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ScramjetUQ Proj:

Current team includes Sandia (CA+NM), Duke, MIT, and USC.

Institution Expertise Participants

Sandia
UQ + Comb Habib Najm, Bert Debusschere,

Cosmin Safta, Khachik Sargsyan
Xun Huan

LES + SprayComb Joe Oefelein (now at Georgia Tech)

UQ + Optim Mike Eldred, Gianluca Geraci

Duke
UQ + Comb Omar Knio, lhab Sraj

LES Guglielmo Scovazzi, Oriol Colomés

MIT UQ + Optim Youssef Marzouk, Olivier Zahm,

Friedrich Menhorn

USC IQ + Optim Roger Ghanem, Panagiotis Tsilifis
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Phase I Ach •

co Dimensionality reduction in P1
o GSA, CS-PCE regression, ML/MF

o Identified 6 important parameters

o Established utility of ML/MF in this system

o Established utility of BA/Manifolds in this system

o Inverse problem dimensionality reduction

o OUU demonstration in P1
o OUU algorithms

o OUU software infrastructure

o Coupling Dakota, SNOWPAC, RAPTOR
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Phase-I Phase-II Cluswe

GSA dim nsionality reductio - Phase 1

GSA via PCE-Sparse Regression and ML/MF

• Applied Global Sensitivity Analysis (GSA) to P1

- Sparse Polynomial Chaos surrogates via .ernorm min
- Solution methods for sparse regression and techniques to

avoid overfitting (manuscript submitted to SIAM/ASA-JUQ)
- Under either ML or MF

to identify important P1 parameters

Result

Identified 6 dominant parameters for relevant LES Qols in P1

SNL Najrn ScrarnjetUQ



Phase-I

MLMF di ensionality reduction - Phas

O Main Goal: Variance reduction (improved estimator reliability) for a limited number of
HF simulation by adding a 'large number of LF realizations

Aggressive Samples redistribution (P1 with 24D):

a 3D LES: 9 fine + 263 coarse

a 2D LES: 68 fine + 4191 coarse

Extremely high computational cost

2D 3D
d/8
d/16

100 1000 10000 100000 1e,06

Equivalent HF runs

O More challenging to obtain variance reduction by ML for high turbulence cases

1 204
25.5 1844

a Non monotonic RMS
variance decay

a Need for managing

spatial/time resolutions in

a unified fashion

PC1mean I PO,rms,mean Mmean TKEme“,„ xmean

P1
d/8
d/16

4.025e-03
4.033e-07

1.905e-06
7/78e-08

1.992e-02
6.690e-05

3.349e-07
1748e-08

4.245e-03
4.400e-05

P1 updated
d/8
d/16

4.058e-03
2.850e-04

1.906e-06
7.370e-07

1.600e-02
2.076e-03 r 7.533e-07

2.997e-07

O Integration of the ML/MLMF strategy into the OUU loop (Dakota/SNOWPACK)
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Phase-I Phase-II Cluswe

BA/Manifolds dimensionality reduction - Phase 1

Dimension reduction is achieved both via "learned" subspaces via
projections and "learned" manifolds via sampling:

Subspace detection in PCE permits concentration of L2 projections:

✓ Convergent stochastic approximations are accelerated in the
transformed coordinates.

✓ Maintain accuracy and functional form for use in sensitivity
calculations and optimization.

a Numerical cost is proportional to stochastic dimension.

Diffusion manifold detection permits concentration of samples:

o Samples scattered around manifold have smaller variance than
samples scattered in ambient space.

o Structure of manifold is better delineated with more stochastic
parameters; thus requiring fewer samples to characterize Qol.
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Phase-I Phase-II Closure

Inverse problem dimensionality reduction - Phase 1

Dimension reduction is necessary for inference in large-scale and
computationally intensive problems, enabling:

o Accelerated sampling

o Construction of reduced/surrogate models

Covariance-based (non-intrusive) estimation of data-informed directions

a Sample size/detection limits from asymptotic theory of "spiked"
covariance matrices

o Application to RAPTOR P1 problem

New gradient-based method (intrusive) for certified dimension reduction

o Provides rigorous control of error (Kullback-Leibler divergence)

o Outperforms previous dimension reduction methods for Bayesian
inverse problems
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Phase-I Phase-II Closure

OUU Algorithms Phase 1

Algorithms & infrastructure:

o Dakota trust region model management (TRMM):

o TRMM incorporates multilevel-multifidelity in simulation, UQ, both
o Leverage RAPTOR model forms (2D, 3D) + discretizations (d/8, d/16)
sa Recursions for deep hierarchies (beyond bi-fidelity)

• (S)NOWPAC derivative-free opt: deterministic/stochastic solvers

o NOWPAC SNOWPAC: adapt TR to noise, GP's to mitigate noise,
efficient GP regression via low rank approx (SoR, DTC, FITC)

o Performance eval against other common DFO solvers

o Integration of (S)NOWPAC + Dakota

co NOWPACOptimizer : solver spec, input var transforms, constraint
mappings, final result logging, parallel config

o Abstract error est. in Iterator, Model: std errors in MC, MLMC stats
o Phase 11 target for P2 OUU: SNOWPAC + MLMC
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PrrIKeZTo'r.)

OUU

SNOWPAC

RAPTOR

Pre-processing

RAPTOR

Pre,roceagng

PDA-PrOtalg
RAPTOR

RAPTOR
Post-processmg

(DAKOTA+SNOWPAC) - RAPTOR Interface

• RAPTOR black box driver based on system/fork + file I/0

• Asynchronous local concurrency with work directories

• Detection and mitigation of failed simulations (e.g., residual
divergence, node failure)

• Up to 3 levels of parallelism: optimizer, UQ, RAPTOR
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Phase-I Phase-II Closure

OUU Demo - Phase 1

P1 (jet-in-crossflow) deployments:

co PCBDO w/ combined exp: reuse of 2D/3D GSA data sets

Model ci5 Initial E[X] Initial E[0] Final E[x] Final E[0] [ter

2D .06 3.480e-1 6.356e-2 3.229e-1 6.000e-2 3
3D .013 1.377e-3 1.392e-2 1.212e-3 1.300e-2 2

• Multifidelity TRMM with UQ/simulation resolutions

Iteration E[0] V A [0] E[x] Trust region ratio

0 1.142e-01 5.800e-03 9.848e-02 N/A
1 1.074e-01 5.646e-03 8.832e-02 1.443
2 1.003e-01 5.390e-03 7.790e-02 1.497

o SNOWPAC closed-loop coupling with RAPTOR P1 code
Objective function / ,Es[Wy[0]]
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• Phase-II Progress

o Application Code - Scramjet

o High Dimensionality

o Basis Adaptation & Manifold Sampling

o Bayesian Inference

o Model Error

o Mesh Discretization Error

o Optimization under Uncertainty
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Phase 11 Research

o Establish routine computations with full scramjet P2 code

o Identify reduced dimensional uncertain parameter space for P2

Q GSA, PC/CS regression, MLMF, BA/Manifolds

o Demo reduced dimensional Bayesian inversion with P2

o Demo model and mesh error estimation in P2

o Demo OUU with P2 following WPAFB metrics
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Phase-I Phase-ll Closure

Phase 11 Progress

e LES code

• Forward UO and dimensionality reduction

- GSA PC/CS, MLMF
- Basis Adaptation/Manifolds

• Bayesian inversion and dimensionality reduction

o Model Error

o Mesh Error

• OUU
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Phase-I Phase-II Go.

LES Code Highlights
What weve done

HIFiRE Scramjet

Multiscale-multiphysics application of
Large Eddy Simulation (LES)

HDCR
4Ii

• Provided benchmark LES calculations of the
Hypersonic Intemational Flight Research Experiment
(HIFIRE) to support development of UQ

• Case of interest corresponds to the geometry and
conditions of ground based experiments performed
in the HIFiRE Direct Connect Rig (HDCR)

• A hierarchy of unit cases (including high-fidelity LES
of the HDCR) has facilitated UQ tasks and provided
optimal workflow between team members

• Unit cases are designed to emulate key QoIs while
making comprehensive parametric studies possible

State of
the Art LES
("P2" Case)
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Phase-I Phase-II aosure u

Code Findings
ve learned

Turbulence
Q-Criterion = 2E5 s-1

Flame
lso-Surface Ycj, = 0.15
1000K (Yellow) — 3200K (Red)

Fuel Jets
lso-Surface YCH, = 0.1

e.g., 3D, d116, 70-million cells, near constant spacing

• Synthetic turbulence generation for inflow velocity

• Mixed dynamic Smagorinsky model for scalar-mixing

• Reduced finite-rate chemical kinetics for CH4/C2H4/Air

• Thickened flame model for combustion closure

• ODE based wall-model for turbulent/thermal boundary layer

o Established full 3D modeling of HIFiRE DCR configuration (P2) with
complete system of sub-models validated for baseline conditions

• Established RAPTOR-Dakota software framework for OUU using P2
SNL Najrn Scrarnjetu0 18 / 58



Phase-I Phase-II Closu App HiD BA Bayes ME MDE OUU

Detailed analysis of flow has provided
insights into local processes

Mean stagnation pressure loss
Instantaneous flow characteristics

EMEIIEWW .̀

ihrikapte`;

4111111.m.--

P stagn. mean [bar]
2 4 6

*OM.
0.7 7

°O 5 t0 20 25 30
X [in]

Pressure distribution along wall
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Phase-I Phase-II Closure App

RAPTOR I
with Dak•

/O has been instru
ta and SNOWPAC

mented to interface

Cavity Height

Inlet:

• Stagnation Pressure

• Stagnation Temperature
• Mach Number

• Turbulence Intensity
• Turbulence Length Scale
• Boundary Layer Thickness

Primary Injector:

• Equivalence Ratio

• Stagnation Temperature
• Mach Number
• Turbulence Intensity
• Turbulence Length Scale
• Axial Position
• Injection Angle

Secondary Injector:

• Equivalence Ratio

• Stagnation Temperature
• Mach Number
• Turbulence Intensity
• Turbulence Length Scale

Performance Metrics:

• Thermal Efficiency
• Phi-Burn (>= 0.7)
• Location of Leading Shock
• Bulk Loss in Stagnation Pressure
• Magnitude of Pressure Oscillations
• Combustion Chamber M > 1 (Scram Mode)

SNL Najrn ScrarnjetLIO 20 /58



Phase-II Closure BA Bars ME MDE OUU

Application Impai

o Established hierarchy of computations of 2D/3D unit problem cases
including the full 3D HIFiRE Scramjet configuration
• Performed and analyzed over 8000 LES calculations required for

development and testing of UQ tasks
o Created interface between RAPTOR code and UQ routines via a shared

repository and related pre- and post-processing scripts

fa Combination of P1 and P2 calculations have provided progression of
affordable unit cases that emulate key physics

o P1 cases have facilitated testing and refinement of various UQ methods
along with workflow required for data management and analysis

• Full 3D P2 case provides the target reference case for application of the
suite of UQ methodologies for both model and system optimization

• Demonstrated full set of physics sub-models in the full 3D P2
configuration at baseline conditions

o Established RAPTOR-Dakota software interface for OUU with P2
o Managed the balance between computational cost and fidelity
(which will continue to be a leading challenge)
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Outline
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i-D Highlights
at weve done

Software Infrastructure

o Adapted DAKOTA - RAPTOR software connection infrastructure for
the GSA effort

- Sampling for GSA studies is now driven by DAKOTA
-tolerant to faults

- Adaptive Sparse Quadrature currently run in either ML or
MF mode

GSA/ASQ progress

o Applied Global Sensitivity Analysis (GSA) to P2 in an ML context

- Sparse Polynomial Chaos surrogates via ,(1-norm min

o Algorithm development in progress for MF/ML ASQ

- provide optimal quadrature adaptation across models of
different fidelity and levels

- balance improvement of overall surrogate and
computational costs
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i-D Findings
at weve learned

GSA

o Completed set of simulations for P2 2D with coarse (6 = d/8) and
intermediate (6 = d/16) grid resolutions

- 11 uncertain parameters; design variables fixed at nominal
values

- Inlet Mach number and temperature were the dominant
parameters for a set of Qols investigated in this preliminary
study

o Preliminary results for 2D P2 configuration indicate longer time
horizons needed to reach near-stationary state dynamics

ASQ

o Single fidelity ASQ results completed for P2 2D coarse grid

co MF development in progress
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Phase-II App 1-liD BA Bap, ME MDE OUU

Hi-D Progress: GSA for P2

• Qols: thermal efficiency (71sahermad, stagnation pressure loss (OPstag),
and mean TKE at xld = 190 (right after the 2nd set of injectors)

• 256 simulations for d/8 and 172 simulations for d/16

TKE190

2D P2 (d/8)

rwm- GPsnp

9thermal

2D P2 (d/16)-(d/8)

0 0 2 0.4 0.6 0.8

Inlet Mach number (M0) and stagnation temperature (To) are the
dominant parameters for 2D P2 case.
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Phase-I Phase-II Closure

Hi-D Progress: Adaptive Sparse Quadrature for P2

o PCE approximation constructed via 3 level adaptive sparse
quadrature

- the design adapted to primarily include the important
directions

AP,

rItnermal I I
1=-7 g

0.2 0.4 0.6

o Results are similar to GSA via sparse regression; some turbulence
models parameters (CR) exhibit increased importance

o Work in progress to include balance between cost and accuracy in
the MF design.
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Basis Adaptation Highlights
What weve done

Main Idea

o Orthogonal polynomials are constructed with respect to rotated
germ, and then truncated for enhanced compression.

o The adaptation isometry is now additionally constrained with
statistical (samples, likelihood) and orthogonality (sensitivity ranking
of initial dimensions) information.

o The result is more concentration of Qol around dominant directions. l
 4
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Basis Adaptation Highlights
What weve done

Main Idea

o Orthogonal polynomials are constructed with respect to rotated
germ, and then truncated for enhanced compression.

o The adaptation isometry is now additionally constrained with
statistical (samples, likelihood) and orthogonality (sensitivity ranking
of initial dimensions) information.

o The result is more concentration of Qol around dominant directions. l
 4

a Convergence criteria and assurance in adapted directions

a Error analysis with respect to errors in isometry evaluation

o Adaptation interpolated across models,
refinements,
and design space
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Manifold Sampling Highlights
What weve done

Main Idea

• An implicit manifold is "learned" from a handful of initial samples.

• Statistical analysis and sampling are conducted around this manifold,
exhibiting smaller scatter than would otherwise be observed.

• A projected Itg equation is constructed to sample directly on this
manifold.

Lim....._
o Joint density of Objective function, design variables, uncertain

parameters is pre-computed for real-time optimization.

Anal s

• Convergence criteria and assurance for learning process

• Statistical selection criteria for diffusion kernels

SNL Nairn ScrarnjetLIO 29 ,52,



Manifold Sampling Highlights
What weve done

Main Idea

• An implicit manifold is "learned" from a handful of initial samples.

• Statistical analysis and sampling are conducted around this manifold,
exhibiting smaller scatter than would otherwise be observed.

o A projected Itg equation is constructed to sample directly on this
manifold.

• Joint density of Objective function, design variables, uncertain
parameters is pre-computed for real-time optimization.

Analysis

e Convergence criteria and assurance for learning process

• Statistical selection criteria for diffusion kernels

SNL Najm ScramjetL1Q 29/58



Phase-II Closure App HiD BA Bayes ME MDE OUU

Basis Adaptation via Compressive Sensi

• fl minimization for PCE with rotated basis
Compute jointly the coefficients E0 and isometry A for

u := u(n) =

by finding

50V)0(n) = E,37P0(A)
0E42 0E42

(c*, A*) = arg min 
1 

1111 qj AC
c.A 20-2

(1)

(2)

o Example: We solve (2) for a ld, 2d & 3d adaptation of the u-velocity
component averaged along the y-profile (P2 domain - x 1 d = 220).
Left to right: log-likelihood, chaos coefficients & 2d PCE manifold
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Phase-I Phase-II Closure App HiD BA Bayes ME MDE OUU

Manifold S mpling for PDF and Extremes

200

150

la 100

pdf of Qmin (blue), Q (red), and Qr.), (black) for N = 25 (thin lines)

and N = 256 (thick lines) with vsirn = 25,600 additional samples

0 02 0.04 0.06 0.08

q

0.1 0.12 0.14

Probability of Thermal Efficiency with Minimum and Maximum.
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Phase-I Phase-II Closure App HiD BA Bayes ME MDE OUU

Manifold Sampling for PDF and Extremes

pdf of CIm. for N = 25 (dashed black), N = 100 (thin black), N = 225 (rned red),

N = 256 (thick blue) for vsie = 25,600 additional samples

200

150

100

50

0.1 0.11 0.12 0.13 0.14

Probability of Maximum of Thermal Efficiency: Convergence with
learning.
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Phase-I Phase-II Closure App HiD BA Bayes ME MDE OUU

Manifold S mpling for PDF and Extremes

pdf of Qmin (blue), Q (red), and Qrn. (black) for N = 25 (thin lines)

and N = 256 (thick lines) with psi. = 25,600 additional samples

20

10

0
0 4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Probability of Pressure Stagnation Loss, with Minimum and Maximum.
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Phase-I Phase-II Closure App HiD BA Bayes ME MDE OUU

Manifold Sampling f r PDF and Extremes

Of of Om. for N = 25 (dashed black), N = 100 (thin black), N = 225 (med red),

N = 256 (thick blue) for vsin, = 25,600 additional samples

50

E 30

o
-"a 20

10

68 0.7 0.72 0.74 0.76 0.78 0 8

Probabi[ity of Pressure Stagnation Loss: Convergence with [earning.
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Phase I Phase II Closule App HiD BA Bayes ME MDE OU

Basis Adaptation and Manifold Sampling Impact

Basis Adaptation

Computational cost is less than linear in stochastic dimension
loss of accuracy.
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Phase-I Phase-II Ouse, App HiD BA Bayes ME MDE OUU

Basis Adaptation and Manifold Sampling Impac

Basis Adaptation

Computational cost is less than linear in stochastic dimension withoi
loss of accuracy.

Manifold Sampling

o Summarize a large dataset with a data-driven generator

o Augment a small dataset by conditioning on intrinsic structure

32/58



Phase-1 Phase-ll Closure App HiD BA Bayes ME MDE OUU

Outline

'hase-I Major Achievements

• Phase-II Progress

Q. Application Code - Scramjet

Go High Dimensionality

o Basis Adaptation & Manifold Sampling

o Bayesian Inference

• Model Error

o Mesh Discretization Error

o Optimization under Uncertainty

la Closing Remarks



I Phase-II CI lo s re App HiD BA Bayes ME MDE OUU

Bayesian I nferenc
What weve done

- Highlights

Goal: reduce the dimensionality of Bayesian inverse problems:

7rpos(x) OC Z(x)713,(x) with x E Ed, d >> 1

Methodology:

o Start with a best approximation problem for the posterior
distribution

o Derive an upper bound for the error (KL-divergence)

• Minimize the upper bound using principal component analysis
(PCA) of the gradient of the log-likelihood

Highlights (Phase 11)

• Rigorous analysis of the approximation schemes
o Number of gradient evaluations for certified dimension reduction
o Approximation scheme for conditional expectations

o Successfully tested on numerical benchmarks
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Phase-II App HiD BA Bayes ME MDE OUU

Bayesi
What weve

n Inference - Findings
learned

Dimension reduction problem: find an approximation of 7rpos of the form

Frpos(x) cx Z(Pr x) 7rpr(x) where {Pr E R dxd is a rank-r projector
Zis a positive function

Ideal algorithm

O Compute H = f V log ,C ® V log thrpo,

O Define I. as the projector onto the dominant eigenspace of H

O Compute the conditional expectation

Z(Prx) = E,p,(ZIPrx)

Certified control of the error with the eigenvalues Ai of H:

DKL (7rpos 11Frpos
i>r

SNL Najrn ScrarnjetUO 35/58



App HiD BA Bayes ME MDE OUU

Bayesian Inference Progress - Details

o Monte Carlo approximation of H

K

H 
K
— V log Z(Xi) 0 V log Z(Xi) with Xi i),1 7pos

i=i
Proposition

Under some assumptions, quasi-optimal projectors are obtained with high
probability 1 — d if

K > 0(Vrank(H) + Vlog(25-1))2

SNL Najrn ScrarnjetUO 36/58



App HiD BA Bayes ME MDE OUU

Bayesian Inference Progress - Details

o Monte Carlo approximation of H

K

H —Y‘ V log Z(Xi) 0 V log Z(Xi) with Xi i),1 7pos
K

Proposition

Under some assumptions, quasi-optimal projectors are obtained with high
probability 1 — d if

K > 0(Vrank(H) + Vlog(25-1))2

o Approximation of the conditional expectation

EE,pr(Z1Prx) Z(Prx + (Id — Pr)Y) with Y 71pr

Proposition

The random distribution ii-pos satisfies

IE(DKL ( ‘irpos II pos)) E Ai

i>r

INL Najrn ScrarnjetUO 36 / 58



Bayesian Inference Progress - Details

Identify the coefficient field of the Poisson equation

—V • kVp = f

from pointwise observations:

(a) true n( s), logarithmic scale

0.8

0.6

0.4

0.2

0.5 1 1.5 2 2.5

(c) pressure field

.7 0.5

oo 
0.5 1 1.5 2 2.5 3

H(P) = f V log V log

102

102
0.5

—0.5
101

dp 10°

= f (vG)Tr,b1s(vG) dp
10-1

DKL (7pos IFrpos) f(r)

- .- LIS, p = rrp..
- e- LIS, p = Lap1ace(7„)
- LIS, p = rp,
- p

o p = Laplace(7,..)
 error bound
- New, p = Tipos

10 20 30 40 50
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Bayesian Inferenc
Phase-II Closure BA Bayes ME MDE OUU

- Impact

Key impacts:

o New understanding of dimension reduction methods for nonlinear
and non-Gaussian Bayesian inverse problems

o Replaces previous heuristics whose approximation properties, relative
to an optimal approximation, were not understood

o Certified/computable bounds on the error in a posterior
approximation

o New methodology: more effective dimension reduction than either
the LIS or the AS!

o More efficient computation:
o Samplers guided by the data-informed subspace
o Surrogate modeling on the data-informed subspace (essential for
RAPTOR P2)
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Phase-II Jaeywe App HID BA Bayes ME MDE OUU

Model Error: method and features

Embedded model error: (Sargsyan, Najm, Ghanem, 2015)

g, f.„(A + 5)

• Embeds model error in specific submodel phenomenology

• Allows targeted placement of model error term (e.g., in locations where key
modeling assumptions and approximations are made)

• Respects physical constraints and governing equations by definition

• Allows meaningful extrapolation to other Qols

• Disambiguates model error from data noise

o Automated approach to calibrate low-fidelity models with high-fidelity data

o Variance-based attribution of overall predictive uncertainty - data noise,
surrogate construction, model error, calibration (i.e. posterior)

• Developed workflow for model error representation, quantification and
propagation; Inference library in UOTk v3.0 (www.sandia.gov/uqtoolkit)

* Used Bayesian model selection to select parameters for model error embedding
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Phase-I Phase-II Closure App HiD BA Bayes ME MDE OUU

Model Error - wall model LES
• Wall model formulation by [Kawai and Larsson, 2012]: equilibrium boundary Iayer

assumption, ODE w.r.t. wall-normal coordinate.
• Initial tests on a simple channel flow.
• Key challenge: a discrete parameter mwm.
• Built a 3-parameter surrogate for mum., = 25, using 250 wall-model enabled LES

simulations.
• Wall model parameter calibration, with embedded model error, using baseline data with

background grid only (i.e., wall-model turned off).

Parameter Range Nominal Description

B L [8.5, 34.0] x 10-3 m 17.0 x 10-3 rn Inlet boundary layer thickness
Lu,,,
du,m

[0.01, 0.25]
[0.01, 0.1]

0.05
0.03

Fraction of the inlet boundary layer thickness to use for wall-rnodel
Fraction of the first LES grid cell as initial spacing for the ernbedded rnesh

mwm {5, 15, 25, 35} 25 Number of grid points to use in embedded rnesh

6.5

6.0

5 0

*

4.5

4.0

3.5
0 2 4 6 8 10 12 14

Coordinate along the wall, x
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• Wall model formulation by [Kawai and Larsson, 2012]: equilibrium boundary layer
assumption, ODE w.r.t. wall-normal coordinate.

O Initial tests on a simple channel flow.
O Key challenge: a discrete parameter inturn.
O Built a 3-parameter surrogate for mum, = 25, using 250 wall-model enabled LES

simulations.
• Wall model parameter calibration, with embedded model error, using baseline data with

background grid only (i.e., wall-model turned off).
6.5

CO

F.' 5 0

,t 4.5

4.0

— Data

- Mean Prediction

Pred. Error due to Posterior

33 0 2 4 6 8 10 12 14
Coordmate along wall, x

6.
- Data

- Mean Prediction

NM, Pred. Error due to Model

- Pred. Error due to Postenor

0

4.5

4.0

2 4 6 8 10
Coordmate along wall, x

Overall uncertainty breakdown for posterior predictive:

= [E,A [0_,,2(3,)] [pi
(A)] 

(4.00)2 (afi)2

Model error Posterior uncertainty Surrogate error Data noise

12 14
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Phase-II App HiD BA Bayes ME MDE OUU

Model Erro : discrete/categorical parameters

• We have developed an approach to incorporate discrete parameters in
the embedded model error framework.

• Augment discrete parameters with a probability mass function (PMF) and
infer the mass weights (just like the continuous case of inferring PDF).

• Allows MCMC on continuous parameters.
• Connections to Bayesian model averaging and model selection.

The overall mean for a given (a, a, x) is

,a(a, a; x) = EA,L [f(A(a), L(a); x)]

and the variance is

0-2 (a, a; x) = VA,L[f(A(a), L(a); x)]

r=1

arN'rla; x),

R R

ro-,,2 (a; x) ar0(ct; x) — [t(a, a; x)2
r=1

due to cont. param.

r=1

due to categorical param.
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Phase-I Phase-II Closure • HiD BA Bayes ME MDE OU

Model Err r: optimal embedding via Bayes factors

• Which parameters should be augmented with stochastic structure to
capture model error?

o Bayes' formula for a given model M.
Likelihood Prior

Posterior

p(y Mk)p(3 11V/k) 
POW, Mk) =

p(y1Mk)

Evidence

o Bayes factor: ratio between evidence terms of two models
fa Model evidence is a high-dimensional integral, requiring many model

evaluations - challenging to compute
o We investigated different numerical methods 10=

o GA (Gaussian approximation to posterior) o3

• HM (Harmonic Mean estimator) io°

MC (Plain Monte-Carlo) 10-1

• IMC (Importance sampling Monte-Carlo) •„10 2

• TMCMC (Transitional Markov chain Monte-Carlo) 10 3

102 103 10° 105
Forward Model Evaluations
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Model Error: s
Phase-II Closure BA Bayes ME MDE OUU

mmary

o Model error approach employs both forward and inverse UQ
technologies

o Embedded model error allows meaningful predictions of full set of Qols
(i.e. extrapolating to Qols not used for calibration)

• Informs LES modeling on the highest contributors to predictive
uncertainty error budget

O in most studies so far, model error overwhelms parametric uncertainty,
surrogate errors, and data noise.

o Results using model error treatment capture discrepancy much better
than results without model error treatment

o Allows replacement of expensive models with less expensive alternatives
while quantifying the resulting model discrepancies

o Huge computational savings via low-fidelity model (e.g. 2D-vs-3D) with
augmented uncertainties
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Phase-I Phase-II Closure

Model Error: sum
HiD BA Bayes ME MDE OUU

,odel error approach employs both forward and inverse UO
technologies

a Embedded model error allows meaningful predictions of full set of Q
(i.e. extrapolating to Qols not used for calibration)

a Informs LES modeling on the L
uncertainty error budge-
in most studies so far, modeL CI lui uvel wl palculieu IL Ulllel Lall RV,

surrogate errors, and data noise.

<a Results using model error treatment capture discrepancy much
than results without model error treatmeni

<a Allows replacement of expensive models with L.
while quantifying the resulting model discrepancies

- ".,ge computational savings viP 1---- - ̂r-s
au2mented uncertainties

o All ingredients ready for model error assessment within P2
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'hase-I Major Achievements

• Phase-II Progress

Q. Application Code - Scramjet

Go High Dimensionality

o Basis Adaptation & Manifold Sampling

o Bayesian Inference

© Mndpl Frmr

• Mesh Discretization Error

• Optimization under Uncertainty

Q Closing Remarks



Phase-I Phase-II Closure App HiD BA Bayes ME MDE OUU

Phase 11 Progress: Mesh Discretization E rors

We focused on extending the RF approaches developed in Phase I to
non-reacting LES flow (RAPTOR) by:

O Establishing MDE formulation for RAPTOR.

O Demonstrating MDE estimation in RAPTOR.

O Demonstrating combined mesh and model error estimation in
RAPTOR.

In parallel, we extended VMS estimators to a Finite Volume framework
for thermally coupled Navier-Stokes equations.
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Phase 11 Progress: MDE formulation

Primary focus: formulating a minimally intrusive extension of RAPTOR:

o An interpolator was implemented in RAPTOR that projects coarse
mesh solution into finer meshes.

o Non-linear terms of the LES equations were written to output files.

o The output files were read and interpolated as a first step for the
down-scaling procedure.

o Need to solve a forced heat equation [in progress].

co The error source term is to be injected into LES equation to solve for
corrected (nudged) solution [in progress]
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Phase-II Closure App HiD BA Bayes ME MDE OUU

Phase 11 Progress: Demonstrate MDE estimation

o We restricted our attention to scalar fields, which enabled us to
demonstrate the methodology for P1 without modifying RAPTOR.

o Density field was chosen as solving a forced heat equation would not
be required.

6 at t = 10.01 E at t = 20.01 

: 0 

,

0 : -420

, -2  ,

-4 [ -1( -4  ., i 2(

(

60 70 80 90 100 110 60 70 80 90 100 110

• Generated a number of realizations of MDE for density field at
different grid and time-step levels.

0.6

0.4

0.2

0.2

0.4

6

=

—h = 08, at
—h = d /10, AL
—h
—h = d/08, at/2
—h = d/16,A2/2

-2

y/d

2

1.5

0.5

0

= 20

" 4

—h=d/68,Dt
—h = d/ 16, At -
—h = d/32, At
- = d/08, At/
—h = d/16,

-2

y/d

0
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Phase 11 P
estimatio

ogress: Demonstr ed MDE/ME

• We conducted an investigation on the possibility of combining
ME/MDE estimates in the LES context.

• ME posteriors may exhibit a non-trivial dependence on mesh
resolution.

Need to analyze ME and MDE independently, so that combined
impact may be suitably assessed.

d013 d16 d32
2.7

• ........
2.6 2.6

2.0

M2oduew posterlor 2.4 M. due 4, paiterior 2.4 Mou 0110 to posterior
M. due to surrogate for low-fid
• Onte from high—fid model

M. due to azrogete for loo-fid M2a due to surrogate for lov-frd
• Data frorn high—fid model

2.3
Mach: model error -3 -2

o/d 0.06 1,/d
—MO

0.05 —016
—032

0.04

e 0.03

0.02

0.01
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Phase-II App HiD BA Bayes ME MDE OUU

Phase I I Progress: Extend,d VMS to FV ramework

In a FE framework, for a given element K e h, we can obtain a
definition of the error estimator, Tir for the Boussinesq equations:

1+
TirS := meas(K)1 2 T m 

m(U)11L— (lc)

with 3? m(U) the momentum equation residual

rn(U) = f + agt90 — — vAfi + u • VII + + ag(9] .

In a FV context, we assume that the residual is piecewise constant. Thus,
the L°°-norm of the constant residual is computed as

113ern(U) 1.,°.(K) 11?rn(U)1K

1

meas(K) /lc 
.9?(U)c1S2

We evaluate the integral by computing the fluxes between FV cells.
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Phase 11 Progre
Phase-I Phase-II Closure App HiD BA Bayes ME MDE OUU

s: Extended VMS t FV framework

o Extended the VMS error estimator for thermally stratified flow

• Defined the standard version of the VMS error estimator in a Finite
Volume framework

• The applicability of the VMS error estimators for a FV computation
has been successfully demonstrated for the Rayleigh-Bénard
problem

Temper* ...me error bi

(a) Temperature (b) Error y-component
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ihase-I Major Achievements

• Phase-II Progress

O Application Code - Scramjet

O High Dimensionality

O Basis Adaptation & Manifold Sampling

o Bayesian Inference

O Model Error

o Mnch nicr-rpti721-inn Frrnr

O Optimization under Uncertainty
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Phase-II aosure U

OUU Progress
DAKOTA+(S)NOWPAC

P2 OUU Target: SNOWPAC DFO + Dakota MLMC

o Testing, refinement (scaling, bounds), parallelism

o Expand error estimation for OUU robustness / reliability targets

o Harden for small sample sizes (e.g., 5 - 2 fail) unbiased multilevel
estimates for population-based central moments to order 4

Error estimation:

o MC std errors

o Multilevel std

Var(iii)

Var(Pi)

Cov(P2,

E [1111-1]

are well developed

errors are more involved (e.g., std error of variance)
L

Var(q) —Var(PLi)— 2Cov(Pi , 11_1)
R=0

Ne 
1 2

(A4,R Var2(QR)) NE(NE —
1) Var2(Q.e)

(E [Ppi — Var(Q.e)Var(Q)) + Nt \,t 1) (E [Q.eqe_i] — E [CM E [Qt 1]

E [QM 11 — [Qt 1] E [Qiqe 11 +1E2 [Q,e 1] E [01 — [C4] E [QtQi i]

4E [Qt] E [Qt-1] E [QeQe—i] +E2 [Qe] C [Q2_11 3E2 [Qe] [2 [Qt—i]
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Phase-II Closure

OUU Pro
DAKOTA.(S)N Ow

BA Bayes ME MDE OUU

A=M
Error estimation (continued):

• Multilevel std error for std deviation (no closed form for single level)
• Normally-distributed population

S E(a) =
/2(N — 1)

• Function of a normally-distributed estimator (Delta Method)

SEW = — 
(°4 3N1N1 ('2)2

• Additional need for unbiased multilevel (4th) central moments  i
0

lshigami (uniforrn input)

Bootstrap (150074etitions)
SE estimator —

SE estirnator (unbiased kurtosis)

10 100 1000 10000

0 . 1

rn

Ishigami (uniform input)

Bootstrap (1500 repetitions)
SE estimator

SE estimator (unbiased kurtosis)
E estimator (Normal population) —.-

0.01  1 0 100 1000 10000

N N
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Phase-II Closure B OUU

OUU rx=1 :g
AFRL WPAFB site visit finalize OUU formulation:

max

s.t.

ENthermal]

P[Oburn 0.7] < .01

P[Xshocktrain 4 in] < .01

P[Apress •05 * //press] < .01

P2 OUU demo in progress: MLMC analyses at initial design points

E[Thhermall E[Oburn] E[Xshocktraird

Nominal 0.018494 ± 3.7542e-08 0.10151 1 1.1309e-06 74.744 ± O.
A d1 0.018804 ± 5.6828e-08 0.098653 ± 1.5642e-06 74.744 ± O.
A d2 0.018682 1 6.1177e-08 0.10254 ± 1.8430e-06 74.744 ± O.
A d3 0.018739 ± 1.2493e-07 0.10285 ± 3.7635e-06 26.033 ± 133.06
A d4 0.018434 ± 2.2739e-08 0.10117 ± 6.8503e-07 74.744 ± O.
Ad5 0.019003 ± 2.8257e-08 0.10430 ± 8.5124e-07 21.637 ± 95.363
Step 1 pending pending pending

Table: History to date for statistical Qols from MLMC analyses in P2 OUU for
design variables d ={ global equiv ratio, fuel ratio, 2, inj locn,, inj locn2, inj angle, ).
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BA Bayes ME MDE OUU

P1 (jet in cross flow):

• Have demonstrated viability of LES-based OUU for P1
Dakota: PCBDO w/ combined exp, Multifidelity TRMM
SNOWPAC: direct coupled w/ RAPTOR

P2 (scramjet):

o Currently generating OUU results for P2
integrating stochastic DFO with multilevel-multifidelity UQ
investigating design considerations recommended by AFRL SMEs
ultimately expect new design insights from HF LES-based design

Phase II planned work:

co Increase resolution as enabled by large-scale HPC: include 3D,
increase FTTs, tighten ML tolerances, include chance constraints, etc.

• Integrate emerging capabilities from TAs 1,2 comprehensive OUU
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Phase-I Phase-ll Closure

Outline

Q Phase-I Major Achievements

• Phase-II Progress

O Application Code - Scramjet

O High Dimensionality

O Basis Adaptation & Manifold Sampling

(a Bayesian Inference

o Model Error

o Mesh Discretization Error

Or,timization under Uncertainty

• Closing Remarks

SNL



Phase-I Phase-II Closure

Closure

Phase 11 work in progress with Scramjet code

• Routine RAPTOR P2 runs - currently 2D

• Addressing high-dimensionality and MLMF challenges in P2-2D

• GSA-PC-CS-ML, ASO
• Basis adaptation and manifold discovery

o Work on data-informed subspaces, model, and mesh error

• OUU demonstrations in P2

Targeting additional computational resources - especially for 3D P2

o We have access to multiple SNL machines

- each with several thousand cores

o We are exploring DOD resources
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