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C. Begeman SSI Seminar Nov. 15 2019

How much will sea levels rise in the 21 century?

due to ice sheet mass loss
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Predicting ice mass loss with an ice sheet model

(A) Basal melting of ice on land:
Dynamics understood but geologic information lacking

K Basal melting of ice over ocean:
" :

2% Accumulation Dynamics poorly understood
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My work toward improving predictions of ice mass loss

@ Basal melting of ice on land (PhD)

* Constrain with observations of geothermal flux

e Characterize spatial variability of geologic processe:
£S s * Predict frequency relationships between magmatic
2% Accumulation events and ice loss

Basal melting
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My work toward improving predictions of ice mass loss

Basal melting of ice over ocean
e Constrain with observations of melt rate and local
ocean conditions (PhD)
s  Understand ocean dynamics through large-eddy
simulation (postdoc)

E3S Energy Exascale
Earth System Model
Fully-coupled interactions between |
sheet and ocean model

SciDAC

Scientific Discovery through Advanced Computing

Quantify uncertainty in ice sheet m
Alamos balance from different sources
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field campaign to the base of the Antarctic Ice Sheet
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Measuring geothermal heat flux

G = Temperature gradient x Thermal conductivity =88 + 7 mW m2
in sediments of sediments average continental G = ¢
n=2 n=40

Sediment corer

Geothermal probe

,/
/

i

Methods: Fit temperature
evolution after thermal pulse
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Is geothermal heat important to the basal heat budget?

Basal geothermal frictional conductive
melting heat flux heat flux heat loss
o.Lm=k dT /dz +Ttu -k
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Ice velocity dT./dz
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Methods:
Analytical model for thermal advection
Alamos and conduction in ice and Earth’s crust
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(®) Progress on geothermally-driven ice melting

| measured geothermal heat flux at a new site,
which will help constrain future continent-wide maps

200, siw

£ 10of 5o wz | found that geothermal heat flux is
o [ glaciologically important at this site
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Magmatism can enhance ice loss in West Antarctica
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3) What is the relationship between melting and ocean condition:
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The cutting edge in ice melt measurements

Brennan et al. 2014

Ice shelf

. {0

Phase-sensitive FMICW radar

305 MHz center frequency,
160 MHz bandwidth

Can separate
ice-shelf thinning by stretching

)y ———

from
ice-shelf thinning by melting
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spatial and temporal melt variability remains largely unexplaine

Ice-shelf average: 25 cm yr Local: < 10 cm yr?

84°18'S

84°12'S
Moézt ' od " (e) .
InSAR-derived melt rates Phase-sensitive radar melt rates
Melt rate Moholdt et al. 2014 Begeman et al. 2018 GRL
(cmyr?)
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"Oceanographic observations
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Current melt
parameterization fails
to accurately predict
melt rates given
ocean conditions

ice shelf
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Limited understanding of vertical heat and salt transport
across the ice-shelf ocean boundary layer

“plume theory” postulates that the positively buoyant ice-shelf ocean
boundary layer is similar to the negatively buoyant seafloor boundary layer

/ interfacial turbulence |

| “
p | \Weo
| | R

IS b-glacial . Y
|Sub-glacia
flow En“a'\nment

Wells et al. (2010) JPO Jenkins (2011) JPO

bottom boundary
layer turbulence
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A hierarchy of ocean models

General circulation model  Large-eddy simulation Direct numerical simulz

2

Ocean

h=2

rid Az: >10 m 0.25m 0.05m
1dy viscosity:  fully parameterized sub-grid parameterization no parameterization
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Modeling the ice-shelf ocean boundary layer

PArallelized Large—eddy |V|Od€|, Leibniz Universitat Hanover

* Large-eddy models resolve the energy-containing
scales of the flow and parameterize scales that are

not resolved a l rr
* Sloping surface at the top of the domain p |

— Gravity and coriolis are rotated \——/

— Drag formulation that accounts for stratification

* Dynamically-melting ice
— Heat and salt fluxes based on sea ice observations and DNS
— Nonlinear freezing point

* Tidal forcing
— time-varying large-scale horizontal pressure gradients
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lce-shelf ocean boundary layer development in PALM

95

Alamos
L LABORATORY
EST.1943

100 125

(S 8n

100 125 | 0 o5 50

(s e

50

b |
b |



C. Begeman SSI Seminar Nov. 15 2019

lce-shelf ocean boundary layer development in PALM

1.5 m yr'* melt rate
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lce-shelf ocean boundary layer development in PALM

Momentum transport across the i - N :
. - uoyant boundary layer ‘
boundary layer is heavily influenced
by stable stratification g
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lce-shelf ocean boundary layer development in PALM

Momentum transport across the
boundary layer is heavily influenced

by stable stratification

Monin-Obukhov Similarity Theory:
Scaled depth
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What is the relationship between melt rates and ocean condition

Melt rate = f (temperature, salinity, pressure, velocity, slope, basal roughness)

Pritchard et al. 2012
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What is the relationship between melt rates and ocean condition

Melt rate = f (temperature, salinity, pressure, velocity, slope, basal roughness)

k degrees of freedom
k is at least 7, not counting tidal
Star frequencies

Points

Sensitivity analysis:

o s n samples of k-dimensional space
Variance-based: n(10k+1)

Derivative-based: n(k+1)
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The computational cost of large-eddy simulations

Strong scaling Weak scaling
T Q
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Number of Processors Number of Grid DOF per Processor (x 104)

~30K core-hours per simulation
Allocated 6.6M core-hours on LANL machines
~100 simulations to constrain new melt parameterization
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Progress on the dynamics of ice-shelf melting

Observations of both ice-shelf melting and ocean
conditions reveal that our existing melt
parameterization is inaccurate

|
I ;
j NS | developed a large-eddy simulation code to

an ice-shelf ocean boundary layer

\
| \ /
S ibratacialy . capture the unique configuration and forcing for
|flow Emra'\f\me“

| am running a suite of simulations to inform
a hew melt parameterization for global ocean models
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Thank you

Personal website carolynbegeman.weebly.com
DOE Earth System Model website e3sm.org

Begeman, C., et al. 2018. Ocean stratification reduces melt rates at the groundin;
zone of the Ross Ice Shelf. Journal of Geophysical Research, Oceans.

Begeman, C., Tulaczyk, S., Fisher, A. 2017. Elevated and spatially geothermal fl
below the West Antarctic Ice Sheet. Geophysical Research Letters.

Begeman, C. et al. 2019. Ice-shelf ocean boundary layer dynamics from large-ed
simulations. AGU Fall Meeting.
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