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Abstract—Triangle counting is a representative graph analysis
algorithm with several applications. It is also one of the three
benchmarks used in the graph challenge workshop. Triangle
counting can be expressed as a graph algorithm and in a linear
algebra formulation using sparse matrix-matrix multiplication
(SpGEMM). The linear algebra formulation using the SpGEMM
algorithm in the Kokkoskernels library was one of the fastest
implementations for the triangle counting problem in last year’s
graph challenge. This paper improves upon that work by de-
veloping an SpGEMM implementation that relies on a highly
efficient, work-stealing, multithreaded runtime. We demonstrate
that this new implementation results in improving the triangle
counting runtime up to 5x to 12x on different architectures.
This new implementation also breaks the 10° barrier for the rate
measure on a single node for the triangle counting problem. We
also compare the linear algebra formulation with a traditional
graph based formulation. The linear algebra implementation is
up to 2.96x to 7x faster on different architectures compared
to the graph based implementation. The differences due to the
runtime is evident for both triangle counting implementations.
Furthermore, we present analysis of the scaling of the triangle
counting implementation as the graph sizes increase using both
synthetic and real graphs from the graph challenge data set.

I. INTRODUCTION

The triangle counting problem has been one of the three
benchmark problems in the graph challenge workshop [1].
Another graph challenge problem - k-truss computation -
also depends on the triangle counting problem [2]. Triangle
counting also forms the core of number of other kernels such
as the triangle enumeration, subgraph isomorphism, dense
neighborhood graph discovery [3], and link recommenda-
tion [4]. The 2017 graph challenge had several papers related
to the triangle counting problem improving the state-of-the-
art for a foundational graph analysis kernel (see Section [
for a summary). Samsi et al. [5] analyzed the different results
presented at the workshop to understand the state-of-the-art for
the triangle counting problem. Typical results for some of the
fastest submissions in 2017 graph challenge were in the order
of 10® edges per second for the triangle counting problem.

The primary motivation of this paper is to improve this state-
of-the-art for triangle counting using an efficient, task-stealing,
multithreaded runtime — Cilk [6]. This paper improves the
earlier linear algebra based triangle counting implementation,
which was one of the “champions” of the 2017 graph challenge
workshop [7], by using the Cilk runtime for the sparse
matrix-matrix multiplication (SpGEMM) kernel instead of an
OpenMP based implementation. The choice of new runtime
was motivated by an analysis of the OpenMP implementation’s

scalability for larger problems and large number of threads.
Section III describes the algorithms that are implemented and
the Cilk based implementation. The differences between these
two runtimes for the triangle counting problem on irregular
graphs are evident based on the results (see Section [V)).

The primary contribution of this paper is a Cilk based
implementation (KKTri-Cilk) of the KK-SpGEMM algorithm
from the Kokkoskernels library [8] and a Cilk-based triangle
counting implementation using the new SpGEMM. The focus
is on the best performance on a single multicore node. This
version of triangle counting surpasses the 10° limit for the
rate measure on a single node for the first time. Previous work
has reported such performance only when some preprocessing
steps are not included [9]. Furthermore, detailed experiments
comparing an OpenMP (KKTri) and Cilk (KKTri-Cilk) based
triangle counting demonstrate the Cilk based triangle counting
results in a speedup up to 5x to 12x on different architectures
on the wb-edu matrix. KKTri-Cilk is up to 2.96x to 7x
faster on different architectures when compared with the graph
based implementation (TCM) [10]. We also analyze the scaling
triangle counting time for synthetic and real graphs. The
analysis show that the triangle counting time per vertex is
highly correlated %-moment of the graph. Finally, we show the
correlation between the rates and the conductance of graph.

II. BACKGROUND
A. KKTri and 2017 Static Graph Challenge

For the 2017 Static Graph Challenge [1], we submitted a
linear algebra-based triangle counting implementation KKTri
(previously designated TCKK) [7], focused on efficient single
node parallelism. KKTri was built upon the performance
portable SpGEMM (called KK-MEM) [11] in the Kokkos
Kernels library [8].

We described two linear-algebra based formulations of tri-
angle counting that were based on the adjacency matrix of the
graph [[I]. The first formulation was a slight variant of Azad,
et al. [12] (a linear algebra-based formulation of Cohen’s al-
gorithm [[13]). These formulations represent triangle counting
in terms of sparse matrix-matrix multiplication followed by
an element-wise matrix multiplication: D = (L - U). = L,
where L and U are the lower and upper triangle parts of
the adjacency matrix for the graph, respectively (Azad et
al. used A for the element-wise multiply). The SpGEMM
operation can be fused with the the element-wise multiply
by using the rightmost L as a mask for the SpGEMM,
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which avoids explicitly storing all the nonzeros resulting from
L - U. However, even with this optimization, each triangle
is “counted” twice (with one being filtered out). This method
was not evaluated in the previous work. Instead, we presented a
second formulation, D = (L-L).* L. This formulation follows
the same logic as the previous method with the SpGEMM
operation counting wedges and element-wise multiplication
filtering out the wedges that are not triangles. However, this
formulation resulted in an additional constraint on wedges
“visited”, which reduced the number of wedges stored after
the SpGEMM operation. Typically, we saw a reduction in the
number of operations and runtime. Thus, for the 2017 Graph
Challenge we used this formulation. Both formulations are
used in this paper and implemented using Cilk.

Three optimizations helped in achieving good performance.
First, masked SpGEMM (mentioned before) reduced the
memory needed for triangle counting. Secondly, our masked
SpGEMM operation used data compression on the right hand
side matrix Finally, the ordering of the graph before forming
the lower and upper triangle matrices is essential for good
performance. All three optimizations are used in the Cilk
implementation described here as well.

KKTri was one of the fastest triangle counting methods in
the 2017 Static Graph Challenge with a top rate (defined to
be the number of undirected edges in the graph divided by the
runtime) of 637 million edges per second on a single multicore
system. We also compared KKTri to the Cilk implementation
of parallel merge-based triangle counted method (TCM) [10]
(TCM-Cilk). KKTri performed favorably to TCM-Cilk except
when compression did not help or when hyperthreads were
used. This observation led us to consider developing a Cilk
based implementation of our algorithm, the focus of this paper.

The KK-MEM algorithm in Kokkos Kernels library has
been improved with a meta-algorithm KK-SpGEMM to choose
between different accumulators, compression scheme and
hashmaps [14]. This will be the basis of the Cilk implemen-
tation as well. The meta-algorithm has been improved further
to support Cilk runtime specific optimizations.

The 2017 Graph Challenge has been a great resource for
state-of-the-art in triangle counting. The focus of these work
vary from shared-memory parallel implementations [15], [16],
[17], single node using accelerators [9], multiple accelera-
tors [18], an operator formulation [19], distributed-memory
implementations [20]. We also compared favorably to the
Graph BLAS numbers in SuiteSparse [21] on the IBM Power8
architecture using 160 cores(up to XXXX times faster).

III. APPROACH
A. Cilk Based KKTri Algorithm

KKTri-Cilk algorithm inherits from the KK-SpGEMM algo-
rithm described in [14] and tries to improve load-balancing and
efficient hyper-thread usage issues using Cilk based program-
ming model and optimizations. The Cilk programming model
supports different parallel patterns such as cilk_for, and
cilk_spawn. Cilk tasks are lightweight with efficient task-
stealing allowing an implicit way to load balance. Aside from
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Fig. 1. Example problem. (a) is the matrix representation of a graph, each
colored cell represents an edge. (b) and (c) are the lower triangular matrices of
(a) ordered for LL and LU algorithms, respectively. In (a-c) permutation and
partition ids of the rows are written in the first and last column, respectively.
Red line is the partition border.

(c) LU Alg: L Matrix

Algorithm 1: KKTRI-CILK(G)

> Graph G is given in C'SR format
nyr| <= 0 b Initialize number of triangles.

> Decide algorithm then order and set A - B matrices
(A, B) + ANALYZEMATRIX(G)

> Partitions are balanced based on number of non-zeros.
P < CREATEPARTITIONS(G)

> Run KKTRI algorithm in parallel for each P;
for each P; € P do
| cilk_spawn KKTRISPGEMM-CILK(A, B, P;,nr| )
cilk_sync
return )|

the runtime system, the parallelization strategy is the main
difference between KKTri-Cilk and KKTri. KKTri used a very
simple scheme, partitioning the matrix evenly into partitions
of a fixed number of rows. KKTri-Cilk also creates row-wise
partitions (with each partition being assigned to a Cilk task)
but not with a constant number of rows per partition. Instead,
a KKTri-Cilk partition, P;, stores its border in two pointers,
one for its first row and one for its last row.

To balance the work among the tasks, KKTri-Cilk uses an
heuristic to find the partitions, creating partitions such that the
number of non-zeros within each partition are approximately
equal. This is a greedy block (row) partitioning approach to
balance the number of non-zeros in a partition. For instance,
in our example (Fig. [1(b)), we have four partitions (divided
by the red lines), P = {Fy, P1, P>, P3}, with these partitions
have 3,2, 3,3 non-zeros respectively. The orderings used for
triangle counting help reduce the number of dense rows and
achieve better partitions as well. We partition the L matrix for
both LL and LU algorithms.

Algorithm [I] outlines the basic KKTri-Cilk triangle counting
algorithm. Each task is responsible for counting the number
of triangles in its partition, P;. These partitions are disjoint
therefore tasks can be freely executed in parallel. Since each
partition may contain different numbers of rows, cilk_for
is not used. Instead, cilk_spawn is used to initiate these
tasks and execute them in parallel. Experimentally, we saw that
this approach gave better performance than using cilk_for
with different grain sizes. Finally, when each task has finished
computing the number of triangles within its partition (ensured
by the synchronize step), the global triangle count has been



Algorithm 2: KKTRISPGEMM-CILK(A, B, Py, n7|)

> A is lower triangular matrix.
> B is lower or upper triangular matrix; depends on the alg.
> P; is the partition, keeps first and last row’s pointers.
> m7| is shared between tasks.
n¢ <= 0 > Count of the local number of triangles
H <+ @ © Initialize hashmap accumulator
for each i € P, do

Hlv € B(#)] « @

for each j € A(i) do

for each k£ € B(j) do
L | nt < ne +1if H[k] =i else 0

H < @ p Clean hashmap
> Atomically add local number of triangles.
ATOMICADD(TZ‘T| ;M)

atomically updated to give the final answer.

Each task does a matrix multiplication on its partition.
As described in the background, matrix multiplication based
triangle counting can be solved using two different algorithms;
LL and LU. Algorithm [2] describes these methods. A rep-
resents the lower triangular matrix in both algorithms. B is
the upper (lower) triangular matrix in LU (LL) algorithm. In
both algorithms, we multiply A and B matrices, C = A - B,
and then mask their result, C, with lower triangular matrix
(C.x L). KKTri-Cilk implements an in-place masking strategy
to reduce number of operations and also memory movement.
For a given row, i € P,, all non-zeros , v € B(i), are inserted
into a hashmap, H, by using their column ids as the key and @
as their value. For each non-zero column, j, of A(7) we visit
B(j) and check H. If a non-zero column k € B(j) is set to i,
we do in-place masking. If H[k] is equal to i, we have found
a triangle. The hashmap needs to be reset for each row in P,.
Finally, we add the local triangle count to the global one using
atomic addition.

KKTri-Cilk inherits some of the techniques, and the data
structures such as compression, linked-list based hashmap
accumulator and dense hashmap accumulator from KKTri [14]
and optimizes them for the Cilk implementation.

Hashmap accumulator is critical role for the efficiency of
the KKTri algorithm. As previously defined data structures for
this problem are highly optimized, we use KKTri’s linked list
based and dense hash accumulators with minor changes. First,
in KKTri-Cilk a graph is partitioned into disjoint sets and, each
of these disjoint sets are executed in parallel. Therefore, there
are no concurrent inserts, which would require atomic compare
and swap instructions. KKTri-Cilk simply defines a hashmap
accumulator for each parallel task. Second, as shown in Alg. 2
when execution of a row is completed, we need to reset the
hashmap. This can be done in two ways; first, all entries can
be reset, second used hashes can be tracked and cleaned. For,
the first case using Cilk’s array notation to reset all of the
elements in a vectorized fashion gives better performance. If
the number of used hashes are less than the 50%, cleaning the
tracked hashes results in better performance.

Compression of the right hand side matrix can decrease the
problem size significantly, and allow using efficient bitwise

TABLE I
CHARACTERISTICS OF THE ARCHITECTURES USED.
| [[ Server 1 | Server 2 | Server 3
Code Name Skylake Haswell KNL
Model Intel Xeon Intel Xeon Intel Xeon
Platinum 8160 E7-4850 v3 Phi 7250
Cores/Freq. 2 x 24/2.1GHz | 4 x 14/2.2GHz | 4 X 68/1.4GHz
Cache/Mem 33MB/196GB 35MB/16GB 1(MB)/16GB

operations. However, compression is not always successful
because of the natural order of the matrices. If there is
low locality in the matrix (e.g. RMAT graphs) then com-
pression doesn’t improve the execution time [7]. Locality
of the partitions which are being processed by tasks has an
important effect on efficient usage of the memory bandwidth
and the cache. Hence, locality can significantly impact the
triangle counting rate obtained by KKTri. In this work, we use
conductance as as a way to evaluate locality for a given matrix.
In this context, conductance is defined as the ratio between
the number of non-zeros in a partition where rows of their
column indices appear in different partitions, and total number
of non-zeros within that partition. Denoted by C?, formally
conductance of a partition, P, can be defined as follows:

A v) £0: [{u, 0} n Pl =1}
[{(A(w,0) 20 |{u,0} N P| > 0}

For example, in the matrix represented in Figure [I(a), P has
2 rows 7 non-zero elements, 2 of the non-zeros (A(0, 1) and
A(1,0)) can be accessed within this partition. Therefore we
can define conductance of this partition as follows; C4(Py) =
-573 = 0.71. We use the average of the conductance of 16-way

partition to study the locality of a graph (Table ).

C%(P) ey

IV. EXPERIMENTAL EVALUATION

We present several experiments to identify the performance
trade-offs of the KKTri-Cilk algorithm. These experiments
were carried out on three architectures with multicore proces-
sors that are shown in Table [l Intel compiler (icpc) version
18.1.163 is used to compile both KKTri and TCM codes. We
use 2 hyperthreads for Skylake and Haswell architectures.

A. Dataset and Peak Rate

Table [I lists 27 graphs that we used in our experiments
along with the number of vertices (|V]), number of edges
(|E|), number of triangles (|7|), complement of the conduc-
tance (1 — C’d), 4/3 moment, execution time in seconds on
Skylake server, and the rate between edges and execution time
(Rate) on three different architectures. In addition to 20 graphs
on which triangle computing is costly (based on the reference
implementation) 7 additional large real-world graphs [22],
[23], [24] (highlighted as blue in Table II) are included in
our experiments. We used the Graph Challenge procedure of
symmetrizing the matrices for the problems we added from
public datasets. All experiments were median of five different
runs. Table [[I shows the best achievable rate of 1.86 x 10° for
the uk-2007 matrix. We are also able to achieve more than 10°
rate for uk-2005 and wb-edu matrices. This is about 3x better




the reported peak rate in the 2017 Graph Challenge. All three
matrices also have very high locality based on the conductance
of the graph. The Skylake architecture results in the best
runtimes for all graphs except friendster. Table [l also has
the times highlighted in green when KKTri-Cilk is the fastest
method compared KK-OMP and the TCM implementations.
We observe a high correlation (0.88) between the conductance
and the rate achieved.

B. Runtime Comparison

Table TII presents observed speedups using the Cilk pro-
gramming model compared to the OpenMP runtime for both
KKTri and TCM algorithms, on three different architectures.
The geometric mean of the speedups is in the last row of the
table. In Table [[II each cell is highlighted with yellow if the
Cilk implementation is faster than the OpenMP implementa-
tion. The KKTri-Cilk of the KKTri algorithm outperforms the
KKTri-OpenMP in 63 of 78 (81%) cases. For TCM, these
numbers are 70 out of 78 (90%) cases. Clearly, Cilk helps to
getter better performance for both algorithms.

Although KKTri-Cilk outperforms KKTri-OpenMP in all of
the problems on Haswell, the OpenMP version outperforms
the Cilk version in smaller instances on Skylake. Since Sky-
lake gives the best performance in almost all problems, we
hypothesize this could be due to the tasking overhead in Cilk
for these small graph instances. TCM’s Cilk implementation
outperforms the OpenMP implementation in all problems on
both Haswell and Skylake architectures with a geometric mean
of 2.6 and 2.3. Part of this difference could be attributed
to optimizations used in different implementations. However,
there is a clear trend that Cilk helps these algorithms on
Haswell and Skylake architectures. However, in KNL architec-
ture OpenMP implementations become competitive with Cilk
implementations in many problems and geometric mean of the
speedup decreases to 1.07x and 1.65x for KKTri and TCM.
This could be due to the relatively smaller caches on the KNL
architectures not helping the tasking runtime.

C. Strong Scaling

Figure [2 presents strong scaling speedup of KKTri and TCM
for three graphs - Friendster, uk2005 and scale24 - on Skylake
architecture. KKTri-Cilk scales the best in all three problems
when scaled by the best sequential execution time among the
different methods. In uk-2005 and and scale24 graphs scal-
ing is better before using hyperthreads. Hyperthreads give a
small but measurable benefit. In Friendster all implementations
show better scaling with hyperthreads. Figure 2(h) shows the
concentration of non-zeroes in the uk-2005 graph. This graph
has a very good ordering and most of the non-zeros appear
to be near diagonal resulting in highly local computations.
Also, we observe from Figure that KKTri algorithms’
sequential execution time is also less than TCM thanks to
these local computations. In contrast to the uk-2005 graph, as
can be seen in Figure scale24 graph has a very random
distribution of the non-zeros therefore during the computation
memory access becomes very random. As we can see in
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Fig. 2. Strong scaling experiments: (a-c) x-axis presents number of threads, y-
axis presents speedup with compare to best sequential algorithm. (d-f) x-axis
presents number of threads, y-axis presents the execution time in seconds.
(g-1) presents heat map of the graphs when we partition the graph 8 by 8
grids, darker color means more non-zeroes.

Figure 2(g) Friendster graph’s distribution is worse than uk-
2005 and better than scale24. In this graph there are some
small number of highly dense parts and the other parts seem
to present a more balanced distribution. This seems to be the
best case for scalability even though the best rates are achieved
in uk-2005. The poor locality in scale24 seems to hinder both
the the rate and scalability measures.

D. Relative Speedup

Figure 3] presents relative speedup between KKTri and TCM
codes. Graph sizes grow from left to right. These results use
relative speedup from the minimum of the median execution
times of 5 runs of the OpenMp and Cilk implementations of
the KKTri and TCM algorithms. KKTri outperforms TCM in
23 of 27 cases. In four small instances (3 amazon graphs and
emailEU) TCM better depending on the architecture. From
Figure 3 we observe that KKTri can achieve up to 7x speedup
on graphs that have a good ordering such as wb-edu, uk-2005
and uk-2007. TCM also runs out of memory for uk-2007 on
two architectures. As both algorithms use the same runtime
the primary difference can be attributed to the algorithms, data
structures used and the implementation.

E. Scalability of Triangle Counting

Let n and m be the number of vertices and edges in an
undirected graph. If the graph is a clique, the number of
triangles is bounded by ©(n?) and ©(m>/2). These are there-
fore trivial worst-case bounds on the complexity of triangle



TABLE II
PROPERTIES OF THE DATASET. CONDUCTANCE IS REPORTED FOR LOWER TRIANGULAR MATRICES. BEST OF THE MEDIANS OF THE EXECUTION TIMES IN
SECONDS ON SKYLAKE IS REPORTED. MOMENT IS THE 4/3 MOMENT. HIGHLIGHTS: GREEN - KK-CILK IS BETTER THAN TCM, RED - THE FASTEST
RATE FOR A GRAPH, BLUE- THE BEST RATE AMONG ALL GRAPHS, PURPLE - PUBLIC DOMAIN GRAPHS.

Data Set V| |E| IT| || 1= C? || Moment || Time ) || g e }I:::‘iiu —"
cit-HepTh 27,770 352.285 1.478.735 0.141 || 98079 0.003 824E+07  154E+07
email-EuAll 265214 364 481 267313 0112 || 13.521 0.003 T.10E+08 _ 2.16E+07
soc-Epinions1 75.879 405,740 1,624,481 0.086 || 48.062 0.004 6726107 2.44E+07
cit-HepPh 34,546 10,877 1,276,368 0.001 || 86,684 0.004 877E+07  2.47E+07
soc-Slashdot0811 77,360 469,180 351,724 0067 || 50.726 0.004 T97E+07  2.71E+07
soc-Slashdot0902 82,168 504,230 602,592 0069 || 51416 0.003 S64E+07  2.77E+07
flickrEdges 105,938 2,316,948 107,087,357 0.098 || 268872 0.013 T.15E+08  2.99E+07
amazon0312 400,727 2,349,860 3,686,467 0229 || 30455 0.006 2516108 9.34E+07
amazon0505 410,236 2,439,437 3,951,063 0233 || 31.100 0.006 3756408 9.36E+07
amazon0601 403,394 2,443,408 3,986,507 0276 || 17434 0.006 3.87E+08  9.81E+07
scalel8 174,147 3,800,348 82,287,285 0030 || 347232 0.031 T.O7E+08  2.88E+07
scalel0 335318 7,729,675 186,288,972 0.058 || 395.145 0.075 8.06E+07  2.79E+07
as-SKitter 1,696,415 11,095,298 78,760,368 017 || 73.835 0.026 323608 1.23E+08
scale20 645,820 15,680,861 419,349,784 00350 || 448.022 0.184 5636107 2.50E+07
cit-Patents 3,774,768 16,518,047 7,515,003 0.027 || 21.888 0.028 421E+08  1.22E+08
scale2] 1243072 31,731,650 933,100,883 0.059 || 506.130 0511 478E+07  2.01E+07
soc-LiveJournall 1847571 42851037 285,730,264 0242 || 53.766 0.137 328E+08  1.07E+08
wh-edu 0845725 46,236,105 254,718,147 0938 || 16775 0.042 6.556108  1.48E+08
scale22 2393285 64,097,004 2.067.392370 0058 || 569.872 1581 3.50E+07  1.71E+07
scale23 1606314 120250705 4,549,133,002 0.059 || 640.093 3.786 260E+07  TASE+07
scale2d 8860450 260,261,843 9.936,161,560 0059 || 717548 || 10282 2.04E+07  121E+07
scaled’ 17043780 523467448 21575375802 0.050 || 802552 || 25.652 T88E+07  O.11E+06
uk-2003 39450005 783007125 21,779.366.056 0925 || 90.495 0.684 035E+08  2.50E+08
{2004 41291504 T.007474947  48.374,551,054 0942 || 125.144 1293 5.86E+08 1476408
twitter 61578414 1202513046  34,824.916,864 0.126 || 687587 || 28.359 || 4.24E+07 N/A
friendster 65.608366  1.806,067,135  4.173.724.142 0.182 || 344.160 || 18552 7.93E+07 N/A
uk2007 105,896,555 3.301,876,564  286,701,284,103 0968 || 144.436 3.545 T.50E+09 N/A
8
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Fig. 3. Relative speedup in Skylake, Haswell and KNL compared to TCM. The KKTri-Cilk time for each graph in every architecture is used as the baseline.
In KNL, because of memory limitations, all of the implementations failed on Friendster and uk-2007 graphs. In Skylake TCM fails on uk-2007 graph because
of its memory requirement while KKTri doesn’t. In the plot these cases are represented with *N/A’.

enumeration. A trivial worst-case bound on triangle counting
is O(n*), where w is the exponent of matrix multiplication.
Latapy gives a summary of related complexity results and
shows that triangle enumeration is bounded by @(mni) if the
degree distribution is governed by a power law with exponent
o [25]. This is an asymptotic improvement over the worst-
case, but Berry, et al. improved upon this further by showing
that triangle enumeration complexity can actually be ©(n)
in realistic circumstances [26]. These circumstances exist in
many of the Graph Challenge instances, as we will show.
While the results of [26] are derived from a synthetic
graph generation model (the erased configuration model),
we find that they help explain empirical results from the
Graph Challenge graphs. The essential argument of [26] is

that fast triangle enumeration is associated with small values
of the 4/3-moment of the degree distribution. Letting d,
be the degree of vertex v, the 4/3-moment is defined as:
E[dﬁ/?’] = 1/n Zv(d%/?’). This moment is small for many
of the Graph Challenge instances.

The Graph Challenge 2017 organizers have summarized
all submitted results, informally fitting their runtimes with a
regression line of O(m?*/3) [5]. In this section, we use the
4/3-moment to explain the empirical runtime complexity more
accurately. Graph Challenge triangle enumeration algorithms
can be evaluated this way to ensure that they obtain optimal
performance when possible.

The LU algorithm in this paper is asymptotically equivalent
to the “MinBucket” algorithm analyzed in [26] and proved to
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Fig. 4. Scale graphs and nonscale graphs triangle counting time in comparison to the edge count. Trend lines for |E|(4/3) and |V| are also shown. The

secondary axis shows the 4/3-moment.

TABLE III
COMPARISON BETWEEN OPENMP AND CILK RUNTIMES IN THREE
SERVERS. FOR EACH SERVER KK REPRESENTS KKTRI/KKTRI-CILK
SPEEDUP. TCM REPRESENTS TCM-OPENMP/TCM-CILK SPEEDUP.
MEDIANS OF THE 5 RUNS ARE USED.

Data Set Haswell Skylake KNL
KK | TCM KK | TCM KK | TCM
cit-HepTh 1.82 1.46 0.52 1.62 0.32 0.82
email-EuAll 3.38 3.05 1.86 1.86 1.04 0.69
soc-Epinions1 1.65 1.18 0.75 1.04 0.70 0.94
cit-HepPh 1.70 1.49 0.44 3.17 0.37 0.89
soc-Slashdot0811 1.93 2.03 0.73 1.23 0.67 0.96
soc-Slashdot0902 1573 1.54 0.96 1.42 0.68 0.93
flickrEdges 1.98 2.24 1.56 3:39 0.63 2,10
amazon0312 2.04 2.26 2,29 1.89 1.61 0.99
amazon0505 2.18 2.02 2.50 1.95 1.50 1.05
amazon0601 1.60 2.82 1.15 2.20 0.45 0.98
scalel8 1,72 2.63 1 242 0.74 1.70
scalel9 1.29 2.65 1523 2.49 0.92 1.89
as-Skitter 2.46 3.04 2.30 2.56 271 2.14
scale20 1.03 3.44 1.33 3.16 1.14 2.08
cit-Patents 2.33 3.16 1.98 75 1.10 1.76
scale21 1.17 2.81 1.31 3413 1.16 1.94
soc-LiveJournal l 2.00 4.06 1.81 2.76 2.25 2.59
wb-edu ST 2N 5.28 1353 12.66 1.24
scale22 1.20 27 7 2.95 1.19 2.02
scale23 1.33 2.66 1.46 275 1.24 2.82
scale24 1.38 3.56 1.21 3.16 1527 2718
scale25 1.50 3.02 1.24 241 ;15 2.26
uk-2005 2.85 2.40 1.97 2.05 1330 2.60
it-2004 2.33 18.33 2.00 | 16.24 0.90 | 1591
twitter 1.91 2.88 1.78 2.80 N/A N/A
friendster 2.06 1.26 2.11 1.13 N/A N/A
uk-2007 XXX 11.04 XXX XXX N/A N/A

[ Geometric Mean [[ 1.87 | 261 [[ 142 [ 233 [ 1.07 [ 1.65 ]
Graph Type Ti;ne-per-vertex 'l;ime-per-edge

E3 % -moment E3 % -moment

Scale graphs | 0.90 0.98 | 0.89 0.98

Non-scale graphs | 0.26 0.95 | 0.02 0.76

TABLE TV

CORRELATION COEFFICIENT BETWEEN TRIANGLE COUNTING TIME PER
VERTEX/EDGE AND THE E'3 OR %—MOMENT.

be optimal when the 4/3-moment is bounded by a constant
(MinBucket is alternatively called nodelterator++ or Cohen’s
algorithm [27], [13], [28]). Therefore, we expect O(n) perfor-
mance from LU if 4/3-moments remain small as n grows.

To test this conjecture, we separate the Graph Challenge
instances into two classes which we call Scale graphs and
Non Scale graphs. The former comprise all of the R-MAT
instances, and would include other synthetic graphs that have
increasing 4/3-moments. Nonscaled graphs are all others,
many of which have small 4/3-moments despite their size. We
compute the 4/3-moment for all instances and calculate two
correlation coefficients: that between runtime per vertex/edge
and the 4/3-moment, and that between runtime per vertex/edge
and m?*/3 (the function identified by the Graph Challenge
organizers). Table [V| shows the results. Note that the per-
vertex/edge runtimes are highly correlated with the 4/3-
moment, as predicted by [26].

Figure 4 depicts the relationship between the 4/3-moment
and runtime on Graph Challenge instances. Note that in the
Scaled graphs, m*/® predicts the runtime trends effectively.
However, m*/? does not model the runtime on real graphs as
effectively as the 4/3-moment does.

V. CONCLUSIONS

We developed a triangle counting method using the Cilk

programming model. This implementation resulted in a rate
of of 10° on a single multicore node and was able to achieve
measurable speedups compared to the OpenMP implementa-
tion of the same algorithm. This linear algebra implementation
is also faster than graph based implementation (up to 4x). We
also showed correlation between the high rates achieved and
the conductance of the graph. Finally, we were able to show
that the scalability of the triangle counting is bounded by O(n)
when the 4/3-moment is small.
Acknowledgements: We thank Simon Hammond, Cynthia
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test bed program at Sandia National Laboratories for supplying
the hardware used in this paper. Sandia National Laboratories
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