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Overview

* Motivation & Goals
* Designing structures & materials for vibration control

* New approach to design: Modified Error in Constitutive Equations

* Transient domain formulation
* Frequency domain formulation

* Numerical examples
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Motivation

* Harsh vibration and shock environments are common in engineering
systems.
* We want to design materials and structures to control vibration and

and dissipate energy.
 Steady-state behavior: elastic acoustic metamaterial design, base isolator

design, etc
* Transient behavior: shock absorption, impact response, etc.

* (Elastic) metamaterials are a potential solution!
* Application-specific designs may require complex geometries.
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How can we design these materials?

* Topology optimization: Determine the optimal distribution
of material within a domain to satisfy structural objective

* Methods to design dynamic materials and structures:
* Modal design: study frequency response spectra
* Band-structure/Bloch Floquet analysis: design for material band gaps
* Minimize dynamic compliance [1]
* Direct design: design for specific frequency responses

* Solving the design problem: PDE-constrained optimization
* Gradient-based methods
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Objectives

* Develop method to design structures and materials to match desired
dynamic behavior

* Desire design method to be:
* Robust with respect to initial guess, etc
e Computationally efficient

* Utilize differentiability of constraints for gradient-based methods

* Leverage benefits of inverse-problem methods to avoid numerical
and physical instabilities of direct methods
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Governing Equations for Transient Elastodynamics

Elastodynamics conservation of momentum equations govern system behavior and provide
constraints for optimization. In transient case:

- Q . q(9)

(1

pw’i =V -0 +bin Q x [0,T] . conservation of momentum

u(,0)=0o0nI'p x [0,7] - Dirichlet boundary conditions

o-n=q(t)onlyx|[0,T] - Neumann boundary condition
o

. €|u) - Constitutive equations
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Governing Equations for Frequency-Domain Elastodynamics

In steady-state dynamics, the equations of motion may be expressed:

1) —-V-o—pw'u=>bin - Conservation of momentum
u=0onlIp - Dirichlet boundary conditions
oc-n=qonly - Neumann boundary condition
o=C:elu] - Constitutive equations

€lu] = % (Vu + Vu')
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Material Modeling and Design Variables

* Linear elastic materials, with strictly enforced constitutive equation,
parameterized by bulk and shear modulus:

oc=C:¢eul =(GDg+bDy) : €|u] 2)

* Solid Isotropic Material Penalization (SIMP) scheme for multi-phase material
interpolation [2]
* Penalization parameter p = 1 discourages intermediate values.

* Material phases characterized by set of bulk modulus, shear modulus,
and mass density:

G(B;p) =G’ + (G = G")pP
b(B;p) := bo + (b —°)BP

p) i=p° + (pt = p°)BP
B; €10,1],i=1.d
peELT
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Least-squares Design Problem

* Define the minimization problem: Find displacements u and design 8 which
minimize the least-squares misfit of the target displacement response

arg min J (u, B)
u,3

subject to: Eqn. [1] & Eqn. (2]

B;<1l,i=1..d
B;i>0,i=1..d
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Can we solve this problem robustly?

* Least-squares problem can be unstable.

* In frequency domain, resonances different designs’ responses within
searchable design space cause non-convexity in objective function
* Inferior local minima may inhibit progress of gradient-based methods

* |deally, we want to design for multiple frequencies (difficult, given this
phenomenon)
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A different approach...

We can allow violation of the constitutive equations, which improves the
convexity of the objective function.

Modified Error in Constitutive Equations (MECE): penalty method which
weights competing objectives of matching response exactly and explicitly
enforcing constitutive equations.

K
A(u,0, B; r) = E(u, 0, 8) + 5T (u, B)
Penalty parameter k weights the two objectives.

MECE has been successfully utilized in material identification inverse
problems in frequency and transient scenarios [3,4].
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MECE in Transient Problems

In a transient problem, we strive to design a structure such that its
dynamic response matches target displacement time histories.

The objective function components are expressed:

1) Errorin constitutive equations term: measures violation of
constitutive equation relating stresses and strains:

E(u,a,8) = %/O (o — C(B) : e[ue]), C(B) ™ : (00 — C(B) : efuwe])) dt

2) Least-squares term: misfit of calculated displacements and target
displacement patterns, weighted by penalty parameter

K m
j(u,,@) — 5”“ —u H%Q(Qm:

Duke @) i

UNIVERSITY




MECE in Steady-State Problems

We seek to design a structure such that it can match a target vibrational
response.

The objective function components are expressed:

1) Error in constitutive equations term:

1

E(u,0,0) = 5 ((0' —C:eu]),Ct:(c-C: e[u]))Q

2) Least-squares term: misfit of calculated displacements and target
displacement patterns

K

I(u.B) = 5lu—u"|1,q,

Optimization for multiple frequencies is represented as sum of objective
functions corresponding to individual frequency responses.
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MECE Design Problem

* Define the minimization problem:

arg min A(u,o,3;k)
uelV,occS,0

subject to: Eqn. [1]

B;<1,i=1..d
B;>0,i=1..d

e Constitutive equations now not explicitly enforced as equality constraints
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A different approach...

We can compare the objective functions of the L2 and MECE problems.
Objective: minimize the displacement at the end of a vibrating beam.
MECE, with decreasing penalty parameter, converges to Least-squares:

g 4 Least Squares Objective . Evaluate MECE Objectives for Varying Penalty Parameter
T T T T T T T T T r

k=1.00a+04

k=1 00e+02
——— k=1.00a+00
k=100e-02
k=1.00e-04
k=1.00=-06

Objective

(1] I 1 — <-.____r_ — _4’ - —— = L i L j
] 01 0z 03 04 05 06 o7 08 09 1
Step length along random design variable perturbation

i} J | I I I i I I
0 01 0z 03 04 05 0 o7 08 0g 1
Step length along random design variable perturbation
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MECE Problem Solution Methods

* Gradient based optimization method
* Form Lagrangian, incorporating objective and PDE-constraints

L(u, o, B,w; k) == Au. o, B; ) + (0. c[w]) — p(B)w(u,w) — F(w))

* KKT first-order optimality conditions lead to:
* Expression relating stresses to displacement fields {u, w}:

Lllg]=0—0=C:elu—w]

* Coupled linear system for forward and adjoint solutions (state variable and
Lagrange multipliers)

P T R R CE S R
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MECE in Design

In inverse problem approaches, the penalty parameter is selected from
criteria based on measurement error (e.g. Morozov discrepancy
principle)[3]

How can we interpret the penalty parameter in design?

1. Optimal Penalty Parameter: Select an optimal \kappa parameter to
design, entailing possible violation of constitutive laws

2. Continuation Approach: Solve a sequence of optimization problems,
with decreasing kappa, to converge to original least-squares problem
solution

We'll focus on the second approach.
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Design Example: Cantilever Beam Design

Objective:

Minimize vibrational response at end of cantilever beam experiencing
forced vibration at multiple frequencies.

Parameters:

Material 0: {Go,bo, po} = {1,2,1e — 4}

Material 1: {G1,b1, po} = {le — 2,2e — 2, 1e — 6}
Initial Guess: B =1

Loading Frequencies:

Case 1: Single Frequency, 5 Hz
Case 2: Multiple Frequencies, {2,4, 6} Hz
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Single-Frequency Optimization: Design
[terations

T

BT |

Iteration 1: k = 1.00e+03 Iteration 4: K = 1.00e-03

| L m : i
Iteration 2: k = 1.00e+01 [teration 5: ¥ = 1.00e-05 i

BE_
]

[teration 3: k = 1.00e-01

L2 Solution
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Single Frequency Design: Displacement Patterns
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FIGURE: Displacement pattern for L2-problem design FIGURE: Displacement pattern for C-MECE problem design.
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Multi-Frequency Optimization: Design Iterations

Iteration 1: k = 1.00e+04 Iteration 4: K = 1.00e-02

[teration 2: Kk = 1.00e+02 Iteration 5: k = 1.00e-02

lteration 3: K = 1.00e+00 [teration 6: ¥ = 1.00e-02

L2 Solution
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Evolution of Design Performance in

Continuation Method

100 Objective Function Components
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FIGURE: Evolution of objective function components
for successive continuation iterations
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Design Evaluation
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FIGURE: Design performance, measured with
displacement magnitude, for successive continuation
iterations.
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Conclusions

* Presented a Modified Error in Constitutive Equations approach to
material and structural design

e Continuation scheme solves sequence of MECE optimization
problems, reducing the penalty parameter and converging to L2
problem

* Continuation scheme approach can converge to a unique local
minimum from L2 problem

* Multi-frequency problems especially promising for MECE;
superposition of FRF’s in L2 problem makes problem less convex

* Future directions:
* Extension to acoustic-structural interaction for acoustic cloaking applications
* Transient problem implementation
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