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ABSTRACT: Grid integration studies are key to understanding our Combined Cycle (Natural Gas)
ability to integrate variable generation resources into the power system 14 % =

and evaluating the associated costs and benefits. In these studies, it is 1 Q ®
important to understand the flexibility of the thermal power fleet,
including how thermal plants operate at part load. Without a
comprehensive understanding of thermal plant operation, we may
over- or underestimate our ability to integrate variable generation
resources and thus draw incomplete or inaccurate conclusions
regarding their potential economic and environmental effects. The
only public data source for understanding many elements of the
operational characteristics of the thermal fleet is the U.S. Environ-
mental Protection Agency Clean Air Markets database of historical
power plant operation. However, though these data sets have been
widely utilized, their use has proven to be difficult, and methods to
clean and filter the data are not transparent. Here, we describe the database and a method to clean and filter it. We then use the
cleaned database to demonstrate several characteristics of historical plant operation, including frequent part load operation.
Finally, we provide a cleaned data set with heat rate curves and describe how to use it in general modeling activities and analysis.
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1. INTRODUCTION

A large and growing body of work has evaluated the potential
of variable generation (VG) wind and solar resources to make
a major contribution to the electric sector."”” Grid integration
studies use complex tools that simulate the hour-by-hour (or
increasingly subhourly) operation of hundreds or thousands of
generators and transmission elements® ™ to evaluate the
impacts of VG resources on system operability. The most
detailed studies simulate the commitment and dispatch of
every generator in a study area, considering transmission
constraints and the need to maintain sufficient operating
reserves to address unforecasted changes in demand and
system contingencies. These models are fed by large data sets,
including data on the performance of the thousands of fossil
power plants that currently provide a large fraction of the
electricity in the United States and internationally.

A key element of integration studies is understanding the
capability of fossil-fueled thermal generators to turn off and on
and vary output over multiple time scales.”” This is partly
because increased penetration of VG resources results in
increased variability of net energy demand (i.e., normal
demand minus the contribution of VG). As VG is added to
the grid, thermal plants will produce less energy, reducing fossil
fuel use and emissions. However, these plants operate at
different efficiencies when operated at part load, and increased
VG penetration results in greater thermal plant output
variability.”® The ability of thermal plants to respond to
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increased variability, and the impact of this variability on costs
and emissions, is often a key element of VG integration studies,
so it is important that the operational characteristics of power
plants are well represented. Without a comprehensive
understanding of thermal plant operation, we may over- or
underestimate our ability to integrate VG and thus draw
incomplete or inaccurate conclusions regarding the potential
economic and environmental benefits of doing so.”

In this work, we use historical data from the U.S.
Environmental Protection Agency’s (EPA) Clean Air Markets
(CAM) Division that captures about 71% of the U.S. thermal
generation fleet (excluding nuclear) to demonstrate that most
plants spend a large fraction of their operation at part load,
including traditional baseload generators. We also summarize a
method for cleaning and filtering the data using fitted heat rate
curves, including a method to isolate curves for combined-
cycle power plants that have multiple operating modes. We
then describe methods to apply these data sets to models used
in grid integration studies. Finally, we provide links to our tools
and processed databases for others to use, creating
reproducible and transparent data sets that can help improve
grid studies that include assessments of the environmental
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Table 1. Summary of Processed Data

Initial Data Data Removed Final Data
Step 1 Step 3

Plant Type GW TWh GW TWh GW TWh GW TWh
Boiler (Coal) 270.6 2427.8 4.7 368.6 7.6 29.1 258.4 2030.1
Boiler (NG) 68 125.6 7 29.9 63 49 547 90.1
Boiler (Oil) 15.8 14.9 1.9 2.9 40 0.4 9.9 11.6
Boiler (Other Solid Fuel) 0.9 6.3 0.1 1.4 0.0 0.1 0.7 4.9
CT (NG) 117.6 141.9 23 31.1 18 17.4 76.5 93.4
CT (0il) 20.6 11.0 11.5 7.5 52 0.5 3.9 3
CC (NG) 233.0 1976.6 8.3 165.5 39.9 314.2 184.8 1496.9
cc (oi) 0.6 2.6 0.0 0.1 0.1 0.0 0.5 245
Total 727.0 4706.6 56.5 607.0 81.0 366.5 589.5 3733.1

benefits of continued deployment of solar and wind energy
resources.

2. MATERIALS AND METHODS

2.1. Thermal Plant Data Needs for Grid Integration
Studies. Parameters used to describe thermal power plant
performance in grid integration studies include:

Maximum output and minimum stable level (typically
measured in megawatts [MW D

Efficiency (typically referred to in the United States as
heat rate, measured in million British thermal units per
megawatt-hour [mmBtu/MWh] as a function of
operating point)

Startup time and fuel requirements

Ramp rates (typically measured in either %/min or
MW /min).

Without accurate data for each of these parameters, we may
under- or overstate the flexibility of individual power plants,
limiting our understanding of the overall flexibility of the
power system. Particularly critical to understanding our ability
to integrate VG resources are the ramp range and decreased
efficiency of plants operating at low load levels. Previous
analysis has demonstrated a significant correlation between
minimum generation levels and increased costs of VG
integration.” Furthermore, there has historically been some
controversy regarding the impact of VG on part-load operation
of plants and associated changes in emissions, so it is important
to capture part-load heat rates and feasible operating range to
verify the emissions-reduction benefits of VG.'"™"?

Data sets from the U.S. Energy Information Administration
(EIA) and the Federal Energy Regulatory Commission
(FERC) provide some of the data needed to analyze power
plant operation, including maximum output and average
efficiency.””™"> However, critical parameters including effi-
ciency as a function of part load are unavailable in any single,
publicly available source.

Therefore, a number of studies have utilized historical plant
operation data from the EPA CAM database. For example, grid
integration studies have used CAM data to generate heat rate
curves for generators in the western’ and eastern’ United
States. Other analyses have used these data sets to estimate
marginal emissions factors for various regions of the United
States.'®™'® CAM data has also been used in stand-alone
analyses of topics including the relationship between temper-
ature and power plant emissions'” and the relationship
between peak electricity demand and air quality.”

B

While CAM data has seen substantial use, it has not been
compiled in a publicly available and directly usable format. The
data in its raw form is noisy and requires considerable effort to
be usable. As part of a larger effort to improve grid modeling
(specifically for an evolving grid) in the United States and
North America,” the goal of this present work is to create
transparent and reproducible techniques and data sets for
future analyses, including a stand-alone data set of plant-level
heat rate curves directly usable for grid integration studies or
other applications. We also use the processed data set to
demonstrate the importance of evaluating part-load operation
in grid planning studies.

2.2. Data Processing. 2.2.1. CAM/CEMS Data. Data for
this study is derived from the EPA CAM data set.”” Under its
authority, the EPA requires that all combustion power plants
with capacity greater than 25 MW install and maintain a
continuous emission monitoring system (CEMS), which
records several operational parameters including fuel input
and generation.”””* The data set analyzed in this study
includes plants fueled by coal, oil, and natural gas, including
steam turbines (STs), combustion turbines (CTs), and
combined-cycle (CC) power plants. For each generator, we
performed four data-processing steps, which we describe as (1)
preprocessing and cleaning, (2) generation of heat rate curves,
(3) data filtering, and (4) curve fitting for use in grid models.
Each data processing step has multiple substeps, as described
in the following sections. A detailed flowchart of the process is
provided in the Supporting Information (SI), along with links
to the code, and the raw and processed data. A summary of the
total number of plants evaluated, including those removed in
the processing steps, is provided in Table 1 in Results.

2.2.2, Step 1: Data Pre-Processing and Initial
Cleaning. The EPA hourly CEMS data is available for
download as comma-separated text files. We began by
identifying and extracting data associated with plant and boiler
ID, time stamp, fuel input, and generator output from the 2016
and 2017 data sets. Variable IDs and detailed descriptions
associated with each data element are provided in the SL
These data points are sufficient to generate heat rate curves
and minimum generation levels, which are key parameters
needed to accurately model thermal power stations in grid
integration studies.””

A unique ID was created for each unit by combining the
plant (ORISID) and boiler (BLRID) ID, and then data was
cleaned by removing points with missing or nonmeasurement
data, as described in the SI. We then removed data points
recorded during generator startup and shutdown as our
primary goal was to identify operational heat rate curves, and
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fuel used during startup or shutdown can distort these results.
Finally, physically unrealistic heat rate values of either <4.5
mmBtu/MWh or >40 mmBtu/MWh were removed. This step
eliminates obviously erroneous data.

Aggregation of Combined-Cycle Units. A CC plant
consists of one or more CTs with the waste heat feeding a
heat-recovery steam generator (HRSG) driving an ST. The
waste heat may often be supplemented with duct burners. The
CTs may be operated individually (without the HRSG/ST) or
in various combinations depending on the number of turbines.
For example, a 2 X 1 plant (two CTs and one ST) could have
as many as six different operating conditions (three CT-only
combinations and three CT and ST combinations). This
greatly complicates estimating the plant heat rate, along with
actually implementing this configuration in grid models. The
EPA CAM data often reports individual CTs separately, but
with the load generated by the ST uniformly distributed
between the CTs. To provide a more accurate understanding
of operation of the complete CC units, the time-series data
reported for all (n) of the CTs associated with the HRSG were
combined and a new unique unit ID was created; i.e., for each
hour (t) of the year:

Heat Input.(t,) = Z Heat Input(t,)
1

Load (%) = Z Load (%)
1

where Heat Input.. and Load are the heat input and load for
the CC unit, and Heat Inputcr and Loadcr are the heat input
and load for the CT. The 710 units reported to CEMS as CC
generators were combined to form 504 CC units by grouping
individual generators according to their plant and unit codes
reported in the Form EIA-860 generator database. This data
combination was performed after the initial preprocessing and
cleaning described in Generation of Heat Rate Curves.

2.2.3. Step 2: Generation of Heat Rate Curves. After initial
cleaning, we used the remaining data to generate heat rate
curves. Heat rate is a common U.S. metric of power plant
performance that is defined as the amount of fuel required to
generate one unit of electrical energy output

Heat Input
Heat Rate = ~ %" 0P / Net Generation

The typical units of heat rate are mmBtu/MWh. The U.S.
EPA defines heat rate based on the higher heating value
(HHYV) of the fuel, or the gross energy content, which includes
the energy used to vaporize water released or created during
the combustion process.”® Outside the United States, power
plants are more commonly defined in terms of thermal
efficiency, equal to net generation divided by heat input
(typically using the fuel’s lower heating value) where both
generation and heat input have the same units. The heat rate
varies as a function of output level; typically units are more
efficient at greater output levels and will vary with different CC
operating modes.*

Heat input and net generation values were obtained for each
hourly interval. Heat input is the thermal energy of the fuel
(HTINPUT) reported in millions of Btu (mmBtu). Net
generation is the amount of energy actually delivered to the
grid and is equal to the gross generation from the plant minus
station energy (energy consumed to run the plant). Power

C

stations can consume a significant amount of power for station

. 27 . . . .
services.”” However, net generation is not reported directly in
the CEMS database; the CEMS database reports only the gross
load, which is calculated by multiplying the power produced
during each hour (GLOAD) and the fraction of the hour the
unit was operating (OPTIME)

Gross Generation = GLOAD*OPTIME

where GLOAD is in MW and OPTIME is in hours. We
eliminated data where OPTIME was less than 1 in order to
remove the impact of startups and shutdowns, so for all our
data, gross generation = GLOAD.

To estimate the net energy production in each time period,
we multiplied gross load by a scaling factor that estimates
average station power

Net Load; = Gross Load*Scale factory

where scale factor is equal to the median value of the sum of
annual net energy; divided by gross energyy, where ft is the
fuel type (i.e., solid or liquid/gas). Annual net energy by fuel
type was derived from the Form EIA-923 database'* while
gross generation was obtained from the CEMS data. Because
of occasional mismatches or lack of matches between plant-
level information in the two data sets, fleet median values were
used instead of unit-specific information. The scale factors
derived from this process were 0.925 for solid-fuel plants and
0.963 for liquid- and gas-fuel plants. The lower value for solid
(mostly coal) plants demonstrates the more energy-intensive
processes involved in large coal-fired power plants, including
crushers, fans, and emissions controls.”” We recognize that a
more robust conversion from gross to net would be helpful for
this data set, but to do so, a more accurate and complete
matching between EIA and EPA data sets or alternative data
source with net and gross generation for all units is required.
For the remainder of the paper and in all figures, load will refer
to the net load.

Figure 1 shows an example heat rate curve for a coal-fired
power plant (CAM database unit 7097 1, the JK Spruce power
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Figure 1. Initial heat rate curves for the CAM database unit 7097_1,
JK Spruce power plant. Each data point is an hourly measurement of
heat rate as a function of generation.

plant in Texas) generated with initial, unfiltered data. It
illustrates why additional data filtering is needed and why using
a heat rate curve is a useful mechanism for additional filtering.
The data is very noisy, but a strong visual trend is observable;
additional discussion of CEMS equipment and possible
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sources of errors is provided in reference 28. Many points are
obviously outliers, being well above or well below normal
operating conditions, including many points that are physically
impossible for this technology, such as those below 7 mmBtu/
MWh. However, simply screening for points above and below
certain heat rates may still leave unrealistic data. In this
example, a few data points are shown with heat rates that are
well within the overall acceptable range but occur at load levels
that appear unlikely when compared to the majority of points
at this level. Therefore, a screen that considers both heat rate
and load level is necessary.

2.2.4. Step 3: Data Filtering and Clustering. After
producing the heat rate curves, we applied a series of three
filters to eliminate outliers in individual data points as well as
entire plants. These three filters, as described below, are (1)
minimal operation screening, (2) clustering and filtering, and
(3) unit-level filtering.

Minimal Operation Screening. This step removed units
with less than 1% of the total available data points. As the
CEMS data is provided in hourly timesteps and this analysis
focused on data from 2016 to 2017, this corresponded to units
with <175 data points. The data for these units was retained in
the final data set, but their values were flagged as outliers (see
below).

Clustering and Filtering. A set of density-based clustering
algorithms was used to isolate the typical operating range of
each generator by removing outlying data points. For CC units,
an added goal of the filtering procedure was to identify
different operating modes using the density-based spatial
clustering of applications with noise (DBSCAN) algorithm.”
DBSCAN determines clusters based on two inputs: a Euclidian
distance metric between neighboring points (epsilon) and the
minimum number of neighboring points within distance
epsilon (minimum samples) for a point to be considered as
part of a cluster. This algorithm was selected primarily for its
ability to recognize arbitrary numbers of clusters of any shape.
The DBSCAN algorithm is used to cluster the CC data using
three variables: load, heat rate, and the number of operating
CTs. The last variable, the number of operating CTs, provides
powerful insight into the different possible operating modes of
a unit.

Figure 2 provides the unfiltered heat rate curves (after step
2) for a CC unit (CAM database unit 55441, the Hillabee
Energy Center in Alabama). The data provides no field or
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Figure 2. Illustration of unfiltered CC CEMS data for unit
55411 _CCL.

D

other simple indication of the actual operating mode (i, CC
vs CT only). Visually, however, it is easy to recognize the four
distinct operational modes of this plant; we have labeled the
figure with our interpretation of the actual plant operating
configuration. The 2 X 1 mode (the nominal mode) uses both
CTs and a steam generator and has the highest efficiency and
greatest output. The 1 X 1 mode uses one CT and the steam
generator; this represents two possible combinations of plant
operation with either CT and the ST. Likewise, the 1 CT mode
represents operation of either of the two CT's individually but
without the ST. Finally, the 2 CTs mode represents both CTs
operating without the ST. The DBSCAN algorithm was able to
parse this data into four unique clusters for further analysis and
generation of heat rate curves for each operating mode as
demonstrated in Results.

For non-CC units, where a single cluster is desired,
DBSCAN was found to produce either anomalously small or
large clusters. This is because DBSCAN must produce
contiguous clusters, and the silhouette score interprets the
noise as a cluster. Therefore, a modified version of DBSCAN
was used to isolate the typical operating range (the densest
regions of the data) while excluding outlying points. In this
modified clustering approach, the k-nearest neighbor distances
were computed for every point where k is equal to the number
of minimum samples. Next, points at which any of the k-
nearest neighbor distances is greater than epsilon are
designated as noise. Additional details on the DBSCAN
algorithm and the modified version used for non-CC units are
provided in the SIL

We have provided the results of the filtering procedure for
download; see the SI for URLs. For completeness, all data
points present after the initial cleaning (step 1) and removal of
unrealistic heat rate values are provided. Points removed
during the minimal operation screen and during clustering and
filtering are flagged with a cluster value of —1. For non-CC
units, the points retained after filtering are flagged with a
cluster value of 0. For CC units, unique operating modes are
grouped by unique positive cluster values.

Unit-Level Filtering. The previous two steps eliminated
individual data points. The third and final step was to eliminate
entire plants. Namely, we identify remaining plants that have
systematically erroneous heat rates. An example is shown in
Figure 3. Figure 3a shows data from unit 8906 _S1RH, a
natural gas boiler associated with the Astoria Generating
Station. The data from this unit has relatively little noise;
however, the average heat rate (about S mmBtu/MWh) is
physically impossible for this technology class, implying a
systematic bias in measurement, reporting, or data recording.
Figure 3b shows a plant with an excessively high heat rate (unit
20923, Ralph Green Station). Each figure also shows a band
of area representing two standard deviations above and below
the mean minimum heat rate for all generators of this type.
Plants outside this band were removed. This filter was not
performed on groups with less than 100 units (oil-fired units
and boilers labeled as “other”) as these groups could not be
well represented by a Gaussian distribution, making the filter
overly conservative.

For CC natural gas units, we used a slightly modified
approach; distributions of heat rates are provided in the SI.
Due to multimode operation, and because the EPA does not
require CC operators to report steam cycle generation to
CAM, the distribution of minimum heat rate values is bimodal.
Units with minimum heat rate values >9 mmBtu/MWh (the
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intersection of the two distributions) were deemed to have not
reported steam generation and were thus excluded. Further-
more, the most efficient CC units were also removed using the
methodology provided above and the bounds indicated in the
SL

Units identified during this step were excluded from our
analysis in Results but remain available in the published data.

2.2.5. Step 4: Curve Fitting for Use in Grid Models. The
heat rate curves generated in this project are for use in a
production cost model environment that uses mixed-integer
linear programs. Many grid simulation tools are formulated as
linear or mixed-integer mathematical programming problems.
These tools require a piecewise-linear representation of each
generator’s heat input function (mapping net load to heat
input), which can be scaled linearly to quantify fuel or
emissions costs.

We used the Magnani and Boyd heuristic®® to generate
piecewise-linear heat input function fits for one-, two-, and
three-linear-segment functions for each generator. Using
multiple pieces can add significant computational burden,
particularly when simulating large systems.® In many cases, the
heat rate curve is sufficiently linear that only a single piece can
be used. To aid in minimizing the computation complexity of
mixed-integer models using the data (while retaining as much
accuracy as possible), we have also provided a data set that
offers a recommended number of pieces. This number was
determined using the Akaike Information Criteria®', which is
described in the SI. An example application of a piecewise-
linear input/output curve for a gas-fired CT generator, along
with the corresponding heat rate curve, is also provided in the
SL

In addition to the raw and processed data, and piecewise-
linear fits, we also fit a fourth-order polynomial to the filtered
data set for each generator.”” While these curves are not
intended to represent the fundamental physics of generator
performance, they may be useful for users who want a
continuous function.

Finally, we also generated a set of generic heat rate curves
that can be used to represent plants with missing or poorly
represented data, or new plants for modeling future scenarios
that include new builds. For each unit of a specific type, we
took the median of 15 evenly spaced points along the

E

normalized heat rate curve for all units (from minimum to
maximum). These median heat rate values were used to
generate a composite shape for a plant of a specific class. The
heat rate curve can then be adjusted up or down to fit a specific
point (such as the heat rate at full output) on the new plant.
These generic curves are also posted with the full data set
described in the SI.

We have posted cleaned data and processed results at a
repository with details described in the SI. Data for each
generator includes minimum and maximum generation levels,
piecewise-linear fit parameters, and coeflicients for our fitted
fourth-order polynomial heat rate curve. The minimum and
maximum generation levels were taken as the minimum and
maximum load point after preprocessing and filtering. The heat
rate curve can be translated directly into a carbon-dioxide
emissions curve by multiplying the heat content of the fuel by
its carbon content.

3. RESULTS AND DISCUSSION

3.1. Results. Table 1 summarizes the processed data and
the effect of the various screens. It includes the total capacity
and the 2-year generation (energy) value for each generator
type.

The data processing retained between 65% and 95% of all
plant types except the oil-fired CTs, which typically run very
infrequently. Additional summary statistics of the number of
plants and data points removed are provided in the SI. Overall,
the cleaned and processed data set captures about 71% of
thermal units with greater than 25 MW of capacity based on
the 2017 EIA 860 data. Our data set also captures about 71%
of annual generation from all combustion generation sources
based on 2016—2017 Form EIA-923 data. One contributing
factor is the elimination of a large number of CC plants that
did not report steam-cycle generation and were therefore
eliminated. Overall, limitations of the CC data, including the
challenges of mapping CC units between EPA and EIA data
sets, introduced a number of uncertainties and reduced the
amount of data we could process with a high degree of
certainty.

Figure 4 shows example processed heat rate curves for six
units that demonstrate some of the range of results in data
quality; results for all units can be observed via the links
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Figure 4. Example of processed heat rate curves.
provided in the SI. The coal unit in Figure 4a (1619 2, Results from the data demonstrate the importance of
Brayton Point) shows a good characteristic shape and fairly considering the impacts of part-load operation on generator
tight band around the fitted curve, while the coal unit in Figure (and system) performance. Figure S summarizes power plant

4b (10849_PB2, Silver Bay) shows a limited operating range operating regime by type for all final processed units (the final
column in Table 1). For each plant, we divided operation into

quartiles, with each quartile defined as one-fourth of the range
between minimum and maximum output, as determined by
our data processing method, with Q1 representing the quartile
with lowest output and Q4 the highest. We then calculated the
fraction of annual energy produced in that quartile shown in
(Figure 4e, 201_FIT1, Thomas Fitzhugh) showing both CC the left column and the fraction of operating hours in that

and large band resulting in a less clear data fit. The example
CT in Figure 4c (120_CTS, Yucca) shows one of the better
fits with little deviation from the trend. We show two 1 X 1 CC
plants, with the first (Figure 4d, 1403_PBO01, Nine Mile Point)
demonstrating operation only in CC mode and the second

and single-cycle operation 1 X 1 operation. Finally, we show a quartile shown in the right column. Results are weighted by
2 X 1 CC plant showing multiple modes of operation (Figure generation for energy and by capacity for the percentage of
41, 7999 CCO01, Grays Harbor). hours. For example, as seen in Figure Sa, the results show that

F DOI: 10.1021/acs.est.9b04522

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-revieWéd Sceated Ehigatibt.
The published version of the article is available from the relevant publisher.


http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b04522/suppl_file/es9b04522_si_001.pdf
http://dx.doi.org/10.1021/acs.est.9b04522

Environmental Science & Technology

b) Boiler (Coal)

1.0
0.8
06
(a) Fleet Average @ 04
10— e e a e e o 02
0.0

Energy Time  Energy Time  Energy Time
0.8 | Low  Medium High
B | Heat Rate
IS 06 1| (c) Combustion Turbine
g™ — (Natural Gas)
o ] — - 1.0
—
o —
c 04— || 0.8
2 Bl
5 — L 1 0.6
E — —
w02 L — 04—
— — N — — ] 0.2
0.0 L — e S | B e = D = — 0.0
Energy Time  Energy Time  Energy Time  Energy Time  Energy Time  Energy Time Energy Time  Energy Time  Energy Time
Boiler Boiler Boiler cT cT cC Low Medium High
(Coal) (NG) (Gil) (NG) (©il) (NG) Heat Rate
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Figure 6. Data indicating changes to plant operation or measurement.
even traditionally “baseload” coal plants spend less than half of represents operation using only CT generation. We also
their operating hours generating within 25% of full output examined the CC data to identify operation in its nominal CC
(Q4), although they produce about 55% of their energy operating mode (i.e., all CTs operating plus ST), and the fleet
operating at or near full output. Alternatively, gas-fueled average generation in nominal operation was about 86% of
combustion turbines only produce 30% of their energy annual energy and 79% of operating hours. While CC plants
operating in nearly full output. generate most of their energy in CC mode, the frequency of
Figure 5b,c examines the general relationship between plant operating in CT mode, combined with the flexibility of CT
efficiency and frequency of part-load operation for the coal and mode operation (including rapid startup and ramp rates),
gas CT plants by dividing the fleet into three equal-capacity indicates the importance of capturing this option in studies of
heat rate bins. These results demonstrate that the most increased VG penetration. Previous studies demonstrate
efficient (i.e., lowest heat rate) units spend a higher fraction of greater cycling and part-load operation as a function of VG
their operating hours at higher output. As indicated in Figure deployment, which could include greater use of CT-only
Sb, the most efficient coal generators (which would be near the operation in CC plants.” This points to the value of improved
bottom of the dispatch stack after zero- or very-low-fuel cost accuracy in capturing part-load operation across the spectrum
plants) generate close to 70% of their energy (light bars) while of planning and simulation tools used to analyze future grid
operating close to full output. operations, particularly under scenarios of greater net load
Figure 5 also shows the results for CC generators, variability.
demonstrating that they spend a smaller fraction of their 3.2. Discussion. Energy modelers in the United States are
time at very low output (see quartile 1). However, this result fortunate to have a large volume of free, publicly available data
must be placed in the context that this quartile typically sets describing many characteristics of the power plant fleet.
G DOI: 10.1021/acs.est.9b04522
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To date, however, power plant efficiency curves have been an
important missing component of the data. These curves can be
reproduced from the EPA CAM database, but it is noisy and
includes clearly erroneous data. Furthermore, the CAM
database can be used for a variety of applications beyond
generating heat rate curves, and the data has been used in
several scholarly works. Some of this work has policy
implications, so it is important that the data be used in a
transparent and reproducible manner. Our goal was to mine
the CAM database for historic operation data and provide the
energy modeling community with a processed database, along
with a documented tool to remove nonrepresentative data or
errors. While we focus on heat rate curves, the processed data
set and tools could be used for additional applications such as
improved analysis of nitrogen oxides and sulfur dioxide
emissions rates in relationship with pollution control equip-
ment, fuel type, and part-load operations. Additional work
could examine emissions associated with startup operations,
while considering the accuracy of the CEMS data under these
conditions. The cleaned data sets can also be used to track
trends in power plant chronological operation in response to
fuel prices, emissions controls, power plant fleet changes
(including renewable deployment), and other policies and
market conditions. They also provide an additional method to
screen data sets for measurement errors.

As an example, the processed data sets make it easier to
identify either real operational changes or potential measure-
ment errors during certain time periods. Figure 6 shows the
final processed data for two units with unusual shapes. Figure
6a shows the data for a CT unit (1366 13, Paddys Run),
which shows a cluster of data that clearly differs from the
general trend. Upon further analysis, all of this cluster occurs
before June 16, 2018, suggesting a possible issue with the
CEMS equipment before this date and thus suggesting
avoiding use of this part of the data set. Alternatively, some
units show more subtle differences that still suggest changes in
either measurement or actual operation but without an easy
“algorithmic” method to reject or further filter. For example,
Figure 6b (564_OUC, Stanton Energy Center) shows the data
for a 1 X 1 CC unit showing two distinct bands of operation in
blue (the orange dots obscure the lower band of blue) but
transitioning to a single band on August 1, 2016. Both curves
follow a well-defined shape, but the average heat rate after
August 1, 2016 is about 10% lower than before. This might
suggest a power plant improvement, or other changes,
although the change occurs from 1 day to the next (without
a multiday outage), precluding a major plant upgrade. We
found similar shifts for other CC units in which heat rates
measurably change (both up and down) after a certain time.
These differences all suggest careful consideration of the raw
data or use of simple averages to project future conditions and
warrant further study to identify best practices for use of
historical CAM database for analysis of the evolving electric
sector.
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