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ABSTRACT: Grid integration studies are key to understanding our 
ability to integrate variable generation resources into the power system 
and evaluating the associated costs and benefits. In these studies, it is 
important to understand the flexibility of the thermal power fleet, 
including how thermal plants operate at part load. Without a 
comprehensive understanding of thermal plant operation, we may 
over- or underestimate our ability to integrate variable generation 
resources and thus draw incomplete or inaccurate conclusions 
regarding their potential economic and environmental effects. The 
only public data source for understanding many elements of the 
operational characteristics of the thermal fleet is the U.S. Environ-
mental Protection Agency Clean Air Markets database of historical 
power plant operation. However, though these data sets have been 
widely utilized, their use has proven to be difficult, and methods to 
clean and filter the data are not transparent. Here, we describe the database and a method to clean and filter it. We then use the 
cleaned database to demonstrate several characteristics of historical plant operation, including frequent part load operation. 
Finally, we provide a cleaned data set with heat rate curves and describe how to use it in general modeling activities and analysis. 

1. INTRODUCTION

A large and growing body of work has evaluated the potential 
of variable generation (VG) wind and solar resources to make 
a major contribution to the electric sector.1,2 Grid integration 
studies use complex tools that simulate the hour-by-hour (or 
increasingly subhourly) operation of hundreds or thousands of 
generators and transmission elements3−5 to evaluate the
impacts of VG resources on system operability. The most 
detailed studies simulate the commitment and dispatch of 
every generator in a study area, considering transmission 
constraints and the need to maintain sufficient operating 
reserves to address unforecasted changes in demand and 
system contingencies. These models are fed by large data sets, 
including data on the performance of the thousands of fossil 
power plants that currently provide a large fraction of the 
electricity in the United States and internationally. 
A key element of integration studies is understanding the 

capability of fossil-fueled thermal generators to turn off and on 
and vary output over multiple time scales.5,8 This is partly 
because increased penetration of VG resources results in 
increased variability of net energy demand (i.e., normal 
demand minus the contribution of VG). As VG is added to 
the grid, thermal plants will produce less energy, reducing fossil 
fuel use and emissions. However, these plants operate at 
different efficiencies when operated at part load, and increased 
VG penetration results in greater thermal plant output 
variability.3,6 The ability of thermal plants to respond to 

increased variability, and the impact of this variability on costs 
and emissions, is often a key element of VG integration studies, 
so it is important that the operational characteristics of power 
plants are well represented. Without a comprehensive 
understanding of thermal plant operation, we may over- or 
underestimate our ability to integrate VG and thus draw 
incomplete or inaccurate conclusions regarding the potential 
economic and environmental benefits of doing so. 7

In this work, we use historical data from the U.S. 
Environmental Protection Agency’s (EPA) Clean Air Markets 
(CAM) Division that captures about 71% of the U.S. thermal 
generation fleet (excluding nuclear) to demonstrate that most 
plants spend a large fraction of their operation at part load, 
including traditional baseload generators. We also summarize a 
method for cleaning and filtering the data using fitted heat rate 
curves, including a method to isolate curves for combined-
cycle power plants that have multiple operating modes. We 
then describe methods to apply these data sets to models used 
in grid integration studies. Finally, we provide links to our tools 
and processed databases for others to use, creating 
reproducible and transparent data sets that can help improve 
grid studies that include assessments of the environmental 
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benefits of continued deployment of solar and wind energy 
resources. 

2. MATERIALS AND METHODS 
2.1. Thermal Plant Data Needs for Grid Integration 

Studies. Parameters used to describe thermal power plant 
performance in grid integration studies include: 

Maximum output and minimum stable level (typically 
measured in megawatts [MW]) 

Efficiency (typically referred to in the United States as 
heat rate, measured in million British thermal units per 
megawatt-hour [mmBtu/MWh] as a function of 
operating point) 

Startup time and fuel requirements 

Ramp rates (typically measured in either %/min or 
MW/min). 

Without accurate data for each of these parameters, we may 
under- or overstate the flexibility of individual power plants, 
limiting our understanding of the overall flexibility of the 
power system. Particularly critical to understanding our ability 
to integrate VG resources are the ramp range and decreased 
efficiency of plants operating at low load levels. Previous 
analysis has demonstrated a significant correlation between 
minimum generation levels and increased costs of VG 
integration.9 Furthermore, there has historically been some 
controversy regarding the impact of VG on part-load operation 
of plants and associated changes in emissions, so it is important 
to capture part-load heat rates and feasible operating range to 
verify the emissions-reduction benefits of VG.10−12 

Data sets from the U.S. Energy Information Administration 
(EIA) and the Federal Energy Regulatory Commission 
(FERC) provide some of the data needed to analyze power 
plant operation, including maximum output and average 
efficiency.13−15 However, critical parameters including effi
ciency as a function of part load are unavailable in any single, 
publicly available source. 
Therefore, a number of studies have utilized historical plant 

operation data from the EPA CAM database. For example, grid 
integration studies have used CAM data to generate heat rate 
curves for generators in the western3 and eastern6 United 
States. Other analyses have used these data sets to estimate 
marginal emissions factors for various regions of the United 
States.16−18 CAM data has also been used in stand-alone 
analyses of topics including the relationship between temper-
ature and power plant emissions19 and the relationship 
between peak electricity demand and air quality.20 

While CAM data has seen substantial use, it has not been 
compiled in a publicly available and directly usable format. The 
data in its raw form is noisy and requires considerable effort to 
be usable. As part of a larger effort to improve grid modeling 
(specifically for an evolving grid) in the United States and 
North America,21 the goal of this present work is to create 
transparent and reproducible techniques and data sets for 
future analyses, including a stand-alone data set of plant-level 
heat rate curves directly usable for grid integration studies or 
other applications. We also use the processed data set to 
demonstrate the importance of evaluating part-load operation 
in grid planning studies. 

2.2. Data Processing. 2.2.1. CAM/CEMS Data. Data for 
this study is derived from the EPA CAM data set.22 Under its 
authority, the EPA requires that all combustion power plants 
with capacity greater than 25 MW install and maintain a 
continuous emission monitoring system (CEMS), which 
records several operational parameters including fuel input 
and generation.23,24 The data set analyzed in this study 
includes plants fueled by coal, oil, and natural gas, including 
steam turbines (STs), combustion turbines (CTs), and 
combined-cycle (CC) power plants. For each generator, we 
performed four data-processing steps, which we describe as (1) 
preprocessing and cleaning, (2) generation of heat rate curves, 
(3) data filtering, and (4) curve fitting for use in grid models. 
Each data processing step has multiple substeps, as described 
in the following sections. A detailed flowchart of the process is 
provided in the Supporting Information (SI), along with links 
to the code, and the raw and processed data. A summary of the 
total number of plants evaluated, including those removed in 
the processing steps, is provided in Table 1 in Results. 

2.2.2. Step 1: Data Pre-Processing and Initial 
Cleaning. The EPA hourly CEMS data is available for 
download as comma-separated text files. We began by 
identifying and extracting data associated with plant and boiler 
ID, time stamp, fuel input, and generator output from the 2016 
and 2017 data sets. Variable IDs and detailed descriptions 
associated with each data element are provided in the SI. 
These data points are sufficient to generate heat rate curves 
and minimum generation levels, which are key parameters 
needed to accurately model thermal power stations in grid 
integration studies.3,4 

A unique ID was created for each unit by combining the 
plant (ORISID) and boiler (BLRID) ID, and then data was 
cleaned by removing points with missing or nonmeasurement 
data, as described in the SI. We then removed data points 
recorded during generator startup and shutdown as our 
primary goal was to identify operational heat rate curves, and 

Table 1. Summary of Processed Data 

Initial Data Data Removed Final Data 

Step 1 Step 3 

Plant Type GW TWh GW TWh GW TWh GW TWh 

Boiler (Coal) 270.6 2427.8 4.7 368.6 7.6 29.1 258.4 2030.1 
Boiler (NG) 68 125.6 7 29.9 6.3 4.9 54.7 90.1 
Boiler (Oil) 15.8 14.9 1.9 2.9 4.0 0.4 9.9 11.6 
Boiler (Other Solid Fuel) 0.9 6.3 0.1 1.4 0.0 0.1 0.7 4.9 
CT (NG) 117.6 141.9 23 31.1 18 17.4 76.5 93.4 
CT (Oil) 20.6 11.0 11.5 7.5 5.2 0.5 3.9 3 
CC (NG) 233.0 1976.6 8.3 165.5 39.9 314.2 184.8 1496.9 
CC (Oil) 0.6 2.6 0.0 0.1 0.1 0.0 0.5 2.45 
Total 727.0 4706.6 56.5 607.0 81.0 366.5 589.5 3733.1 
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fuel used during startup or shutdown can distort these results. 
Finally, physically unrealistic heat rate values of either <4.5 
mmBtu/MWh or >40 mmBtu/MWh were removed. This step 
eliminates obviously erroneous data. 
Aggregation of Combined-Cycle Units. A CC plant  

consists of one or more CTs with the waste heat feeding a 
heat-recovery steam generator (HRSG) driving an ST. The 
waste heat may often be supplemented with duct burners. The 
CTs may be operated individually (without the HRSG/ST) or 
in various combinations depending on the number of turbines. 
For example, a 2 × 1 plant (two CTs and one ST) could have 
as many as six different operating conditions (three CT-only 
combinations and three CT and ST combinations). This 
greatly complicates estimating the plant heat rate, along with 
actually implementing this configuration in grid models. The 
EPA CAM data often reports individual CTs separately, but 
with the load generated by the ST uniformly distributed 
between the CTs. To provide a more accurate understanding 
of operation of the complete CC units, the time-series data 
reported for all (n) of the CTs associated with the HRSG were 
combined and a new unique unit ID was created; i.e., for each 
hour (ti) of the year: 

∑ t t Heat Input ( ) Heat Input ( ) i 

n 

i CC 
1 

CT 

∑ t t Load ( ) Load ( ) i 

n 

i CC 
1 

CT 

where Heat Inputcc and LoadCC are the heat input and load for 
the CC unit, and Heat InputCT and LoadCT are the heat input 
and load for the CT. The 710 units reported to CEMS as CC 
generators were combined to form 504 CC units by grouping 
individual generators according to their plant and unit codes 
reported in the Form EIA-860 generator database. This data 
combination was performed after the initial preprocessing and 
cleaning described in Generation of Heat Rate Curves. 
2.2.3. Step 2: Generation of Heat Rate Curves. After initial 

cleaning, we used the remaining data to generate heat rate 
curves. Heat rate is a common U.S. metric of power plant 
performance that is defined as the amount of fuel required to 
generate one unit of electrical energy output 

Heat Rate Heat Input 
Net Generation 

The typical units of heat rate are mmBtu/MWh. The U.S. 
EPA defines heat rate based on the higher heating value 
(HHV) of the fuel, or the gross energy content, which includes 
the energy used to vaporize water released or created during 
the combustion process. 25 Outside the United States, power 
plants are more commonly defined in terms of thermal 
efficiency, equal to net generation divided by heat input 
(typically using the fuel’s lower heating value) where both 
generation and heat input have the same units. The heat rate 
varies as a function of output level; typically units are more 
efficient at greater output levels and will vary with different CC 
operating modes.26 

Heat input and net generation values were obtained for each 
hourly interval. Heat input is the thermal energy of the fuel 
(HTINPUT) reported in millions of Btu (mmBtu). Net 
generation is the amount of energy actually delivered to the 
grid and is equal to the gross generation from the plant minus 
station energy (energy consumed to run the plant). Power 

stations can consume a significant amount of power for station 
services.27 However, net generation is not reported directly in 
the CEMS database; the CEMS database reports only the gross 
load, which is calculated by multiplying the power produced 
during each hour (GLOAD) and the fraction of the hour the 
unit was operating (OPTIME) 

* Gross Generation GLOAD OPTIME 

where GLOAD is in MW and OPTIME is in hours. We 
eliminated data where OPTIME was less than 1 in order to 
remove the impact of startups and shutdowns, so for all our 
data, gross generation GLOAD. 
To estimate the net energy production in each time period, 

we multiplied gross load by a scaling factor that estimates 
average station power 

* Net Load Gross Load Scale factor ft ft ft 

where scale factor is equal to the median value of the sum of 
annual net energyft divided by gross energyft, where ft is the 
fuel type (i.e., solid or liquid/gas). Annual net energy by fuel 
type was derived from the Form EIA-923 database14 while 
gross generation was obtained from the CEMS data. Because 
of occasional mismatches or lack of matches between plant-
level information in the two data sets, fleet median values were 
used instead of unit-specific information. The scale factors 
derived from this process were 0.925 for solid-fuel plants and 
0.963 for liquid- and gas-fuel plants. The lower value for solid 
(mostly coal) plants demonstrates the more energy-intensive 
processes involved in large coal-fired power plants, including 
crushers, fans, and emissions controls.27 We recognize that a 
more robust conversion from gross to net would be helpful for 
this data set, but to do so, a more accurate and complete 
matching between EIA and EPA data sets or alternative data 
source with net and gross generation for all units is required. 
For the remainder of the paper and in all figures, load will refer 
to the net load. 
Figure 1 shows an example heat rate curve for a coal-fired 

power plant (CAM database unit 7097_1, the JK Spruce power 

plant in Texas) generated with initial, unfiltered data. It 
illustrates why additional data filtering is needed and why using 
a heat rate curve is a useful mechanism for additional filtering. 
The data is very noisy, but a strong visual trend is observable; 
additional discussion of CEMS equipment and possible 

Figure 1. Initial heat rate curves for the CAM database unit 7097_1, 
JK Spruce power plant. Each data point is an hourly measurement of 
heat rate as a function of generation. 
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sources of errors is provided in reference 28. Many points are 
obviously outliers, being well above or well below normal 
operating conditions, including many points that are physically 
impossible for this technology, such as those below 7 mmBtu/ 
MWh. However, simply screening for points above and below 
certain heat rates may still leave unrealistic data. In this 
example, a few data points are shown with heat rates that are 
well within the overall acceptable range but occur at load levels 
that appear unlikely when compared to the majority of points 
at this level. Therefore, a screen that considers both heat rate 
and load level is necessary. 
2.2.4. Step 3: Data Filtering and Clustering. After 

producing the heat rate curves, we applied a series of three 
filters to eliminate outliers in individual data points as well as 
entire plants. These three filters, as described below, are (1) 
minimal operation screening, (2) clustering and filtering, and 
(3) unit-level filtering. 
Minimal Operation Screening. This step removed units 

with less than 1% of the total available data points. As the 
CEMS data is provided in hourly timesteps and this analysis 
focused on data from 2016 to 2017, this corresponded to units 
with <175 data points. The data for these units was retained in 
the final data set, but their values were flagged as outliers (see 
below). 
Clustering and Filtering. A set of density-based clustering 

algorithms was used to isolate the typical operating range of 
each generator by removing outlying data points. For CC units, 
an added goal of the filtering procedure was to identify 
different operating modes using the density-based spatial 
clustering of applications with noise (DBSCAN) algorithm.29 

DBSCAN determines clusters based on two inputs: a Euclidian 
distance metric between neighboring points (epsilon) and the 
minimum number of neighboring points within distance 
epsilon (minimum samples) for a point to be considered as 
part of a cluster. This algorithm was selected primarily for its 
ability to recognize arbitrary numbers of clusters of any shape. 
The DBSCAN algorithm is used to cluster the CC data using 
three variables: load, heat rate, and the number of operating 
CTs. The last variable, the number of operating CTs, provides 
powerful insight into the different possible operating modes of 
a unit. 
Figure 2 provides the unfiltered heat rate curves (after step 

2) for a CC unit (CAM database unit 55441, the Hillabee 
Energy Center in Alabama). The data provides no field or 

other simple indication of the actual operating mode (i.e., CC 
vs CT only). Visually, however, it is easy to recognize the four 
distinct operational modes of this plant; we have labeled the 
figure with our interpretation of the actual plant operating 
configuration. The 2 × 1 mode (the nominal mode) uses both 
CTs and a steam generator and has the highest efficiency and 
greatest output. The 1 × 1 mode uses one CT and the steam 
generator; this represents two possible combinations of plant 
operation with either CT and the ST. Likewise, the 1 CT mode 
represents operation of either of the two CTs individually but 
without the ST. Finally, the 2 CTs mode represents both CTs 
operating without the ST. The DBSCAN algorithm was able to 
parse this data into four unique clusters for further analysis and 
generation of heat rate curves for each operating mode as 
demonstrated in Results. 
For non-CC units, where a single cluster is desired, 

DBSCAN was found to produce either anomalously small or 
large clusters. This is because DBSCAN must produce 
contiguous clusters, and the silhouette score interprets the 
noise as a cluster. Therefore, a modified version of DBSCAN 
was used to isolate the typical operating range (the densest 
regions of the data) while excluding outlying points. In this 
modified clustering approach, the k-nearest neighbor distances 
were computed for every point where k is equal to the number 
of minimum samples. Next, points at which any of the k-
nearest neighbor distances is greater than epsilon are 
designated as noise. Additional details on the DBSCAN 
algorithm and the modified version used for non-CC units are 
provided in the SI. 
We have provided the results of the filtering procedure for 

download; see the SI for URLs. For completeness, all data 
points present after the initial cleaning (step 1) and removal of 
unrealistic heat rate values are provided. Points removed 
during the minimal operation screen and during clustering and 
filtering are flagged with a cluster value of −1. For non-CC 
units, the points retained after filtering are flagged with a 
cluster value of 0. For CC units, unique operating modes are 
grouped by unique positive cluster values. 

Unit-Level Filtering. The previous two steps eliminated 
individual data points. The third and final step was to eliminate 
entire plants. Namely, we identify remaining plants that have 
systematically erroneous heat rates. An example is shown in 
Figure 3. Figure 3a shows data from unit 8906_51RH, a 
natural gas boiler associated with the Astoria Generating 
Station. The data from this unit has relatively little noise; 
however, the average heat rate (about 5 mmBtu/MWh) is 
physically impossible for this technology class, implying a 
systematic bias in measurement, reporting, or data recording. 
Figure 3b shows a plant with an excessively high heat rate (unit 
2092_3, Ralph Green Station). Each figure also shows a band 
of area representing two standard deviations above and below 
the mean minimum heat rate for all generators of this type. 
Plants outside this band were removed. This filter was not 
performed on groups with less than 100 units (oil-fired units 
and boilers labeled as “other”) as these groups could not be 
well represented by a Gaussian distribution, making the filter 
overly conservative. 
For CC natural gas units, we used a slightly modified 

approach; distributions of heat rates are provided in the SI. 
Due to multimode operation, and because the EPA does not 
require CC operators to report steam cycle generation to 
CAM, the distribution of minimum heat rate values is bimodal. 
Units with minimum heat rate values >9 mmBtu/MWh (the 

Figure 2. Illustration of unfiltered CC CEMS data for unit 
55411_CC1. 
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intersection of the two distributions) were deemed to have not 
reported steam generation and were thus excluded. Further-
more, the most efficient CC units were also removed using the 
methodology provided above and the bounds indicated in the 
SI. 
Units identified during this step were excluded from our 

analysis in Results but remain available in the published data. 
2.2.5. Step 4: Curve Fitting for Use in Grid Models. The 

heat rate curves generated in this project are for use in a 
production cost model environment that uses mixed-integer 
linear programs. Many grid simulation tools are formulated as 
linear or mixed-integer mathematical programming problems. 
These tools require a piecewise-linear representation of each 
generator’s heat input function (mapping net load to heat 
input), which can be scaled linearly to quantify fuel or 
emissions costs. 
We used the Magnani and Boyd heuristic30 to generate 

piecewise-linear heat input function fits for one-, two-, and 
three-linear-segment functions for each generator. Using 
multiple pieces can add significant computational burden, 
particularly when simulating large systems.6 In many cases, the 
heat rate curve is sufficiently linear that only a single piece can 
be used. To aid in minimizing the computation complexity of 
mixed-integer models using the data (while retaining as much 
accuracy as possible), we have also provided a data set that 
offers a recommended number of pieces. This number was 
determined using the Akaike Information Criteria31 , which is 
described in the SI. An example application of a piecewise-
linear input/output curve for a gas-fired CT generator, along 
with the corresponding heat rate curve, is also provided in the 
SI. 
In addition to the raw and processed data, and piecewise-

linear fits, we also fit a fourth-order polynomial to the filtered 
data set for each generator.32 While these curves are not 
intended to represent the fundamental physics of generator 
performance, they may be useful for users who want a 
continuous function. 
Finally, we also generated a set of generic heat rate curves 

that can be used to represent plants with missing or poorly 
represented data, or new plants for modeling future scenarios 
that include new builds. For each unit of a specific type, we 
took the median of 15 evenly spaced points along the 

normalized heat rate curve for all units (from minimum to 
maximum). These median heat rate values were used to 
generate a composite shape for a plant of a specific class. The 
heat rate curve can then be adjusted up or down to fit a specific 
point (such as the heat rate at full output) on the new plant. 
These generic curves are also posted with the full data set 
described in the SI. 
We have posted cleaned data and processed results at a 

repository with details described in the SI. Data for each 
generator includes minimum and maximum generation levels, 
piecewise-linear fit parameters, and coefficients for our fitted 
fourth-order polynomial heat rate curve. The minimum and 
maximum generation levels were taken as the minimum and 
maximum load point after preprocessing and filtering. The heat 
rate curve can be translated directly into a carbon-dioxide 
emissions curve by multiplying the heat content of the fuel by 
its carbon content. 

3. RESULTS AND DISCUSSION 
3.1. Results. Table 1 summarizes the processed data and 

the effect of the various screens. It includes the total capacity 
and the 2-year generation (energy) value for each generator 
type. 
The data processing retained between 65% and 95% of all 

plant types except the oil-fired CTs, which typically run very 
infrequently. Additional summary statistics of the number of 
plants and data points removed are provided in the SI. Overall, 
the cleaned and processed data set captures about 71% of 
thermal units with greater than 25 MW of capacity based on 
the 2017 EIA 860 data. Our data set also captures about 71% 
of annual generation from all combustion generation sources 
based on 2016−2017 Form EIA-923 data. One contributing 
factor is the elimination of a large number of CC plants that 
did not report steam-cycle generation and were therefore 
eliminated. Overall, limitations of the CC data, including the 
challenges of mapping CC units between EPA and EIA data 
sets, introduced a number of uncertainties and reduced the 
amount of data we could process with a high degree of 
certainty. 
Figure 4 shows example processed heat rate curves for six 

units that demonstrate some of the range of results in data 
quality; results for all units can be observed via the links 

Figure 3. Standard deviation unit filter. 
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provided in the SI. The coal unit in Figure 4a (1619_2, 
Brayton Point) shows a good characteristic shape and fairly 
tight band around the fitted curve, while the coal unit in Figure 
4b (10849_PB2, Silver Bay) shows a limited operating range 
and large band resulting in a less clear data fit. The example 
CT in Figure 4c (120_CT5, Yucca) shows one of the better 
fits with little deviation from the trend. We show two 1 × 1 CC  
plants, with the first (Figure 4d, 1403_PB01, Nine Mile Point) 
demonstrating operation only in CC mode and the second 
(Figure 4e, 201_FIT1, Thomas Fitzhugh) showing both CC 
and single-cycle operation 1 × 1 operation. Finally, we show a 
2 × 1 CC plant showing multiple modes of operation (Figure 
4f, 7999_CC01, Grays Harbor). 

Results from the data demonstrate the importance of 
considering the impacts of part-load operation on generator 
(and system) performance. Figure 5 summarizes power plant 
operating regime by type for all final processed units (the final 
column in Table 1). For each plant, we divided operation into 
quartiles, with each quartile defined as one-fourth of the range 
between minimum and maximum output, as determined by 
our data processing method, with Q1 representing the quartile 
with lowest output and Q4 the highest. We then calculated the 
fraction of annual energy produced in that quartile shown in 
the left column and the fraction of operating hours in that 
quartile shown in the right column. Results are weighted by 
generation for energy and by capacity for the percentage of 
hours. For example, as seen in Figure 5a, the results show that 

Figure 4. Example of processed heat rate curves. 
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even traditionally “baseload” coal plants spend less than half of 
their operating hours generating within 25% of full output 
(Q4), although they produce about 55% of their energy 
operating at or near full output. Alternatively, gas-fueled 
combustion turbines only produce 30% of their energy 
operating in nearly full output. 
Figure 5b,c examines the general relationship between plant 

efficiency and frequency of part-load operation for the coal and 
gas CT plants by dividing the fleet into three equal-capacity 
heat rate bins. These results demonstrate that the most 
efficient (i.e., lowest heat rate) units spend a higher fraction of 
their operating hours at higher output. As indicated in Figure 
5b, the most efficient coal generators (which would be near the 
bottom of the dispatch stack after zero- or very-low-fuel cost 
plants) generate close to 70% of their energy (light bars) while 
operating close to full output. 
Figure 5 also shows the results for CC generators, 

demonstrating that they spend a smaller fraction of their 
time at very low output (see quartile 1). However, this result 
must be placed in the context that this quartile typically 

represents operation using only CT generation. We also 
examined the CC data to identify operation in its nominal CC 
operating mode (i.e., all CTs operating plus ST), and the fleet 
average generation in nominal operation was about 86% of 
annual energy and 79% of operating hours. While CC plants 
generate most of their energy in CC mode, the frequency of 
operating in CT mode, combined with the flexibility of CT 
mode operation (including rapid startup and ramp rates), 
indicates the importance of capturing this option in studies of 
increased VG penetration. Previous studies demonstrate 
greater cycling and part-load operation as a function of VG 
deployment, which could include greater use of CT-only 
operation in CC plants.3 This points to the value of improved 
accuracy in capturing part-load operation across the spectrum 
of planning and simulation tools used to analyze future grid 
operations, particularly under scenarios of greater net load 
variability. 

3.2. Discussion. Energy modelers in the United States are 
fortunate to have a large volume of free, publicly available data 
sets describing many characteristics of the power plant fleet. 

Figure 5. Summary of operating modes. First (left) bars indicate fraction of energy produced, while second (right) bars indicate fraction of 
operating time in each load quartile. 

Figure 6. Data indicating changes to plant operation or measurement. 
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To date, however, power plant efficiency curves have been an 
important missing component of the data. These curves can be 
reproduced from the EPA CAM database, but it is noisy and 
includes clearly erroneous data. Furthermore, the CAM 
database can be used for a variety of applications beyond 
generating heat rate curves, and the data has been used in 
several scholarly works. Some of this work has policy 
implications, so it is important that the data be used in a 
transparent and reproducible manner. Our goal was to mine 
the CAM database for historic operation data and provide the 
energy modeling community with a processed database, along 
with a documented tool to remove nonrepresentative data or 
errors. While we focus on heat rate curves, the processed data 
set and tools could be used for additional applications such as 
improved analysis of nitrogen oxides and sulfur dioxide 
emissions rates in relationship with pollution control equip-
ment, fuel type, and part-load operations. Additional work 
could examine emissions associated with startup operations, 
while considering the accuracy of the CEMS data under these 
conditions. The cleaned data sets can also be used to track 
trends in power plant chronological operation in response to 
fuel prices, emissions controls, power plant fleet changes 
(including renewable deployment), and other policies and 
market conditions. They also provide an additional method to 
screen data sets for measurement errors. 
As an example, the processed data sets make it easier to 

identify either real operational changes or potential measure-
ment errors during certain time periods. Figure 6 shows the 
final processed data for two units with unusual shapes. Figure 
6a shows the data for a CT unit (1366_13, Paddys Run), 
which shows a cluster of data that clearly differs from the 
general trend. Upon further analysis, all of this cluster occurs 
before June 16, 2018, suggesting a possible issue with the 
CEMS equipment before this date and thus suggesting 
avoiding use of this part of the data set. Alternatively, some 
units show more subtle differences that still suggest changes in 
either measurement or actual operation but without an easy 
“algorithmic” method to reject or further filter. For example, 
Figure 6b (564_OUC, Stanton Energy Center) shows the data 
for a 1 × 1 CC unit showing two distinct bands of operation in 
blue (the orange dots obscure the lower band of blue) but 
transitioning to a single band on August 1, 2016. Both curves 
follow a well-defined shape, but the average heat rate after 
August 1, 2016 is about 10% lower than before. This might 
suggest a power plant improvement, or other changes, 
although the change occurs from 1 day to the next (without 
a multiday outage), precluding a major plant upgrade. We 
found similar shifts for other CC units in which heat rates 
measurably change (both up and down) after a certain time. 
These differences all suggest careful consideration of the raw 
data or use of simple averages to project future conditions and 
warrant further study to identify best practices for use of 
historical CAM database for analysis of the evolving electric 
sector. 
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