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Overview

• Motivation & Goals

• Designing structures & materials for vibration control

• New approach to design: Modified Error in Constitutive Equations
• Transient domain formulation

• Frequency domain formulation

• Numerical examples
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Motivation

• Harsh vibration and shock environments are common in engineering
systems.

• We want to design materials and structures to control vibration and
and dissipate energy.
• Steady-state behavior: elastic acoustic metamaterial design, base isolator

design, etc

• Transient behavior: shock absorption, impact response, etc.

• (Elastic) metamaterials are a potential solution!

• Application-specific designs may require complex geometries.
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How can we design these materials?

• Topology optimization: Determine the optimal distribution
of material within a domain to satisfy structural objective

• Methods to design dynamic materials and structures:
• Modal design: study frequency response spectra

• Band-structure/Bloch Floquet analysis: design for material band gaps

• Minimize dynamic compliance [1]

• Direct design: design for specific frequency responses

• Solving the design problem: PDE-constrained optimization
• Gradient-based methods
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Objectives

• Develop method to design structures and materials to match desired
dynamic behavior

• Desire design method to be:
• Robust with respect to initial guess, etc
• Computationally efficient

• Utilize differentiability of constraints for gradient-based methods

• Leverage benefits of inverse-problem methods to avoid numerical
and physical instabilities of direct methods

Duke
U N I V E R S I T Y



Governing Equations for Transient Elastodynamics

Elastodynamics conservation of momentum equations govern system behavior and provide
constraints for optimization. In transient case:

S2

(1) pw2 ft =V•a+binSlx [0, T]

u(• , 0) = 0 on FD x [0, T]

ic(• , 0) = 0 on FD X [0, 71]

a • n = q(t) on FN x [0, T]

a = C : e[u]

1
e[u] 

2 
(Vu + VuT)
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q(t)

N

- Conservation of momentum

- Dirichlet boundary conditions

- Neumann boundary condition

- Constitutive equations



Governing Equations for Frequency-Domain Elastodynamics

In steady-state dynamics, the equations of motion may be expressed:

(1)

D

• a—pw2u=binSZ

u = 0 on FD

a • n = q on FN

= C : c[u]

c[u] = —2 (Vu VuT)
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- Conservation of momentum

- Dirichlet boundary conditions

- Neumann boundary condition

- Constitutive equations



Material Modeling and Design Variables
• Linear elastic materials, with strictly enforced constitutive equation,

parameterized by bulk and shear modulus:

a = C : e[u] = (G DG + bDb) : e[u] (2)

• Solid Isotropic Material Penalization (SIMP) scheme for multi-phase material
interpolation [2]
• Penalization parameter p > 1 discourages intermediate values.

• Material phases characterized by set of bulk modulus, shear modulus,
and mass density:

G(0, p) := G° + (G1 GO)op

b(f 3; p) := b° + (b1 bo) fip

PO; 13) := p° + 691 — POMP
,3i E [0, 1], i = 1..d

p E Z+
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Least-squares Design Problem

• Define the minimization problem: Find displacements u and design 6 which
minimize the least-squares misfit of the target displacement response

arg min J(u, 13)
u, f3

subject to: Eqn. [1] & Eqn. [2]

132 < 1, i = 1...d

13i > 0, i = 1...d

(L2)

Duke
U N I V E R S I T Y



Can we solve this problem robustly?

• Least-squares problem can be unstable.

• In frequency domain, resonances different designs' responses within
searchable design space cause non-convexity in objective function
• Inferior local minima may inhibit progress of gradient-based methods

• Ideally, we want to design for multiple frequencies (difficult, given this
phenomenon)
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A different approach...

We can allow violation of the constitutive equations, which improves the
convexity of the objective function.

Modified Error in Constitutive Equations (MECE): penalty method which
weights competing objectives of matching response exactly and explicitly
enforcing constitutive equations.

A(u, cr, 13; = E(u, a, 13) + 
-K2j(u, 13)

Penalty parameter K weights the two objectives.

MECE has been successfully utilized in material identification inverse
problems in frequency and transient scenarios [3,4].
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MECE in Transient Problems

In a transient problem, we strive to design a structure such that its
dynamic response matches target displacement time histories.

The objective function components are expressed:

1) Error in constitutive equations term: measures violation of
constitutive equation relating stresses and strains:

1 /1
E (u, a , 0) = 2 0 ((crt — C(0) : E[utD, C(0)-1

2) Least-squares term: misfit of calculated displacements and target
displacement patterns, weighted by penalty parameter

C,

J(11', 13) = 21 u — um
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MECE in Steady-State Problems
We seek to design a structure such that it can match a target vibrational
response.

The objective function components are expressed:

1) Error in constitutive equations term:

e(u, a, 13) = ((cr — C : c[u]) , C-1 : (o- — C : E[ttp),

2) Least-squares term: misfit of calculated displacements and target
displacement patterns

.J(u, 0) = 1' 2 Ilu — um 1112(s27,',

Optimization for multiple frequencies is represented as sum of objective
functions corresponding to individual frequency responses.
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MECE Design Problem

• Define the minimization problem:

L
arg min A(u, a, /3, K)
uEV,aES,i9

subject to: Eqn. [1]

,3i < 1, i = 1...d

Oi > 0,i = 1...d

(MECE)

• Constitutive equations now not explicitly enforced as equality constraints
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A different approach...

We can compare the objective functions of the L2 and MECE problems.

Objective: minimize the displacement at the end of a vibrating beam.

MECE, with decreasing penalty parameter, converges to Least-squares:

Least Squares Objective

5

O

-

1:1 —.. 1 , , I I .e--", I , , I 

CI 0 .1 4 2 1:1 3 0 .4 0 .5 0 ..5 0 .7 9 Ai 0 11

Step length along random design variable perturbation
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Evaluate NIECE Objectives for Varying Penalty Parameter

0.1

k -1 eCe+Cal
k -1 .fflei-ce
- k -1 .00e+05

k -1 .65e-02
k.1 Me-04
k -1 _ffle016

ID 2 0 .3 9.4 4.5 1:115 4.7 1:1

Step length along random deslgn variable perturbation
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MECE Problem Solution Methods

• Gradient based optimization method

• Form Lagrangian, incorporating objective and PDE-constraints

£ (u , a , 0 , w; k) := A(u, cr, 0: k) + ((a , E[w]) — p(0)w2 (u, w) — f (w))

• KKT first-order optimality conditions lead to:
• Expression relating stresses to displacement fields {u,w}:

ria[a] = 0 cr = C : € [u — w]
• Coupled linear system for forward and adjoint solutions (state variable and

Lagrange multipliers)

I Eiu[fi] 
1

LI W [w]
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MECE in Design

In inverse problem approaches, the penalty parameter is selected from
criteria based on measurement error (e.g. Morozov discrepancy
principle)[3]

How can we interpret the penalty parameter in design?

1. Optimal Penalty Parameter: Select an optimal \kappa parameter to
design, entailing possible violation of constitutive laws

2. Continuation Approach: Solve a sequence of optimization problems,
with decreasing kappa, to converge to original least-squares problem
solution

We'll focus on the second approach.
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Design Example: Cantilever Beam Design
Objective:

Minimize vibrational response at end of cantilever beam experiencing

forced vibration at multiple frequencies.

D Q

Parameters:
Material 0: {Go, b0, Po} = {1, 2, le —

Material 1: {Gi, bt, po} = {le — 2, 2e — 2, le —

Initial Guess: 13 = 1

Loading Frequencies:

Case 1: Single Frequency, 5 Hz

Case 2: Multiple Frequencies, {2, 4, 6} Hz
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Single-Frequency Optimization: Design
Iterations

Iteration 1: lc = 1.00e+03 Iteration 4: lc = 1.00e-03

Iteration 2: lc = 1.00e+01 Iteration 5: lc = 1.00e-05

Iteration 3: lc = 1.00e-01

L2 Solution

il

il 0



)-

{}A

Single Frequency Design: Displacement Patterns

0.5 1 I.5 2
X

2.5

FIGURE: Displacement pattern for L2-problem design

Relative displacement magnitude reduction:

T r
L2N1U L2

= 0.0906
uo [Qin 0
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FIGURE: Displacement pattern for C-MECE problem design.

Relative displacement magnitude reduction:

u Tm [ Q u 

u(T[Q]uo
= 3.2660e-05



Multi-Frequency Optimization: Design Iterations
•

•

Iteration 1: K = 1.00e+04 Iteration 4: K = 1.00e-02

•

•  

Iteration 2: K = 1.00e+02 Iteration 5: K = 1.00e-02

•

Iteration 3: K = 1.00e+00

L2 Solution
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Iteration 6: K = 1.00e-02

11 = 1

= 0
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Evolution of Design Performance in
Continuation Method

Objective Function Components
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FIGURE: Evolution of objective function components

for successive continuation iterations
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FIGURE: Design performance, measured with

displacement magnitude, for successive continuation
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Conclusions

• Presented a Modified Error in Constitutive Equations approach to
material and structural design

• Continuation scheme solves sequence of MECE optimization
problems, reducing the penalty parameter and converging to L2
problem

• Continuation scheme approach can converge to a unique local
minimum from L2 problem

• Multi-frequency problems especially promising for MECE;
superposition of FRF's in L2 problem makes problem less convex

• Future directions:
• Extension to acoustic-structural interaction for acoustic cloaking applications

• Transient problem implementation
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