in Pahute Mesa of the Nevada National Security Site.
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the BULLION FGE (IT Corporation, 1998). The first method based on porous media theory
(Theis analysis) indicated that the formation beneath the BULLION site could be modeled as
a porous media, but is insufficient to fully capture the transport behavior of a fractured
heterogeneous media. The second approach was based on dual-porosity analysis. Results
revealed that the matrix conductivities were much lower than the fracture conductivities,
supporting the conceptualization that fracture flow dominates groundwater movement.

DEN Model for BULLION FGE

This study focused on a portion of the BULLION FGE where particles were injected
at well ER-20-6 #1 and pumping was conducted at well ER-20-6 #3 with a pumping rate of
7.32 L/s (116 gallons per minute). The flow direction was from well ER-20-6 #1 to well
ER-20-6 #3. The flow condition at the end of pumping reached steady state. The drawdowns
are 1.44 m, 1.61 m, and ~7.0 m at the end of the pumping test (87 days) for wells ER-20-6
#1, #2, and #3, respectively (Geldon, 2004). However, the observed drawdown was
somewhat noisy and open to interpretation. IT Corporation (1998) estimated drawdowns at
the three wells at approximately 1.15 m, 1.7 m, and 7 m, respectively.

The volcanic rocks that control groundwater flow beneath Pahute Mesa can be
grouped into four volcanic hydrogeologic units (HGUs) based mainly on lithology and
secondary alteration. These units are lava-flow aquifers (LFAs), welded-tuff aquifers
(WTAS), vitric-tuff aquifers (VTASs), and tuff confining units (TCUs). The LFA is divided
into four cooling subunits (CSU), or layers. Each layer consists of a mix of orthogonal
cooling joints and tectonic fractures, which represent five different fracture sets (Tech. Mem.,
2015). This study only focused on the thickest Stoney Lava interior layer. Three cooling joint
sets are SP, DP (two steeply dipping, roughly orthogonally striking sets), and BP (gently to
moderately dipping, bedding-related set). Two tectonic features were created during
deformation across the Basin and Range Province: T1 and T2. Table 3 presents fracture
characteristics for the LFA. The data were provided by Golder Associates.

dfnWorks 2.0 (Hyman et al., 2015) was used to generate a 3-D fracture network and
simulate flow and conservative transport of the BULLION FGE. Fractures were modeled as a
rectangular plane. Three aperture conceptual models (CFA, LNA, LCA) were adopted to
investigate fracture aperture and distribution, and how it affected flow and particle transport.
Multiple DFN realizations were generated for each conceptual model. Model calibration was
carried out for all DFN models.
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Table 3.

Fracture statistics used to generate 3-D fracture networks.

Orientation set probability model for cooling joints and tectonic fracture.

HSU | CSU Fracture | Probability Mean Pole (°) Major Axis (°) Fisher
o | Set Distribution Concentration
Trend Plunge | Trend Plunge | K/K1 | K2
LFA | All SP Univariate Fisher | 89.12 27.35 n/a n/a 18.34 n/a
LFA All DP Univariate Fisher | 350.48 28.06 n/a n/a 26.24 n/a
LFA All BP Univariate Fisher | 19.39 53.21 n/a n/a 35 n/a
LFA All ™ Univariate Fisher | 319.06 18.73 n/a n/a 35 n/a
LFA All T2 Univariate Fisher | 48.39 7.85 n/a n/a 35 n/a
Size model for cooling joints and tectonic fracture.
HSU | CSu Fracture | Probability Parameter Distribution | Size Aspect
ID D Set Distribution Names Parameters | Truncation Ratio
LFA All SP Unit Thickness n/a nfa 0.2
LFA All DP Unit Thickness n/a nfa 0.2
LFA All BP Exponential Mean 3.373 Min = 1m 1
LFA All ™ Power Law k.. ro 26,1 Min = 1m, Max=250m | 5
LFA All T2 Power Law k., ro 201, 1 Min = 1m, Max=250m | 5

Alternative size model for cooling joints, based on outcrop and photographic observations in
the Tiva Canyon Tuff.

HSU |CsU Fracture | Probability Parameter Distribution Size Aspect
D 1D Set Distribution | Names Parameters (m) | Truncation Ratio
TSA | Al CJ1 Lognormal Mean, Std. 1.250, 0.877 Min = 1m, Max = CSU 0.2
Dev. thickness ]
TSA | Al cJ2 Lognormal Mean, Std. 1.250, 0.877 Min = 1m, Max = CSU 0.2
Dv. thickness "
TSA | Al CJ3 Exponential Mean 3.373 Min=1m 1.0

Relative set intensity

Set ID Relative Set
Intensity (%)

SP 50%

DP 13%

BP 4%

T 32%

T2 1%

3-D Fractured Network Generation and Meshing

Each DFN has five fracture families (three cooling joint sets and two tectonic
features). The mean fracture intensity (P3) is 0.446 (m*/m?). After 3-D DFNs were
generated, meshing for fractures was done automatically by dfnWorks. The parameter 4
(minimum length scale) needed to be carefully considered while constructing the dfnWorks
model. As discussed in Hyman et al. (2015), 4 should be chosen such that all physical
phenomena of interest have natural scales greater than 4, so they can be well resolved by the
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computational mesh while limiting computational expenses. If / is too large, then it will be
difficult to generate a DFN that meets the density requirements. If / is too small, then the
computational cost associated with meshing and solving the governing equations will
increase. This study used a small 4 value of 0.25 m.

By gradually increasing the model domain sizes, this study found that the BULLION
FGE could be simulated properly (in terms of the computational resources available) at a
domain size of 250 m x 250 m x 100 m. This domain covers three wells and the entire LFA
thickness at the BULLION site. Figure 22 shows the locations of the model domain and the
three wells. The domain was simulated as one layer. The time required for generating the
DFN network was short (roughly less than five minutes), but the time required for meshing
was much longer (e.g., approximately four hours using four cores). To adequately capture the
randomness in stochastically generated networks, a total of 30 statistically equivalent
realizations of the network was generated. Table 4 summarizes the important statistics of the
30 DFN realizations before and after eliminating isolated fractures. The results showed that
the mean and standard deviation of the number of fractures are 10,750+266 fractures. In
general, the number of fractures after the isolation process is 10,751, which is 39.4 percent of
the number before the isolation (60.6 percent fractures were removed because they were
isolated from the backbone).

Figures 23 and 24 show examples of a 3-D DFN. This DFN realization generated
27,729 fractures to obtain a fracture intensity of 0.446 m?/m* (area of fractures/volume of
rock mass). Eliminating isolated fractures resulted in 10,892 fractures. For fracture families 1
through 5, the number of fractures were 5,450; 1,494; 306; 3,563; and 73, respectively.
Fracture families 1 and 3 dominated the network.

Table 4.  Statistics of 30 DFN realizations before and after eliminating isolated fractures.

Mean 1-stdv
Before
Number of fractures 27,267 845
Intersection length (m) 44,392 630
Fracture area (m?) 2,801,080 4,408
After
Number of fractures 10,751 266
Intersection length (m) 43,558 609
Fracture area (m?) 2,221,164 15,630

45



nfracs =5417 nfracs =1569 nfracs =311 2000 nfracs =3394 60 nfracs =54

® 3000 ® 1000 " 300 " 0 "
2 2 g 2 g
5 5 =] =] =]
® 2000 ® @ 200 e @ 40
Y Y “— “— “—
k) ‘5 500 bl ‘5 1000 bl
21000 2 2100 2 500 220
e e £ £ £
S S =] I =] =]
=z =z z z z
0 0 0 0 0
0 200 400 0 200 400 0 200 400 0 200 400 0 200 400
Rectangle width (m) Rectangle width (m) Rectangle width (m) Rectangle width (m) Rectangle width (m)

Figure 23. Fracture sizes and their distributions for each of the five fracture families (plots from left to right correspond to families 1 through 5)
for a realization.
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Figure 24. A DFN realization showing (a) all five fracture families, (b) cooling joints SP, (c) cooling
joints DP, (d) cooling joints BP, (e) tectonic fracture T1, and (f) tectonic fracture T2.

Flow and Transport Simulation

Constant head boundary conditions were assigned to four sides of the model domain.
No-flow boundary conditions were assigned to the top and bottom of the model domain as
the LFA was separated from other aquifers by impermeable layers. Because no observation
wells were located close to the model boundary, this study interpolated groundwater levels at
the boundaries using available groundwater level measurements in the study area. Two sets
of head gradients in the north-south directions were specified to consider uncertainty in
boundary conditions.

In the first set of boundary conditions (BC1), groundwater levels at the north and
south boundaries were extrapolated using observed static groundwater levels at the three
wells on June 2, 1997. Groundwater levels at the east and west boundaries were interpolated
using the groundwater levels from ER 20-6 #1, ER 20-6 #2, ER 20-6 #3, PM-1, U-20 WW,
and UE-20bh 1. The first set represented a scenario of negligible drawdown at the model
boundaries because of pumping at ER 20-6 #3. Because pumping would potentially cause
drawdown at model boundaries, a second set (BC2) of hydraulic head values were developed
to represent the uncertainty in boundary conditions. The second set was similar to BC1
except that the groundwater levels at the end of the pumping test (87 days) were the data
used in the interpolation. The north-south hydraulic gradients assigned for BC1 and BC2
were 9/1000 and 11.3/1000, respectively.
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An important step in modeling the BULLION FGE was to select a proper well skin
radius using the well package described in the “DFN Methods for 2-D and 3-D Models”
section to represent the three wells. Different well skin radii were tested by increasing the
well skin radius incrementally from 1 m to 10 m. For each test, DFN flow and transport
models were run and the number of active flow zones were identified. The study found that
using a well skin radius of 10 m allowed adequate intersections between each well and the
fracture backbone. One to five active flow zones were found by using the well skin radius of
10 m. This result was consistent with flow zone analyses that used the thermal logs of the
three wells in which less than three active flow zones were found for each well.

Figure 25 presents the number of intersections between each well and the fracture
backbone where each well was represented by two-orthogonal rectangular fractures of
100 m % 10 m. The number of intersections between fracture backbones and three wells were
11.87+2.42, 11.53+2.25, and 11.67+2.37 for wells ER 20-6 #1, ER 20-6 #2, and ER 20-6 #3,
respectively. For the BULLION FGE, a single DFN flow simulation took roughly 50 minutes
using four processors, but it only needed 15 minutes using 24 processors. Using the flow
solution, dfnTrans was used to study conservative particle transport. For each DFN model
run, 50,000 nonreactive particles were uniformly distributed along the well screen of the
injection well ER 20-6 #1. Particles were collected at ER 20-6 #3 to analyze BTCs. Each
dfnTrans simulation took roughly one hour using a single processor. The dfnTrans run time
increased linearly with the number of particles injected and tracking of each particle was
done sequentially in the code.

Model calibration was performed to estimate fracture apertures both in terms of the
values of their ranges and shape of their distributions. The objection function used in model
calibration was the mean of absolute error (MAE between observed and simulated
groundwater levels at the two observation wells:

n
MAE = Z|E§a’ — h?%S|/n (21)
i=1

where 7 is the number of groundwater level measurements, and h??and h¢* are the
observed groundwater levels and the mean of simulated groundwater levels found using
30 DFN model realizations at the location of observation well i.
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Figure 25. The simulated number of fracture intersections at three wells in the model domain.
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Model calibration was conducted for 180 DFN models resulting from 30 realizations
for each of the six modeling scenarios (three fracture aperture conceptual models and two
sets of boundary conditions). We used the OASIS supercomputer housed at DRI to run
model calibration in parallel. The parallel codes based on the embarrassingly parallel
algorithm was adopted from Elshall e al. (2015). Trial-and-error model calibration was used
because the linearity of the DFN models. Model calibration started with an initial guess of an
aperture value or distribution and varying this value until the minimum MAE was found.
Table 5 shows these results.

Figure 26 presents the trial-and-error runs for three conceptual models of fracture
apertures under BC2 boundary conditions. The CFA models were calibrated first because
they were the simplest model with only one parameter. Five trial-and-error batches were
completed to find an optimal aperture value. For each batch, 30 DFN models were executed
and the MAEs were calculated using Equation 21. The CFA model with an aperture value of
480 microns resulted in a minimum MAE of 0.10 m.

Using the estimated apertures from CFA models as a starting point, the LNA and
LCA conceptual models were calibrated. Each of these models had two parameters. The
strategy was to calibrate one parameter at a time. For LNA models, the mean of the fracture
apertures varied from —7.9940 to —7.6417 (natural log base), whereas the standard deviation
was as fixed at 0.4. This was equivalent to the mean values from approximately 340 microns
to 480 microns (prior to deletion of isolated fractures and segments from the network),
whereas the standard deviation was roughly 45 percent of the mean value, varying from
150 microns to 220 microns. The minimum MAE was 0.19 m. The lognormal distribution
(—=7.7063, 0.4) gave the best solution prior to deletion of isolated fractures and segments. This
was equivalent to a fracture network with aperture values (over 30 DFN realizations and after
deleting isolated fractures) of 487+203 microns. To calibrate the LCA models, the
first parameter, F in Equation 20, was varied from 0.125x107 to 0.135x107. The
second parameter was fixed at 0.4. The minimum MAE was 0.10 m. The mean and
standard deviation of fracture apertures for each trial model calibration run ranged from
227461 microns to 255+69 microns. The optimized fracture aperture was 246+66 microns.

Table 5.  Optimized fracture apertures and errors between observed and simulated groundwater
levels at two observation wells. Fracture apertures were averaged over 30 DFN
realizations and after deleting isolated fractures.

No. Conceptual Aperture MAE and 1-std deviation (m) Overall
models (microns) ER 20-6 #1 ER 20-6 #2 MAE (m)
1 CFA_BC, 410+0 0.63+0.72 0.52+1.21 0.57
2 LNA BC; 411x171 0.64+1.04 0.89+2.33 0.77
3 LCA BC, 208+56 0.64+1.43 0.58+3.17 0.61
4 CFA _BGC; 480+0 0.19+0.41 0.01+0.73 0.10
5 LNA BGC, 487+203 0.21+0.59 0.17+1.34 0.19
6 LCA BG, 241+65 0.14+0.87 0.14+2.01 0.14
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Figure 26. Model calibration convergence profile for the three conceptual models under BC2
boundary conditions. The x-axis shows the averaged fracture apertures by 30 DFN
realizations.

Table 5 summarizes the MAEs and estimated fracture values for six calibrated DFN
models. The values in Table 5 corresponds to the reduced density network in dfnWorks
found after deleting isolated fractures and segments. All calibrated models showed good
agreements between observed and simulated groundwater levels represented by overall
MAEs of less than 1 m. The MAEs for BC1 models were considerable higher than MAEs for
BC2 models. Figure 27 shows the distribution of fracture apertures for three calibrated
models under the BC2 boundary conditions.
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Figure 27. Fracture apertures of three calibrated DFN models under the BC2 boundary conditions.
Data are from 30 DFN realizations.

Results

Simulated Groundwater Levels

Figure 28 presents the observed and simulated groundwater levels at observation well
ER 20-6 #1 and ER 20-6 #2 for the six calibrated DFN models. Stochastically generated
fracture networks showed significant impacts on simulated groundwater levels. Variances of
simulated groundwater levels were found at both observation well locations for all six
models. For example, the CFA-BC1 model showed one standard deviation of simulated
groundwater of 0.72 m and 1.21 m at ER 20-6 #1 and ER 20-6 #2, respectively. The variance
of simulated groundwater levels by CFA models were always lower than those simulated by
LNA and LCA conceptual models. Uncertainty in groundwater levels at ER 20-6 #2 was
always higher than ER 20-6 #1 because ER 20-6 #2 was closer to the pumping well
ER 20-6 #3. Models with BC2 boundary conditions (i.e., MAEs varied from 0.10 m to
0.19 m) simulated the groundwater levels better than the models with BC1 boundary
conditions (i.e., MAEs varied from 0.57 m to 0.77 m). The second set (BC2) of head gradient
boundary conditions accounted for drawdown at four sides of the model domain. Better
results with BC2 indicated that the impact of pumping on the boundaries should be accounted
for in some way in DFN models. The DFN models with BC2 boundary conditions were
therefore used in remainder of this study. Figure 29 shows different views of groundwater
level distributions in a calibrated CFA-BC2 model for illustration.
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Figure 28. Model calibration results with the optimal model parameters: (a) CFA-BCI1, (b) LOG-BCI1, (c) LCA-BCI1, (d) CFA-BC2,
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the mean of the 30 realizations depicted by the yellow bars.
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Figure 29. Simulated steady-state groundwater level solution for a calibrated model using the
length-correlated fracture apertures.

Impacts of Aperture Distributions

Figure 30 shows the impacts of varying the second parameter of LNA and LCA
models on simulated groundwater levels. This is the scale parameter in the context of LNA
models and the parameter £ in the context of LCA models (see Equation 20). The first
parameter estimated during model calibration was fixed. The results showed that varying
standard deviations of LNA models led to negligible impacts on simulated groundwater
levels. For example, varying standard deviations of fracture apertures from 144.39 microns to
271.81 microns (the first parameter was fixed at —7.7063, which is equal to 487 microns)
resulted in MAE variations from 0.18 m to 0.21 m. However, varying the second parameter
in LCA models led to measurable impacts on simulated groundwater levels. For example,
MAEs increased from 0.50 m to 0.85 m when varying & from 0.35 to 0.45 (which is equal to
apertures from 54.67 microns to 80.25 microns).
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Figure 30. Impact of aperture distributions on simulated groundwater levels for (a) LNA models
where standard deviations of fracture apertures were varied from 144.39 microns to
271.81 microns. The mean was fixed at 487 microns; and (b) LCA models where
standard deviations of fracture apertures were varied from 54.67 microns to
80.25 microns. The mean was fixed at 241 microns. The solid red line and the solid cyan
line show observed groundwater levels at ER 20-6 #1 and ER 20-6 #2, respectively.

Water Flow and Mass Conservation

The pumping well is at the center of the x-axis and the distance from the pumping
well to the east and west boundary is 125 m (Figure 22). Figure 31 shows simulated flow
from six faces of the model domain using calibrated models with BC2 boundary conditions.
Inflows from the east were quite similar to inflows from west for all three models, which
shows that the fractures are well connected. High uncertainty was found for simulated flow
from east, west, and south. The LNA and LCA models showed higher uncertainty in
simulated flow compared with CFA models. Additionally, the results revealed a key
difference in simulated inflows and outflows among the three DFN conceptual models. For
LCA models, inflows were from east, west, and from south with some probability; whereas
inflows were only from east and west for CFA and LNA models.
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Figure 31. Simulated water inflow and outflow from the model domain: (a) CFA-BC2, (b) LNA-BC2, and (c) LCA-BC2.
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Tortuosity and Breakthroughs

We define tortuosity as the actual travel length of particles normalized by the linear
distance separating the source and the sink. Figure 32 presents tortuosity when particles were
released at well ER 20-6 #1 and collected at well ER 20-6 #3 for 30 DFN realizations. Means
of tortuosity varied from 1.53 to 2.48. The average of 30 DFN realizations was 1.89. One
standard deviation of tortuosity varied from 0.17 to 0.50. The average of the standard
deviation for 30 DFN realizations was 0.28. Figure 33 presents the observed and simulated
BTCs at the pumping wells obtained from the three calibrated models under BC2. The results
showed that the simulated BTCs did not match the observed BTC. The early arrival times for
all six models ranged from 1.9 hours to 11.4 hours. This is significantly different from the
observed BTC, for which the early arrival time was 150 hours. The peak of simulated BTCs
were several orders of magnitude larger than the observed BTC. The observed deficiency of
DFN models to produce site-specific, tracer-test breakthrough data forms the basis of
developing a postprocessing methodology to account for matrix diffusion (which is presented
in the next section).
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Figure 32. Simulated particle travel lengths from well ER 20-6 #1 to well ER 20-6 #3. The distance
between the two wells is 131.4 m.
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Figure 33. Simulated breakthrough curves for the three calibrated models under BC2 boundary
conditions: (a) CFA-BC2, (b) LOG-BC2, and (c) LCA-BC2. Squares (in blue) are for the
observed BTC, circles (in red) are the means of simulated BTCs obtained from 30 DFN
realizations, and cyan lines are the 30 individual simulated BTCs.
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Discussion

Developing a 3-D DFN flow and transport model in a highly fractured rock
aquifer, such as the example at the site of the BULLION FGE, was a challenging exercise.
Thirty fracture network realizations were generated stochastically using Monte Carlo
approaches. Together with the uncertainty in boundary conditions and fracture aperture
conceptualizations, this study needed to calibrate and analyze 180 DFN models. Each model
run required at least 32 gigabytes (GB) of memory (depending on the number of particles
released during transport simulations) and outputted roughly 40 GB of results. The model
domain was restricted to 250 m % 250 m in the lateral direction for the BULLION FGE
given the high number of models that needed to be calibrated and the availability of
computational resources.

Boundary conditions showed significant impacts on simulated groundwater levels and
estimated fracture aperture values. Using the BC1 and BC2 boundary conditions with CFA
models, the optimal aperture values were estimated at 410 microns and 480 microns,
respectively. Similar aperture values were found when using LNA and LCA models. The
BC1 boundary conditions were less realistic than the BC2 boundary conditions, which
accounts for drawdown at the model boundaries. Because BC2 provided a much better match
between the simulated and observed groundwater levels (see Table 5), no more alterations of
boundary conditions were considered for this study.

Fracture aperture conceptualizations showed significant impacts on estimated fracture
aperture values. The study found two significantly different ranges of fracture apertures using
the three fracture aperture models. The CFA and LNA models produced larger apertures
(410 microns to 487 microns) and the LCA models produced smaller apertures (208 microns
to 241 microns). In the LCA models, fractures with large sizes were assigned large apertures.
These fractures then exerted a dominant control on the network because of its large size and
aperture. The resulting network was strongly connected and the flow was channelized along a
few major features. In contrast, apertures were assigned randomly in LNA models, which
potentially created weakly connected networks. Therefore, larger apertures were needed to
conduct a similar volume of flow. The approach presented here builds up on mechanistic
understanding of flow between fracture walls and avoids the over homogenization and
physically unrealistic depiction of fracture networks found in traditional approaches based on
representative elementary volume concept.

High uncertainty was found in both the simulated groundwater levels and water
balances based on 30 DFN realizations of network. The CFA models resulted in the lowest
uncertainty and the LCA models resulted in highest uncertainty. Additionally, computed
water balance values were found to be very sensitive to aperture changes in LNA and LCA
models, but less sensitive to aperture changes in the CFA model. Multiple sets of model
parameters produced good agreement with the observation data. For example, by adjusting
apertures, this study found three aperture ranges that matched almost equally well with the
observed groundwater levels (Figures 28a, 28b, and 28c). This showed the nonuniqueness of
DFN solutions. Additional datasets are needed to discriminate among aperture conceptual
models and identify the best choice for a site.
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Simulated BTCs did not match well with the observed tracer test data. Simulated
arrival times were shorter than the observed arrival time. The simulated recovery rates were
higher than the observed recovery rate. The DFN models were designed to only simulate
advective transport of particles. The poor match between the BTCs highlights the importance
of other transport processes (e.g., dispersion and matrix diffusion) at the BULLION FGE.

CALIBRATION OF 3-D DFNs TO TRANSPORT DATA

As described in the previous section, using dfnWorks to develop a calibrated model
for the BULLION FGE succeeded in capturing the trends of the groundwater levels in the
observation wells but failed at matching the breakthrough curves of tracers arriving at the
pumping well (see Figure 33). This poor match between simulated and observed BTCs was
mainly attributed to the absence of capabilities in a DFN model to simulate transport
processes other than advection through a connected set of fractures. The purpose of this
section is to account for neglected transport processes in advection-only transport simulations
by postprocessing the breakthrough curves. In this case, the neglected processes were
diffusive. Solute diffuses in all directions throughout the field test, but does not diffuse in the
DFN transport simulations. Mathematically, this manifests itself in two ways. In the direction
longitudinal to the predominant flow, normal to plane where the breakthrough curve is
measured, travel times to arrive at the plane are modified by dispersion. In the transverse
directions, the travel times are modified by diffusion into the rock matrix.

To account for dispersion, a kernel method was used to smooth the breakthrough
curve, using the dispersion length scale as the bandwidth of the kernel. The contribution of
each particle to the mass in the breakthrough curve was spread out using the kernel method,
which is discussed in the following section. To account for matrix diffusion, a mobile-
immobile model is used. Of all the nonlocal-in-time random walk models, the mobile-
immobile model stands out because it leaves the physical meaning of the parameters of the
spatial operator intact (i.e., the model is based on the premise that total concentration splits
into mobile and immobile components, which interchange locally). The rock matrix was
envisioned to be completely immobile (no flow) and infinite in extent. This led to the use of a
fractional mobile-immobile model, which is discussed in the “Matrix Diffusion” section.

Dispersion

A kernel method, that is use of a functional tool to transform the concentrations into a
new output, was used to distribute the mass of solute particles across time according to
dispersion. Let there be n,, particles, each with mass m,,. To calculate the breakthrough curve
in the absence of the kernel, the contribution of this mass was distributed according to a delta
distribution:

CH = ) md(t -1, (22)
i=1

where t; is the arrival time at the breakthrough plane of particle i. If the particle were to
disperse, its arrival time would be uncertain. Dispersion was assumed to follow Fick’s law
and was modeled using a normal distribution. Therefore, the random walk of the particle is:
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Ax = vAt + V2DAtE (23)

where v is the particle’s average velocity, D is the dispersion coefficient, and ¢ is a random
variable distributed according to a standard normal distribution (with mean 0 and variance 1).
For this case, D = av, where the dispersivity, a, comes from the field test report (Reimus
and Haga, 1999).

The parameters Ax (the distance to the breakthrough plane) and At (the arrival time)
were known from the advection-only random walk on a discrete fracture network:

Ax = vAt, (24)

and were used to find v (the average velocity). It was assumed that this average velocity was
unaffected by the process of dispersion. To find the uncertainty in the breakthrough time of
the particle, a random variable T was inserted into the random walk equation:

Ax = v(At — 1) + /2D (At — T)¢. (25)

To find the distribution of 7, the above equation was reduced such that t could
explicitly be determined. The advective contribution was assumed to dominate the dispersive
contribution, that is:

v(At — 1) » /2D(At — 1)é. (26)

Therefore, the contribution of 7 to the dispersive jump was neglected, and we have:
Ax = v(At — 1) + V2DAtE, (27)

which can be rearranged to obtain:

Ax V2DAté  2DAt
T= M- =4 : o £. 28)
v v v
Substituting for D and v, we find:
2aAt?
= &£ (29)
Ax

and therefore 7 is distributed according to a normal distribution with mean 0 and variance
2aAt?

. The concentration can then be calculated according to:

Ax
= Y ) (30)
0= (-(05) )

2a(t—t;)?
where g; = ’(A—x‘)
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Matrix Diffusion

A fractional mobile-immobile model was used to account for solute diffusion into and
out of the rock matrix. It was assumed that solute that enters the rock matrix experiences no
transport. In the absence of matrix diffusion, the governing equation for concentration of the
solute is:

d
—C =AC (31)
dt

where A is the spatial operator governing transport (advection and dispersion in this case). In
the mobile-immobile model, the concentration was split into mobile and immobile phases,
where the total concentration was the sum of the mobile and immobile concentrations:

Ciot = OmCm + OimCim (32)

The total concentration followed the same conservation equation, which is also the
case with no matrix diffusion:

d (33)
E Cior = ACp,

except that transport only occurs for the mobile concentration, C,,. Using the relationship
between the concentration phases (Eq. 32), we find:

iC +iC = AC. (34)
dt ™ dq¢ ™ m

The immobile concentration is further related to the mobile concentration by
convolution with a memory kernel:

Cim = k xCp, (3%5)

The memory kernel, &, encodes the rate of entry into and the distribution of exit times
out of the immobile zone (rock matrix) and can be any monotonically decreasing function.
The key modeling choice is the choice of the memory kernel, discussed below.

Once k is chosen, the equation for total concentration (Equation 34) is transformed
into the Laplace domain:

sCp + skCp, + Co = AC,, (36)

where s is the Laplace variable, the hats signify transformed functions, and Cj is the initial
concentration. The solution is:

~ _ —Co (37)
" os(1+k)- 4
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Notice that the solution for concentration in the absence of matrix diffusion
(Equation 31) is:

_CO

s—A (%)

¢ =

Therefore to account for diffusion, we shifted the Laplace variable by sk. Therefore, the
breakthrough curve was numerically transformed into Laplace space with the Laplace
variable s(1 + k) and the inverse transform was performed to find the breakthrough curve,
which accounts for matrix diffusion.

For this study, the fractional case considered in Schumer ef al. (2003) was assumed to
model the memory kernel as:

_ Bt
S ra-yy

where f > 0 and 0 < y < 1 are constants and represent the ratio of porosity in the immobile
and mobile zones, and the rate of mass transfer between mobile and immobile zones (when
the memory function follows a power law), respectively. These two parameters are used in
this study as curve fitting parameters to improve the match between observed and simulated

k (39)

breakthroughs. The term I denotes the Gamma function. In this case, % (kxCp)isa

fractional Riemann-Liouville derivative. Other commonly used cases are listed in Haggerty
et al. (2000) (see Table 1 g(t) column) and in Ginn ef al. (2017) (see Table 1 g(t) column
times f).

Metrics to Assess Model Error

Using the best-fit values for § and y corresponding to the aperture distributions, the
error in breakthrough was calculated over the time range [tnin tmaxl, Where ty,;y, is the first
point in time when solute was extracted in the pumping well (in the BULLION FGE) and
tmax 1s the point in time when the pumping test ended. A vector of times in this range was
created with 1000 log spaced times to calculate breakthrough and error. At each of these
times, the breakthrough of the ensemble of the simulations (C,y¢q(t)) and of the field test

(Cyet (t)) are calculated.

The absolute error at that time is calculated at each time, t;:

E(tj) = |Cpred(tj) - Cact(tj)l (40)
then summed and normalized to produce the breakthrough absolute relative error (BARE):

2 E()

BARE =
Zj Cact(tj)

(41)

The head error, HE, is the absolute difference between the observed and the simulated
head values computed using the dfnWorks model presented in the “Calibration of 3-D DFNs
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to Flow Data” section. Weighted error, WE, was calculated as the geometric mean of the
BARE and the HE:

WE = /(BARE)(HE) (42)

Table 6 summarizes the best-fit values for various aperture models presented in the
“Calibration of 3-D DFNs to Flow Data” section and the corresponding error metrics.

Table 6.  Best-fit values for the parameters of the memory kernel and the error metrics for various
aperture distribution models under BC1 and BC2.

BC  Distribution par;;fe e parz‘lfe w B v BARE HE WE
1 CFA 410 - 102 72 1536 57 29
2 CFA 480 ~ o1 81 1617 .10 127
1 LNA 380 0.1 102 72 2090 80 409
1 LNA 380 0.3 102 72 1291 78 317
1 LNA 380 0.4 102 72 1199 80 310
2 LNA 450 0.3 o1 81 1769 21  .193
2 LNA 450 0.4 00 81 1478 21  .176
2 LNA 450 0.5 0.0 81 1748 .18 177
1 LCA 11 0.3 102 72 2156 446 98I
1 LCA 11 0.4 102 72 2186 63 37
1 LCA 11 0.5 102 72 2168 167 602
2 LCA 1275 0.35 0.0 81 4331 93 635
2 LCA 1.275 0.4 00 81 2842 15 207
2 LCA 1.275 0.45 01 81 2764 65 424
Results

To use the postprocessing technique, the two parameters for the fractional kernel
(B and y) were found by curve fitting. The parameters were fitted from the breakthrough
curves corresponding to the CFA model for each boundary condition. Figures 34a and 34b
show the original breakthrough curve from dfnWorks for delta distributed aperture for each
boundary condition (BC1 and BC2), which consistently predicts early arrivals. Also shown
on each figure is the best-fit breakthrough curve after postprocessing, which is a significantly
closer match to the field data. Table 6 shows the values of the parameters used in
these simulations.
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Figure 34. Comparison between observed breakthrough curve (actual) and postprocessed
breakthrough curve for: (a) CFA model using BC1, (b) CFA model using BC2,
(¢) LNA model using BC1, (d) LNA model using BC2, (¢) LCA model using BC1, and
(f) LCA model using BC2. The CFA model results ([a] and [b]) also show the original
(unprocessed) simulated breakthrough curves.
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Figure 34c shows the postprocessed breakthrough curves for the LNA for various
values of standard deviation (o) using BCI. In this case, considering the error in head alone,
it would be assumed that ¢ = 0.3 was closest to the standard deviation of the actual aperture
distribution, even though all three choices have similar errors. However, the error in the
breakthrough curve with ¢ = 0.4 was the lowest. Figure 34d is the same as Figure 34c, but
for BC2. In this case, the lowest head error was for ¢ = 0.5 and the lowest breakthrough
error was for 0 = 0.4. By weighing the errors, the lowest error for ¢ = 0.4 was found
for both cases.

Figure 34e shows the postprocessed breakthrough curves for the LCA distributions
for various values of the constant k (see Equation 20) using BC1. In this case, considering
the error in head alone, it would be assumed that k = 0.4 was closest to the parameter of the
actual aperture distribution. However, the error in the breakthrough curve with k = 0.3 was
the lowest, even though all three choices had similar errors. Figures 34f and 34e are the
same, except for BC2. In this case, the lowest head error was for k = 0.4 and the lowest
breakthrough error was for k = 0.45. By weighing the errors, the lowest error for k = 0.4
was found for both cases.

Discussion

By accounting for errors in both simulated hydraulic head and in postprocessed
breakthrough curves, which accounted for diffusive processes, it was predicted that if the
aperture distribution was lognormal, then 0 = 0.4, and if the distribution was length
correlated, then k = 0.4. Furthermore, when comparing errors between aperture
distributions, the lognormal distribution was more likely to perform better than the length-
correlated distribution. Finally, the weighted error in the CFA distributions was lower than
the corresponding lognormal distributions (for both BCs). Although CFA breakthrough
curves were used to fit the parameters of the fractional kernel in the postprocessor, this alone
did not explain the lower errors because breakthrough errors were actually higher for the
CFA models than the corresponding LNA models.

The work presented in this section in conjunction with the flow calibration work
presented in the “Calibration of 3-D DFNs to Flow Data” section establishes a method to
develop calibrated models for fractured rock aquifers. These models are highly useful
because they allow fracture aperture uncertainty to be reduced, which in turn helps to more
accurately describe groundwater flow and transport. The flow calibration part alone
(“Calibration of 3-D DFNs to Flow Data’) narrows down the choices of aperture distribution
model and aperture ranges, but it does not provide a unique solution. Using the set of
solutions obtained from the flow calibration, transport calibration was performed via
postprocessing techniques (as described in this section), which helped to develop a high
degree of confidence for specific aperture distributions and ranges of values.

SUMMARY AND CONCLUSIONS

Discrete fracture network modeling approaches were used to study techniques for
upscaling transport in fractured rocks and to develop model calibrated to observed hydraulic
head and transport data using fracture aperture as a calibration tool. The upscaling study was
based on solutions obtained from 2-D DFN models (Parashar and Reeves, 2012). The flow
and transport calibration part of the project was based on solutions obtained from dfnWorks,
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a state-of-art, 3-D DFN simulator developed at the Los Alamos National Laboratory
(Hyman ef al., 2015a). Field data for the calibration study was obtained from the BULLION
FGE, a tracer test experiment conducted over a span of 87 days in the summer of 1997 on
Pahute Mesa in Area 20 of the NNSS (IT Corporation, 1998).

An extensive model development exercise was undertaken to create a well package
for dfnWorks. This well package was easy to implement in dfnWorks and was tested for
accuracy against solutions obtained from examples in MODFLOW. The method modified
three source code files, so a user would need to modify these files before compiling
dfnWorks. The recompiling process was the same as the original dfnWorks. Two new
parameters were introduced: a well skin radius and well skin permeability. Two examples of
simple deterministic fracture networks and one example of a complex stochastic fracture
network were constructed to test the functioning of dfnWorks with an integrated well
package, as well as to test the influence of the new well parameters on flow and transport.
The results of the three examples revealed that the method enhanced the connectivity
between a well and fracture backbones, as well as simulated the physical process of flow and
transport along and around the wells in DFNs. It was found that:

1) The radius and permeability of well skin at an injection well had significant
effects on simulated BTCs. Ideally, the radius of injection well skin could be
determined using observed one-dimensional fracture intensity Pio. If there
were no available data on fracture intensity, the well skin parameters could be
treated as adjustable model parameters to help produce a close match to field
observations.

2) The skin radius and skin permeability of a pumping well showed negligible
effect on the BTCs. One could increase the pumping well skin radii to
strengthen connection between the pumping well and backbone to reduce
numerical issues.

The random walk method provided a framework for modeling non-Fickian transport
through fracture networks by using probability distributions to generate particle jump lengths
and residence times spanning multiple orders of magnitude. Examples of random walk
upscaling methods used in this study are: Markov directed random walk (MDRW), Monte
Carlo solution of the Boltzmann transport equation (BTE), and the spatial Markov model
(SMM). We focused specifically on random walk models to determine what aspects of the
space and time step distributions (e.g., correlation and coupling) must be accounted for to get
the most accurate predictions of transport in a 2-D fracture network. The solution obtained
from a 2-D DFN model was treated as the ground truth, and the random-walk-based
upscaling methods were evaluated for their performance under varying scenarios. By
comparing scenarios with different fracture transmissivity distributions (with ¢ =0, .5, 1),
upscaling models, and modeling step definitions, we noted the following major highlights:

1) As the distribution of fracture transmissivity widened, preferential pathways
for solute formed, creating correlation in particle velocities over successive
steps. For the lognormal transmissivity distributions, models that incorporate
correlation gained an advantage over their uncorrelated counterparts when
o=1.
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2) Early breakthrough was best predicted by the uncorrelated models (uMDRW
and uSMM) for ¢ < 1 and by the correlated models (MDRW, BTE, SMM)
foro=1.

3) Tailing behavior was best predicted by the SMM models (uSMM, SMM)
for o < 1 and by the correlated BTE model for o = 1.

4) Comparing the effects of model choice and correlation showed that the effect
of modeling scale (number of fracture segments used to define modeling
steps) on model predictive performance was negligible, at least over the range
(~ 1 km) covered in this study.

For each DFN realization of the 2-D network, upscaled simulations for six different
models (MDRW, uMDRW, BTE, uBTE, SMM, and uSMM) at three different length scales
were conducted. The uBTE performed the poorest, and all three length scales gave similar
predictions. For future research, more than two-thirds of the model runs can be eliminated by
excluding uBTE and the two smaller length scales for all models, leaving just five models
and one length scale, which will allow us to assess the effect of varying DFN parameters
other than transmissivity distribution and to expand the model to 3-D.

For the site-specific calibration part of the project, DFN models were developed using
dfnWorks and calibrated to drawdowns obtained from the BULLION FGE. Fracture aperture
was used as a calibration parameter. Thirty DFN realizations of fracture network, three
conceptual models of fracture apertures, and two sets of boundary conditions were
considered in model calibration and in uncertainty quantification. The results showed that
fracture network structures, fracture aperture conceptualization, and the boundary conditions
had significant impacts on the estimated values of fracture apertures and simulated
groundwater levels and water budgets. It was found that the boundary conditions in a DFN
model needed to be adequately adjusted when a pumping well was included.

Constant fracture aperture models showed the least uncertainty in simulated
groundwater levels and water budgets and were a good starting point for developing
calibrated 3-D DFN models. Model calibration found optimal fracture apertures at the
BULLION site ranging from 241+65 microns to 487+203 depending on the conceptual
model selected for the fracture apertures. The estimated apertures could be used to compute
the equivalent permeability of fractured rock masses.

Although the flow calibration exercise in a DFN modeling framework led to a fairly
constrained range of aperture values, the solution was not completely unique. More than one
model conceptualization and magnitude of fracture apertures could give rise to similar
matches with the field-observed values of hydraulic drawdowns. The simulated BTCs by
dfnWorks were also not in good agreement with the observed tracer test data because the
DFN models were designed to simulate only advective transport through the connected sets
of fractures in a network. To include the influence of longitudinal dispersion and matrix
diffusion in breakthrough responses, a set of postprocessing methods were developed to
numerically transform the BTC data. The postprocessor was based on a memory kernel
method that relies on two parameters. The best-fit parameters resulted in a good match of the
simulated BTC with the observed BTC. This also allowed to the aperture ranges to be further
constrained, and therefore it greatly reduced the uncertainty present in the model prior to
application of the postprocessor. The latest version of dfnWorks has incorporated a Time
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Domain Random Walk (TDRW) methodology to provide correction to a particle’s travel
time because of matrix diffusion. In TDRW, the time a particle spends in a fracture, T, is
found as the sum of advective time and a time related to diffusion process between fracture
and matrix. In future studies, it will be worthwhile to compare the results from TDRW based
simulations to results of the post-processing techniques presented in this report.

The work presented in this report is expected to constrain fracture aperture values in
Pahute Mesa to realistic ranges, inform and support other flow and transport models in the
Corrective Action Unit, help understand the key transport trends that are manifested in
fractured aquifer units, and provide ways to effectively upscale transport for potential
integration to large-scale models.
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