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ScramjetUQ Project Team

Current team includes Sandia (CA+NM), Duke, MIT, and USC.

Institution | Expertise Participants
uQ + Comb Habib Najm, Bert Debusschere,
Sandia Cosmin Safta, Khachik Sargsyan
Xun Huan
LES + SprayComb | Joe Oefelein (now at Georgia Tech)
UQ + Optim Mike Eldred, Gianluca Geraci
uQ + Comb Omar Knio, Ihab Sraj
Duke
LES Guglielmo Scovazzi, Oriol Colomés
MIT uQ + Optim Youssef Marzouk, Olivier Zahm,
Friedrich Menhorn
usc uQ + Optim Roger Ghanem, Panagiotis Tsilifis
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Phase-|

Outline

@ Phase-1 Major Achievements
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Phase-|
Phase | Achievements

@ Dimensionality reduction in P1
o GSA, CS-PCE regression, ML/MF
@ Identified 6 important parameters

e Established utility of ML/MF in this system
e Established utility of BA/Manifolds in this system

o Inverse problem dimensionality reduction

@ OUU demonstration in P1
e OUU algorithms

e OUU software infrastructure

o Coupling Dakota, SNOWPAC, RAPTOR
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Phase-|

GSA dimensionality reduction - Phase 1

GSA via PCE-Sparse Regression and ML/MF

@ Applied Global Sensitivity Analysis (GSA) to P1

- Sparse Polynomial Chaos surrogates via ¢, -norm min

- Solution methods for sparse regression and techniques to
avoid overfitting (manuscript submitted to SIAM/ASA-JUQ)

- Under either ML or MF

to identify important P1 parameters

Identified 6 dominant parameters for relevant LES Qols in P1
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Phase-|

MLMF dimensionality reduction - Phase 1

@ Main Goal: Variance reduction (improved estimator reliability) for a limited number of
HF simulation by adding a 'large’ number of LF realizations

" MC ——
X Y — Aggressive Samples redistribution (P1 with 24D):
) \, @ 3D LES: 9 fine + 263 coarse
& o1l ) e @ 2D LES: 68 fine + 4191 coarse
) Extremely high computational cost
| 2D 3D
d/8 T 204
oot d/16 | 255 1844
10 100 1000 10000 100000 1e+06

Equivalent HF runs

@ More challenging to obtain variance reduction by ML for high turbulence cases

@ Non monotonic RMS

Po,mean | Py rms,mean | Mmean [ TKEmean ] Xmean
variance decay ]
a/8 4.025e-03 I 1.905e-06 I 1.992e-02 | 3.349e-07 ‘ 4.245e-03
. d/16 4.033e-07 7.778e-08 6.690e-05 1.748e-08 4.400e-05
@ Need for managing PTupdated
ial/ti ionsi as8 405803 1906e-06 1600e-02 75336-07
spatial/time resolutions in /16 2.850e-04 I 7.370e-07 | 2.076e-03 2.997e-07

a unified fashion

@ Integration of the ML/MLMEF strategy into the OUU loop (Dakota/SNOWPACK)
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Phase-|

BA/Manifolds dimensionality reduction - Phase 1

Dimension reduction is achieved both via “learned” subspaces via
projections and “learned” manifolds via sampling:

Subspace detection in PCE permits concentration of L, projections:

@ Convergent stochastic approximations are accelerated in the
transformed coordinates.

@ Maintain accuracy and functional form for use in sensitivity
calculations and optimization.

@ Numerical cost is proportional to stochastic dimension.

Diffusion manifold detection permits concentration of samples:

@ Samples scattered around manifold have smaller variance than
samples scattered in ambient space.

@ Structure of manifold is better delineated with more stochastic
parameters; thus requiring fewer samples to characterize Qol.
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Phase-|

Inverse problem dimensionality reduction - Phase 1

Dimension reduction is necessary for inference in large-scale and
computationally intensive problems, enabling:

@ Accelerated sampling
@ Construction of reduced/surrogate models

Covariance-based (non-intrusive) estimation of data-informed directions

@ Sample size/detection limits from asymptotic theory of “spiked”
covariance matrices

@ Application to RAPTOR P1 problem

New gradient-based method (intrusive) for certified dimension reduction

@ Provides rigorous control of error (Kullback-Leibler divergence)

@ Outperforms previous dimension reduction methods for Bayesian
inverse problems
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OUU Algorithms - Phase 1

Algorithms & infrastruct

@ Dakota trust region model management (TRMM):
o TRMM incorporates multilevel-multifidelity in simulation, UQ, both
o Leverage RAPTOR model forms {2D, 3D} + discretizations {d/8, d/16}
o Recursions for deep hierarchies (beyond bi-fidelity)

@ (S)NOWPAC derivative-free opt: deterministic/stochastic solvers
o NOWPAC — SNOWPAC: adapt TR to noise, GP’s to mitigate noise,
efficient GP regression via low rank approx (SoR, DTC, FITC)
e Performance eval against other common DFO solvers

@ Integration of (SINOWPAC + Dakota

e NOWPACOptimizer: solver spec, input var transforms, constraint
mappings, final result logging, parallel config

o Abstract error est. in Iterator, Model: std errors in MC, MLMC stats

o Phase Il target for P2 OUU: SNOWPAC + MLMC
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OUU Software Framework - Phase 1

o FAPTOR ILAPTOII cmp, RAPTOR
Post-processing

DAKOTA

Framework RAPTOR
Pre-processing Simulation_ & S0 Post-processing

Multilevel / Surrogate .

[Mulliﬁdelity] [ Models ouy *

SNOWPAC

(DAKOTA+SNOWPAC) - RAPTOR Interface
@ RAPTOR black box driver based on system/fork + file I/O
@ Asynchronous local concurrency with work directories

@ Detection and mitigation of failed simulations (e.g., residual
divergence, node failure)

@ Up to 3 levels of parallelism: optimizer, UQ, RAPTOR
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Phase-| 1

OUU Demo - Phase 1

P1 (jet-in-crossflow) deployments:

@ PCBDO w/ combined exp: reuse of 2D/3D GSA data sets
Model 103 Initial E[x] Initial E[¢] FinalE[x] FinalE[¢] Iter

2D .06 3.480e-1 6.356e-2 3.229e-1  6.000e-2 3
3D .013 1.377e-3 1.392e-2 1.212e-3 1.300e-2 2

@ Multifidelity TRMM with UQ/simulation resolutions

Iteration E[¢] V2 [#] Elx] Trust region ratio
0 1142e-01  5.800e-03 9.848e-02 N/A
1 1.074e-01  5.646e-03  8.832e-02 1.443
2 1.003e-01 5.390e-03  7.790e-02 1.497

@ SNOWPAC closed-loop coupling with RAPTOR P1 code

Objective function f = Eq[Vy[#]] + a V[V, []]

5 ‘\./’"“A“wa/\x&',\h«,.wé\.",.., AL

nnnnn

nnnnn

Heration step
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Phase-Il

Ol{tline

© Phase-Il Progress
@ Application Code - Scramjet
@ High Dimensionality
Basis Adaptation & Manifold Sampling
Bayesian Inference
Model Error

Mesh Discretization Error

Optimization under Uncertainty
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Phase-Il App HID BA MDE OUU

Phase Il Research Goals

@ Establish routine computations with full scramjet P2 code

@ ldentify reduced dimensional uncertain parameter space for P2
o GSA, PC/CS regression, MLMF, BA/Manifolds

@ Demo reduced dimensional Bayesian inversion with P2
@ Demo model and mesh error estimation in P2

@ Demo OUU with P2 following WPAFB metrics
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Phase-II

Phase Il Progress

@ LES code

Forward UQ and dimensionality reduction

- GSA PC/CS, MLMF
- Basis Adaptation/Manifolds

Bayesian inversion and dimensionality reduction

Model Error

@ Mesh Error

e OUU
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Phase-Il

Ol{tline

© Phase-Il Progress
@ Application Code - Scramjet
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Phase-Il App HiD

LES Code Highlights - HIFIRE Scramjet

What weve done

Multiscale-multiphysics application of + Provided benchmark LES calculations of the
Large Eddy Simulation (LES) Hypersonic International Flight Research Experiment
(HIFIRE) to support development of UQ
« Case of interest corresponds to the geometry and
conditions of ground based experiments performed
in the HIFIRE Direct Connect Rig (HDCR)

« A hierarchy of unit cases (including high-fidelity LES
of the HDCR) has facilitated UQ tasks and provided
optimal workflow between team members

« Unit cases are designed to emulate key Qols while
making comprehensive parametric studies possible

State of
the Art LES
("P2" Case)
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Phase-Il

LES Code Findings

What weve learned

Turbulence
Q-Criterion = 2E5 s

Flame
Iso-Surface Y¢o, = 0.15
1000K (Yellow) — 3200K (Red)

Fuel Jets
Iso-Surface Yy, = 0.1

e.g., 3D, d/16, 70-million cells, near constant spacing
« Synthetic turbulence generation for inflow velocity

+ Mixed dynamic Smagorinsky model for scalar-mixing

* Reduced finite-rate chemical kinetics for CH4/C2H4/Air

« Thickened flame model for combustion closure

« ODE based wall-model for turbulent/thermal boundary layer

@ Established full 3D modeling of HIFIRE DCR configuration (P2) with
complete system of sub-models validated for baseline conditions

@ Established RAPTOR-Dakota software framework for OUU using P2
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Phase-Il App HID BA y ME MDE

Detailed analysis of flow has provided
insights into local processes

P stagn. mean [bar]

2 4 6
Mean stagnation pressure loss I— —

2 0.7 7
Instantaneous flow characteristics

3
—/ &
S— = — - =
0t
- o
R 2T
— 0 | L L L )
e o 5 10 15 25 30
18 X [in]

Pressure distribution along wall
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Phase-Il App HID BA Bayes ME MDE OUU

RAPTOR 1I/0O has been instrumented to interface

with Dakota and SNOWPAC

Cavity Height <|:

Inlet: Primary Injector: Secondary Injector:
« Stagnation Pressure « Equivalence Ratio « Equivalence Ratio

« Stagnation Temperature - Stagnation Temperature « Stagnation Temperature
* Mach Number * Mach Number * Mach Number

« Turbulence Intensity « Turbulence Intensity * Turbulence Intensity

« Turbulence Length Scale * Turbulence Length Scale « Turbulence Length Scale
« Boundary Layer Thickness  + Axial Position

* Injection Angle Performance Metrics:
» Thermal Efficiency

* Phi-Burn (>= 0.7)

* Location of Leading Shock [«
« Bulk Loss in Stagnation Pressure

» Magnitude of Pressure Oscillations

« Combustion Chamber M > 1 (Scram Mode)
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Phase-Il App HID BA Bayes ME MDE OUU

Application Impact

@ Established hierarchy of computations of 2D/3D unit problem cases
including the full 3D HIFiRE Scramjet configuration
e Performed and analyzed over 8000 LES calculations required for
development and testing of UQ tasks
e Created interface between RAPTOR code and UQ routines via a shared
repository and related pre- and post-processing scripts

@ Combination of P1and P2 calculations have provided progression of
affordable unit cases that emulate key physics

o P1 cases have facilitated testing and refinement of various UQ methods
along with workflow required for data management and analysis

o Full 3D P2 case provides the target reference case for application of the
suite of UQ methodologies for both model and system optimization

@ Demonstrated full set of physics sub-models in the full 3D P2
configuration at baseline conditions

o Established RAPTOR-Dakota software interface for OUU with P2
e Managed the balance between computational cost and fidelity
(which will continue to be a leading challenge)
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Phase-Il

Outline 7

© Phase-Il Progress

@ High Dimensionality
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Phase-Il App HID BA Bayes ME MDE OUU

Hi-D Highlights

Wht weve done

Software Infrastructure

o Adapted DAKOTA - RAPTOR software connection infrastructure for
the GSA effort

- Sampling for GSA studies is now driven by DAKOTA
—tolerant to faults

- Adaptive Sparse Quadrature currently run in either ML or
MF mode

GSA/ASQ progress

@ Applied Global Sensitivity Analysis (GSA) to P2 in an ML context
- Sparse Polynomial Chaos surrogates via ¢;-norm min

@ Algorithm development in progress for MF/ML ASQ
- provide optimal quadrature adaptation across models of
different fidelity and levels
- balance improvement of overall surrogate and
computational costs
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Phase-Il App HID BA Bayes ME MDE OUU

Hi-D Findings

What weve learned

GSA

@ Completed set of simulations for P2 2D with coarse (6 = d/8) and
intermediate (6 = d/16) grid resolutions

- 11 uncertain parameters; design variables fixed at nominal
values

- Inlet Mach number and temperature were the dominant
parameters for a set of Qols investigated in this preliminary
study

@ Preliminary results for 2D P2 configuration indicate longer time
horizons needed to reach near-stationary state dynamics

ASQ
@ Single fidelity ASQ results completed for P2 2D coarse grid

@ MF development in progress
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Phase-II

Hi-D Progress: GSA for P2

@ Qols: thermal efficiency (1);,¢,.mq:). Stagnation pressure loss (AP, ),
and mean TKE at /d = 190 (right after the 2nd set of injectors)

@ 256 simulations for d/8 and 172 simulations for d/16

2D P2(d/8) 2D P2 (d/16)-(d/8)

TKE190 AP,
stag

Inlet Mach number (M,) and stagnation temperature (7)) are the
dominant parameters for 2D P2 case.
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Phase-Il

Hi-D Progress: Adaptive Sparse Qu

@ PCE approximation constructed via 3 level adaptive sparse
quadrature
- the design adapted to primarily include the important
directions

DPstag

Nthermal

= £ &£ 3
=

=)

[

0 0.2 0.4 0.6

o ,©o ©o x * ¥
I ~ = U & §

@ Results are similar to GSA via sparse regression; some turbulence
models parameters (C';) exhibit increased importance

@ Work in progress to include balance between cost and accuracy in
the MF design.
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Phase-Il

Outline

@ Phase-ll Progress

@ Basis Adaptation & Manifold Sampling
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Phase-Il App HID BA Bayes ME MDE OUU

Basis Adaptation Highlights

What weve done

@ Orthogonal polynomials are constructed with respect to rotated
germ, and then truncated for enhanced compression.

@ The adaptation isometry is now additionally constrained with
statistical (samples, likelihood) and orthogonality (sensitivity ranking
of initial dimensions) information.

@ The result is more concentration of Qol around dominant directions.
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Phase-Il App HID BA Bayes ME MDE OUU

Basis Adaptation Highlights

Wht weve done

@ Orthogonal polynomials are constructed with respect to rotated
germ, and then truncated for enhanced compression.

@ The adaptation isometry is now additionally constrained with
statistical (samples, likelihood) and orthogonality (sensitivity ranking
of initial dimensions) information.

@ The result is more concentration of Qol around dominant directions.

@ Convergence criteria and assurance in adapted directions

@ Error analysis with respect to errors in isometry evaluation

@ Adaptation interpolated across models,
refinements,
and design space
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Phase-Il App HID BA Bayes ME MDE OUU

Manifold Sampling Highlights

What weve done

@ An implicit manifold is “learned” from a handful of initial samples.

@ Statistical analysis and sampling are conducted around this manifold,
exhibiting smaller scatter than would otherwise be observed.

@ A projected It6 equation is constructed to sample directly on this
manifold.

@ Joint density of Objective function, design variables, uncertain
parameters is pre-computed for real-time optimization.
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Phase-Il App HID BA Bayes ME MDE OUU

Manifold Sampling Highlights

What weve done

@ An implicit manifold is “learned” from a handful of initial samples.

@ Statistical analysis and sampling are conducted around this manifold,
exhibiting smaller scatter than would otherwise be observed.

@ A projected It6 equation is constructed to sample directly on this
manifold.

@ Joint density of Objective function, design variables, uncertain
parameters is pre-computed for real-time optimization.

@ Convergence criteria and assurance for learning process

@ Statistical selection criteria for diffusion kernels
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Phase-Il App HID BA Bayes ME MDE OUU

Basis Adaptation via Compressive Sensing

@ ¢, minimization for PCE with rotated basis
Compute jointly the coefficients ¢; and isometry A for

u = u(n) = Z cgg(n) = Z Cgtbg(AE) (1)
Bedd Bedd
by finding
. 1
(', A —argmin { o lju— TaclB + Allell . @

@ Example: We solve (2) for a 1d, 2d & 3d adaptation of the u-velocity
component averaged along the y-profile (P2 domain - 2 /d = 220).
Left to right: log-likelihood, chaos coefficients & 2d PCE manifold
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Phase-lI p HD BA Bayes ME MDE

Manifold Sampling for PDF and Extremes

pdf of Qmm (blue), Q (red), and Qmax (black) for N = 25 (thin lines)

and N = 256 (thick lines) with Ym = 25,600 additional samples
200
150 [

g 100

50

Probability of Thermal Efficiency with Minimum and Maximum.
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Phase-Il App HID BA

Manifold Sampling for PDF and Extremes

pdf of Qmax for N = 25 (dashed black), N =100 (thin black), N = 225 (med red),
N = 256 (thick blue) forvsm = 25,600 additional samples

200

max

pdf of Q

012 013 014

Probability of Maximum of Thermal Efficiency: Convergence with
learning.
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Phase-lI p HD BA Bayes ME MDE

Manifold Sampling for PDF and Extremes

pdf of Qmm (blue), Q (red), and Qmax (black) for N = 25 (thin lines)

and N = 256 (thick lines) with Vi = 25,600 additional samples

im

601

pdf

Probability of Pressure Stagnation Loss, with Minimum and Maximum.
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Phase-lI p HD BA Bayes ME MDE

Manifold Sampling for PDF and Extremes

pdf of C!maX for N = 25 (dashed black), N =100 (thin black), N = 225 (med red),

N = 256 (thick blue) furvs\m = 25,600 additional samples

50

0.68 0.7 0.72 0.74 0.76 0.78 0.8

Probability of Pressure Stagnation Loss: Convergence with learning.
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Phase-Il App HID BA B

Basis Adaptation and Manifold Sampllng Impact

Basis Adaptation

Computational cost is less than linear in stochastic dimension without
loss of accuracy.
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Phase-Il

Basis Adaptation and Manlfolc’lTSampllng Irﬁpact

Basis Adaptation

Computational cost is less than linear in stochastic dimension without
loss of accuracy.

Manifold Sampling

@ Summarize a large dataset with a data-driven generator

@ Augment a small dataset by conditioning on intrinsic structure

SNL Najm ScramjetUQ 32/58



Phase-Il

Outline 7

© Phase-Il Progress

@ Bayesian Inference
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Phase-II

Bayesian Inference - Highlighf§

What we've done

Goal: reduce the dimensionality of Bayesian inverse problems:
Tpos(Z) X £(2) T (z) with z € R, d > 1

Methodology:

@ Start with a best approximation problem for the posterior
distribution

@ Derive an upper bound for the error (KL-divergence)

@ Minimize the upper bound using principal component analysis
(PCA) of the gradient of the log-likelihood

Highlights (Phase II)

@ Rigorous analysis of the approximation schemes

o Number of gradient evaluations for certified dimension reduction
e Approximation scheme for conditional expectations

@ Successfully tested on numerical benchmarks
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Phase-Il App HID BA Bayes ME MDE OUU

Bayesian Inference - Findings

What weve learned

Dimension reduction problem: find an approximation of 7, of the form

P, € R4 s a rank-r projector

0 L(P.x where ~. o ]
Tpos(2) o £ (P 2) Mpe(2) { £ is a positive function

Ideal algorithm

@ Compits H = /V log £ ® Vlog £ dmp,
@ Define P, as the projector onto the dominant eigenspace of H
© Compute the conditional expectation

~

Z(P.a) = E, (£|Pa)

Certified control of the error with the eigenvalues ), of H:

- 1
DI(L<7Tpos||7Tpos) < § Z )‘i

>
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Phase-Il App HID BA Bayes ME MDE OUU

Bayesian Inference Progress - Details

@ Monte Carlo approximation of H

ZVIogL' )®Vieg £(X;) with X, % m

Proposition

Under some assumptions, quasi-optimal projectors are obtained with high
probability 1 — § if

K > O(y/rank(H) + /Tog(26 1))
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Phase-Il App HID BA Bayes ME MDE OUU

Bayesian Inference Progress - Details

@ Monte Carlo approximation of H

ZVIogL' )®Vieg £(X;) with X, % m

Proposition

Under some assumptions, quasi-optimal projectors are obtained with high
probability 1 — § if

K > O(y/rank(H) + /Tog(26 1))

@ Approximation of the conditional expectation
E, (L|Pz)~ L(Px+ (I;— P)Y) with Y ~m,

Proposition

The random distribution 7, satisfies

[E(DI<L(7rpos H %pos)> = Q2 Z >‘i

i>r
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Phase-Il H A Bayes ME MDE

Bayesian Inference Progress - Details

Identify the coefficient field « of the Poisson equation

from pointwise observations:
(a) true x(s), logarithmic scale DKL(WPOS‘ |Fl'pos> = f(’l")
h E G 2 4
2 N
N =%~ LIS,/p =gy
0 5 [ &\ LIS, p = Laplace(mpos) |
0%\ LIS, p = mpr ;
\ e San
- p = Laplace(mpo)
1 : +error bound
05 102 —— New, p = Tpos
0 \
0 -0.5
05 1 15 2 25 3 10t
51 E
H) :/V10g£®Vlog£dp 10°
(p) _
HY - [(V6) T (V6) &
10 20 30 40 50
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Phase-Il App HID BA Bayes ME MDE OUU

Bayesian Inference - Impact

Key impacts:
@ New understanding of dimension reduction methods for nonlinear
and non-Gaussian Bayesian inverse problems
o Replaces previous heuristics whose approximation properties, relative
to an optimal approximation, were not understood

@ Certified/computable bounds on the error in a posterior
approximation

@ New methodology: more effective dimension reduction than either
the LIS or the AS!
@ More efficient computation:

e Samplers guided by the data-informed subspace
o Surrogate modeling on the data-informed subspace (essential for
RAPTOR P2)
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Phase-Il

Outline 7

© Phase-Il Progress

@ Model Error
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Phase-Il App HID BA Bayes ME MDE OUU

Model Error: method and features

Embedded model error: (Sargsyan, Najm, Ghanem, 2015)
g; ~ [;(A+9)

Embeds model error in specific submodel phenomenology

Allows targeted placement of model error term (e.g., in locations where key
modeling assumptions and approximations are made)

Respects physical constraints and governing equations by definition

Allows meaningful extrapolation to other Qols

Disambiguates model error from data noise

@ Automated approach to calibrate low-fidelity models with high-fidelity data

@ Variance-based attribution of overall predictive uncertainty - data noise,
surrogate construction, model error, calibration (i.e. posterior)

@ Developed workflow for model error representation, quantification and
propagation; Inference library in UQTk v3.0 (www.sandia.gov/uqtoolkit)

@ Used Bayesian model selection to select parameters for model error embedding

Najm ScramjetUQ
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Phase-Il App HID BA ME MDE OUU

Model Error - wall model LES

@ Wall model formulation by [Kawai and Larsson, 2012]: equilibrium boundary layer
assumption, ODE w.r.t. wall-normal coordinate.

@ |Initial tests on a simple channel flow.

Key challenge: a discrete parameter m.,,,,,,

@ Built a 3-parameter surrogate for m,,,,,, = 25, using 250 wall-model enabled LES
simulations.

@ Wall model parameter calibration, with embedded model error, using baseline data with
background grid only (i.e., wall-model turned off).

Parameter Range Nominal Description
BL; [8.5,34.0] x 103 m 17.0x10 3 m Inlet boundary layer thickness
Lwm [0.01,0.25] 0.05 Fraction of the inlet boundary layer thickness to use for wall-model
dwm [0.01,0.1] 0.03 Fraction of the first LES grid cell as initial spacing for the embedded mesh
Mawm {5,15,25, 35} 25 Number of grid points to use in embedded mesh
= — Data e
—— Ensemble
6.0 ‘
W ||||||”““ w
8 > 13
= 3 (i
0 - m
8
245
&
sofl I
4.0
35 4 3 8 10 s a 10
Coordinate along the wall, x Coordinate along wall, x
SNL Najm ScramjetUQ 41/58



Phase-Il App Hi

Model Error - wall model LES

@ Wall model formulation by [Kawai and Larsson, 2012]: equilibrium boundary layer
assumption, ODE w.r.t. wall-normal coordinate.

@ Initial tests on a simple channel flow.

@ Key challenge: a discrete parameter 1., ,, .

@ Built a 3-parameter surrogate for m,,,,, = 25, using 250 wall-model enabled LES
simulations.

@ Wall model parameter calibration, with embedded model error, using baseline data with
background grid only (i.e., wall-model turned off).

6.5 6.5
— Data — Data
—— Mean Prediction —— Mean Prediction
6.0 W= Pred. Error due to Posterior 6.0 Pred. Error due to Model

== Pred. Error due to Posterior

Pressure / 10000, P
«
°
Pressure / 10000, P
w «
o 0

»
in

»
o

T2 4 ) 2 [ 8 10
Coordinate along wall, x

6 8 10

Coordinate along wall, x
Overall uncertainty breakdown for posterior predictive:

o? =E5 [02(N)] + V5[N] + (6F99)2 + (04,)?
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Model error Posterior uncertainty ~ Surrogate error  Data noise
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Model Error: discrete/categorical parameters

@ We have developed an approach to incorporate discrete parameters in
the embedded model error framework.

@ Augment discrete parameters with a probability mass function (PMF) and
infer the mass weights (just like the continuous case of inferring PDF).

@ Allows MCMC on continuous parameters.

@ Connections to Bayesian model averaging and model selection.

The overall mean for a given («, a, x) is

R
pla,a;z) = By 1 [f(A(a), L(a);z)] = Zarm(a;x),

and the variance is

0’2(0[7(7,;.’[) = VAL [f(A(O[),L(Cl%E)]
R
= Za o2(o;x —}—Zar,u%(a;m) — pla,a;x)?.
r=1
due to cont. param. due to categorical param.
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Model Error: optimal embedding via Bayes factors

@ Which parameters should be augmented with stochastic structure to
capture model error?
@ Bayes formula for a given model M,

Likelihood Prior
Posterior e e e s
p( |y7 k) - M
Evidence

@ Bayes factor: ratio between evidence terms of two models
@ Model evidence is a high-dimensional integral, requiring many model
evaluations - challenging to compute

@ We investigated different numerical methods 10
o GA (Gaussian approximation to posterior)
o HM (Harmonic Mean estimator)
e MC (Plain Monte-Carlo)
o IMC (Importance sampling Monte-Carlo) me
o TMCMC (Transitional Markov chain Monte-Carlo) bl a8

10° 104
Forward Model Evaluations

Pooers
PR AT

Error in Ln-Evidence
il
2 e om
. 1 8 8
"
]
/
/
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o
+
¥

*

10°
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Model Error: summary

@ Model error approach employs both forward and inverse UQ
technologies

@ Embedded model error allows meaningful predictions of full set of Qols
(i.e. extrapolating to Qols not used for calibration)

@ Informs LES modeling on the highest contributors to predictive
uncertainty error budget

@ in most studies so far, model error overwhelms parametric uncertainty,
surrogate errors, and data noise.

@ Results using model error treatment capture discrepancy much better
than results without model error treatment

@ Allows replacement of expensive models with less expensive alternatives
while quantifying the resulting model discrepancies

e Huge computational savings via low-fidelity model (e.g. 2D-vs-3D) with
augmented uncertainties
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Model Error: summary

@ Allingredients ready for model error assessment within P2
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Phase-Il

Outline 7

© Phase-Il Progress

@ Mesh Discretization Error
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Phase Il Progress: Mesh Discretization Errors

We focused on extending the RF approaches developed in Phase | to
non-reacting LES flow (RAPTOR) by:

@ Establishing MDE formulation for RAPTOR.
@ Demonstrating MDE estimation in RAPTOR.

© Demonstrating combined mesh and model error estimation in
RAPTOR.

In parallel, we extended VMS estimators to a Finite Volume framework
for thermally coupled Navier-Stokes equations.
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Phase Il Progress: MDE formulation

Primary focus: formulating a minimally intrusive extension of RAPTOR:

@ An interpolator was implemented in RAPTOR that projects coarse
mesh solution into finer meshes.

@ Non-linear terms of the LES equations were written to output files.

@ The output files were read and interpolated as a first step for the
down-scaling procedure.

@ Need to solve a forced heat equation [in progress].

@ The error source term is to be injected into LES equation to solve for
corrected (nudged) solution [in progress]
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Phase Il Progress: Demonstrate MDE estimation

@ We restricted our attention to scalar fields, which enabled us to
demonstrate the methodology for P1 without modifying RAPTOR.

@ Density field was chosen as solving a forced heat equation would not
be required.
éatt =10.01 €at t = 20.01
1 10 [ ] 20
0 a2 0
‘ D'( 4 | u:ii
70 80 90 100 110 60 70 80 90 100 110
T T

=2
4|
60

@ Generated a number of realizations of MDE for density field at
different grid and time-step levels.

t=10

—h = df08, At
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Phase Il Progress: Demonstrate combined MDE/ME

estimation

@ We conducted an investigation on the possibility of combining
ME/MDE estimates in the LES context.

@ ME posteriors may exhibit a non-trivial dependence on mesh
resolution.

— Need to analyze ME and MDE independently, so that combined
impact may be suitably assessed.
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Phase Il Progress: Extended VMS to FV framework

In a FE framework, for a given element K € 7, we can obtain a
definition of the error estimator, 1}* for the Boussinesq equations:

nge = meas(K)l/QT;m ||j€m(]j)||L<><>(K)
with R, (U) the momentum equation residual

R, (U) =f + agh, — [0,u —vAu+u-Va+ Vp+agf| .

In a FV context, we assume that the residual is piecewise constant. Thus,

the L°>°-norm of the constant residual is computed as

2 (O = 12O = |y [ An 0]
K

We evaluate the integral by computing the fluxes between FV cells.

Najm ScramjetUQ

50/58



MDE OU

Phase-II

Phase Il Progress: Extended VMS to FV framework

@ Extended the VMS error estimator for thermally stratified flow

@ Defined the standard version of the VMS error estimator in a Finite
Volume framework

@ The applicability of the VMS error estimators for a FV computation
has been successfully demonstrated for the Rayleigh-Bénard
problem

Estimated error ()
o004 00002

(@) Temperature (b) Error y-component
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Phase-Il

Outline 7

© Phase-Il Progress

@ Optimization under Uncertainty
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OUU Progress

DAKOTA+(S)NOWPAC

P2 OUU Target: SNOWPAC DFO + Dakota MLMC

@ Testing, refinement (scaling, bounds), parallelism
@ Expand error estimation for OUU robustness / reliability targets

@ Harden for small sample sizes (e.g., 5 - 2 fail) — unbiased muiltilevel
estimates for population-based central moments to order 4

Error estimation:

@ MC std errors are well developed
@ Multilevel std errors are more involved (e.g., std error of variance)

var(52) = XL: Var(P2) —Var(PZ_;)—2Cov(PZ, P2 ;)
=0
Var(f’l?) = NL(;%’[—VarQ(Q[))JrWVar Qg
Cov(PF, PP ) = 1\}[ (E[PZ PF_1] —Var(QgNVar(Qq_1)) + m (E[QeQe-1]~E[QgE[Qe1]f
E[PZP? ] = E[QIQF ]-2E[Qu 1]E[R3Q, 1]+E2[Qe 1]E[QF] -2E[QIE[Q,Q% 4]

+ 4E[QgE[Qp4]E[QeQp 1] +E2 [Qp]E[QF ;] -3E2 [Q4]E? [Q_q]
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OUU Progress

DAKOTA+(S)NOWPAC

Error estimation (continued):

@ Multilevel std error for std deviation (no closed form for single level)
o Normally-distributed population

&

SE@)= mN=D

e Function of a normally-distributed estimator (Delta Method)

- 1 1 3—-N
SBG) = 35\ (ka+ F=1(«?)

o Additional need for unbiased multilevel (4t") central moments

Ishigami (uniform input) Ishigami (uniform input)
10 1
Bootstrap (1500 repetitions) —— = Bootstrap (1500 repetitions) ——
SE estimator —— A=t SE estimator —+—
™ SE estimator (unbiased kurtosis) »‘g SE estimator (unbiased kurtosis)
e 8 “5._ SE estimator (Normal population)
8 - = S
5 S I R
= \\N g
2 1 i & 0.1 ~
Iy < BN
~ 5 =g

E i B X
S 4
E S ° \
» \ g

S £

»
0.1 01
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N N
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OUU Progress

AFRL WPAFB site visit — finalize OUU formulation:

max [E[nthermal]
S Pbpuen < 0.7] < .01

p[xshocktrain < 4 Zn] < 01

p[Apress = .05 = Mpress] < .01
P2 OUU demo in progress: MLMC analyses at initial design points
[[ntherrnal} E[d’burn] [E[xshocktrainl
Nominal 0.018494 4 3.7542e-08 0.10151 £ 1.1309e-06 74744 4+ O.
Ady 0.018804 + 5.6828e-08 | 0.098653 + 1.5642e-06 74.744 4+ O.
Ady 0.018682 + 6.1177e-08 0.10254 £ 1.8430e-06 74744 4+ O.
Adsg 0.018739 + 1.2493e-07 0.10285 4 3.7635e-06 | 26.033 4 133.06
Ady 0.018434 4 2.2739e-08 0.10117 £ 6.8503e-07 74744 4+ O.
Ads 0.019003 + 2.8257e-08 0.10430 + 8.5124e-07 21.637 + 95.363
Step 1 pending pending pending

Table: History to date for statistical Qols fromm MLMC analyses in P2 OUU for
design variables d = { global equiv ratio, fuel ratio, ,,, inj locn, inj locn,, inj angle; }.
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OUU Impact

@ Have demonstrated viability of LES-based OUU for P1
— Dakota: PCBDO w/ combined exp, Multifidelity TRMM
— SNOWPAC: direct coupled w/ RAPTOR

P2 (scramijet):
@ Currently generating OUU results for P2
— integrating stochastic DFO with multilevel-multifidelity UQ
— investigating design considerations recommended by AFRL SMEs
— ultimately expect new design insights from HF LES-based design

Phase Il planned work:

@ Increase resolution as enabled by large-scale HPC: include 3D,
increase FTTs, tighten ML tolerances, include chance constraints, etc.

@ Integrate emerging capabilities from TAs 1,2 — comprehensive OUU
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Closure

Outline

© Closing Remarks
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Closure
Closure

Phase Il work in progress with Scramjet code
@ Routine RAPTOR P2 runs - currently 2D
@ Addressing high-dimensionality and MLMF challenges in P2-2D

e GSA-PC-CS-ML, ASQ
o Basis adaptation and manifold discovery

@ Work on data-informed subspaces, model, and mesh error
@ OUU demonstrations in P2

Targeting additional computational resources - especially for 3D P2
@ We have access to multiple SNL machines
- each with several thousand cores

@ We are exploring DOD resources
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