
LLNL-CONF-788757

RAJA: Portable Performance for
Large-Scale Scientific
Applications

D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones,
W. Killian, A. J. Kunen, O. Pearce, P. Robinson, B. S.
Ryujin, T. R. W. Scogland

September 4, 2019

RAJA: Portable Performance for Large-Scale Scientific
Applications
Denver, CO, United States
November 1, 2019 through November 8, 2019



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



RAJA: Portable
Performance for Large-Scale Scientific Applications

David Alexander Beckingsale, Jason Burmark, Rich Hornung, Holger Jones , William Killian,
Adam J. Kunen, Olga Pearce, Peter Robinson, Brian S. Ryujin, Thomas R. W. Scogland

Lawrence Livermore National Laboratory
Livermore, CA 94550

Emails: {beckingsale1, burmark1, hornung1, holgerjones, killian4, pearce8, kunen1, robinson96, ryujin1, scogland1}@llnl.gov

Abstract—Modern high-performance computing systems are
diverse, with designs ranging from homogeneous CPU machines
to GPU or FPGA accelerated systems and many-cores. Achieving
good application performance often requires choosing a program-
ming model that is best suited to a particular platform. For large
codes that are used daily in production, and are under continual
development, architecture-specific ports are untenable. Maintain-
ability requires single-source code that is performance portable
across a range of architectures and programming models.

In this paper we describe RAJA, a portability layer that
enables C++ applications to exploit various programming
models, and thus architectures, with a single-source code
base. We describe preliminary results with RAJA in three
large production applications at Lawrence Livermore National
Laboratory, observing 17×, 13× and 12× speedup on GPU-only
over CPU-only nodes with a single-source codebase in all cases.

I. INTRODUCTION

In recent decades, performance of high-performance
computing (HPC) applications has increased dramatically
without requiring major code changes. Developers have been
able to focus on algorithm advances and new capabilities
as architectures remained largely homogeneous and CPU
clock rates increased. Coarse-grained distributed parallelism,
MPI typically, was sufficient to achieve high performance
on a wide range of platforms. There was little need to adopt
additional or alternate on-node parallelism, such as OpenMP
multithreading or tasking on-node.

Earlier architecture paradigm shifts, such as the transition
from vector machines to symmetric multiprocessors (SMPs),
were separated by decades. These gaps allowed developers
time to rewrite applications if needed. Currently, the Advanced
Simulation and Computing (ASC) Program in the Department
of Energy (DOE) interleaves procurements of large commodity
systems (CTS) and advanced technology systems (ATS) in
3-5 year cycles. The current rapid pace of disruptive changes
in ATS node architectures presents substantial performance
portability challenges.

RAJA’s design grew out of a need to continue supporting
large scale production multi-physics applications in ASC,
which place significant constraints on portable programming
methodologies:

• Large code bases. Applications contain O(100K) −
O(1M) source lines and many numerical kernels (some-
times O(15K)). No kernels may dominate runtime so any

portability approach must apply across most of the code
base without per-kernel code modification or tweaking.

• Platform diversity. Codes are routinely run on laptops
(Windows, Linux and Mac OS), commodity clusters, and
first-of-a-kind advanced technology systems; they must
run well on a diverse set of architectures at any given
time.

• Long service lives. Codes are used in production daily for
decades producing critical calculations over their entire
operating life. Codes must remain viable over several
platform generations.

• Continual development. New modeling capabilities are
added throughout the lifetimes of most codes. Adopting
new technologies cannot disrupt users and feature addi-
tions.

Given these constraints, platform-specific variants of
such applications are not tenable due to limited developer
resources, time and mission priorities. RAJA [1] is a C++
abstraction layer, developed at Lawrence Livermore National
Laboratory (LLNL), that enables performance portability
within the constraints of production applications. The main
goal of RAJA is to enable manageable performance portability.
Applications are not committed to fixed hardware or software
technology choices. Currently, there is no clear “best choice”
for all architectures. They also have the option of adopting
RAJA incrementally at any scale, from a single kernel at a
time to a library. Also, platform-specific data structure and
parallel execution concerns must be insulated from source code
that most developers work with regularly. Finally, portability
must be built into a code and maintained over its lifetime
without major disruption to developer and user productivity.

RAJA targets loop kernel parallelism for C++ applications by
relying solely on standard C++11 language features for its exter-
nal interface, and common programming model extensions such
as OpenMP and CUDA for its implementation. Its developers
include: computer science researchers and application develop-
ers working closely with each other and with compiler, system
software, and tool vendors. Thus, its requirements and features
are determined directly from needs of production applications.

This paper makes the following specific contributions:

• Introduces RAJA, an open source C++ standards-based



portability layer;
• Presents an evaluation of RAJA in both benchmarks and

early results from production applications.
In Section II, we discuss different approaches to portable

application development and motivate RAJA. Then, we describe
RAJA features in Section III. In Section IV, we present an eval-
uation of RAJA in benchmarks and preliminary evaluation in
three production applications. Lastly, we present RAJA limita-
tions, future work and conclusions in Section VI and Section V.

II. BACKGROUND AND MOTIVATION

Portability can be achieved at the programming model or
application level. A portable programming model eliminates the
need to implement a custom solution, but leaves applications at
the mercy of vendor implementations of chosen models. More-
over, different models have unique programming characteristics
and are not easily interchangeable. Yet, interchangeability
is necessary to assess performance and manage portability.
Application level techniques require significant effort, but
reduce reliance on a specific implementation. In this section, we
describe both programming model and application techniques.

A. Programming Models

There has been a clear trend in HPC toward node-level
parallel programming models that extend programming
languages, like C and C++, via compiler directives and library
routines. OpenMP, OpenACC, CUDA, and other models
can support multi-threading and/or processor heterogeneity
where CPUs and accelerators are combined. Compiler vendors
support these models well, making them viable for production
codes. However, no existing model is a clear best choice for
all architectures and applications.

Directive offload models such as OpenMP [2],
OpenACC [3], and HMPP [4] use directives to extend base
languages such as Fortran, C, and C++ with heterogeneous
offload capabilities. OpenMP is best known for providing
portable multithreading on shared-memory multicore systems.
In simplest usage, a loop can be parallelized by adding an
omp parallel for directive. More recent versions of
OpenMP, as well as OpenACC and HMPP, have support for
offloading regions of code and loops to (potentially) non-CPU
devices. Support for accelerators in OpenMP continues to
improve, with many features added over the past few years.
While compiler support is improving, none of these models
has a well-established base of implementations such that they
can be viewed as portable for production codes today.

Block and grid models such as CUDA [5], OpenCL [6]
and HCC [7] are usually built with their own compilers
somewhat independent of the base language. CUDA and
HCC take a single source approach, using the nvcc and
HCC-clang compilers respectively, while OpenCL expects
all host code to be compiled with a normal non-OpenCL
toolchain and provides architecture specific compilers for its
kernel languages. They each provides a low-level interface to
a relatively specific batch-processing device that models GPUs
well. GPU threads are grouped as a grid of thread blocks,

which are mapped to GPU multiprocessors. These models often
require programmers to transform code significantly. With the
exception of OpenCL, which requires even more refactoring
due to its lack of single source support, they are non-portable.
The SYCL [8] extension to OpenCL takes a hybrid approach
that provides a C++-like single-source veneer on top of
OpenCL, which would provide portability and single source,
but it is currently tied to a single closed-source implementation.

B. Application Level

Application level techniques leverage programming
languages and libraries to provide portability between
programming models and architectures. They are restricted
to operate within the rules of the base language, but depend
less on a specific implementation since they only require a
compiler for the base language to produce working code.

1) Multiple code versions: One approach to portable code is
to write a version of a code for each target platform and switch
between implementations. This gives developers complete
control to tune for each platform and some applications are
small enough that this route is manageable. However, for
the production codes we discuss in this paper, this is not a
practical solution. For example, many variants of LULESH,
a proxy for ALE3D (Section IV-C), have been developed [9].
But, there is no practical path to transfer useful information
gained from these exercises back to ALE3D.

2) Macros: A simple technique to write portable application
code is to use preprocessor macros for architecture-dependent
parts of the code. At compile time the macros are replaced
with appropriate architecture-specific code. Such a model
can achieve high portability and eliminates runtime overhead
compared to using a given programming model directly.
However, macros can obfuscate code for debuggers and
compiler diagnostics.

3) Existing Libraries: Libraries are another potential
portability alternative to programming models. Notably the
C++17 standard library offers parallel algorithms designed to be
portable across architectures. While they are portable, memory
handling in distributed memory nodes is ill-defined, and support
for custom algorithms is limited. The Kokkos library [10]
provides portability across memory systems and compute
platforms. It has been shown to provide good performance
and supports a wide range of programming model back-ends.
While similar in spirit to RAJA, Kokkos focuses on portability
to older C++ compilers and algorithm memory accesses. In
contrast, RAJA focuses on ease of expression and reducing
impact on application code. Agency [11] is another C++ library
with similar portability goals, focusing on describing execution
by assigning work to groups of execution agents. However, it
is an experimental effort and its long-term support is unclear.

C. Why RAJA?

RAJA began several years ago to explore the potential of
C++ abstractions to enable performance portability in LLNL
ASC applications, which are written mostly in C++. These
applications needed to prepare for Sierra [12], a 125 petaflop



advanced technology system – the first production GPU-
enabled computing platform at LLNL – while maintaining
high performance on other production systems with designs
from commodity CPU to IBM BlueGene.

Without an abstraction layer, applications would need to use
CUDA or OpenMP directly to target GPUs. CUDA, while a ma-
ture technology, was untenable due to substantial development,
maintenance burden and lack of portability. OpenMP GPU
support, both features and compilers, were portable but nascent
and not production ready at the time. The hope was that a C++
abstraction layer would enable access to different programming
models and would not be overly disruptive to code team
productivity. Existing C++ abstraction layers were viewed as
insufficiently flexible, either requiring too much refactoring,
too many fundamental algorithmic or data structure changes,
or lacking reasonable support for incremental adoption or both.

RAJA has matured into a powerful set of general
performance portable capabilities (see Section III) that have
enabled porting LLNL codes to Sierra. Also, as it has been
adopted by different codes, important features have been
developed that are unique to RAJA. These include: support for
a variety of looping patterns, such as fixed stride or arbitrary
indexing (i.e., indirection), with a single kernel; portable
reduction types that do not require reduction-specific loop
execution mechanisms; heterogeneous memory space support
that is decoupled from RAJA and optional and nested loop
support with facilities for generating multiple nesting orders
and variations for performance tuning and specialization.

III. THE RAJA PORTABILITY LAYER

RAJA provides C++ abstractions that enable users to make
their code portable with relatively minor source code changes.
RAJA does this by encapsulating loop and region execution and
keeping the application description of the computation the same.
For example, consider the following C/C++-style saxpy loop:

for (int i = 0; i < N; ++i)
{
a[i] += c * b[i];

}

The equivalent RAJA version keeps the loop body the same1:

RangeSegment seg (0, N);
forall<loop_exec> (seg, [=] (int i) {
a[i] += c * b[i];

});

The RAJA abstraction accepts a C++ functor, which is
usually produced by using the C++11 lambda facility by the
user, in this paper we refer to the loop body as the lambda
kernel body. In real applications, kernel bodies are much
larger than our trivial example, thus modifying the loop header
only and leaving the kernel body unmodified means that
most lines of code in an application do not change as the
application is ported to RAJA.

1The RAJA namespace is included with using namespace RAJA for
all examples for simplicity

The example above shows three main concepts RAJA uses:
1) execution policies (like loop_exec), 2) iteration spaces
(seg), and 3) traversal templates (forall). The following
subsections describe these concepts.

A. Concepts

1) Execution Policies: An execution policy is a C++
type that specifies how a loop kernel will execute. RAJA
supports several programming model back-ends (described
in Section III-B). An execution policy can specify which
programming model back-end to use, or it may be a complex
composition of simpler policies. Nesting or aggregation of
execution policies gives users flexibility to easily access
powerful features of parallel programming models, such
OpenMP and CUDA. RAJA execution policies also encode
traits that help drive code generation via template specialization:
each policy defines a policy type, an execution template, a
launch category, and an execution platform.

A policy type refers to a known execution back-end; e.g.,
sequential, OpenMP, CUDA, etc. An execution template
type validates, at compile time, whether an execution policy
is used within a correct context; e.g., a user should not use
a loop execution policy within a scan or reduction type.
An execution policy launch category specifies how code will
be launched (synchronously, asynchronously, or undefined). Fi-
nally, an execution platform type describes where the loop will
execute, and can be used to determine which memory space will
be accessed. Policy types specialize RAJA traversal templates,
described below. RAJA provides a variety of execution policies;
users can also define their own policies to specialize RAJA.

2) Iteration Spaces: A RAJA iteration space defines a
set of loop indices for a kernel. Index access operations
are guaranteed to be constant in time and portable across
single-core, multicore, and GPU offload execution. Objects
that model the RandomAccessContainer concept are
automatically iteration spaces. RAJA iteration space containers
and generators are similar to C++ standard library containers
and themselves conform to that concept.

RAJA defines two categories of iteration spaces: segments
and index sets. A segment defines a set of loop indices to
be executed as a unit, and an index set is a container of
arbitrary segments to be executed together as a unit. Segments
directly map to simple for-loop patterns, such as a range
or an indirection array. RAJA provides three segment types:
RangeSegment which defines a stride-one index range,
RangeStrideSegment which defines a constant-stride
index range, and ListSegment which is an arbitrary set of
indices, akin to an indirection array. RAJA segments of different
types are interchangeable when describing the iteration space.

Index sets provide more power and flexibility by enabling
execution of a collection of segments, each of which can
be operated on independently. Index sets require a two-level
execution policy, one for iterating over segments and one for
executing the segments. This is a specialization designed to
help optimize performance and expressibility in sparse iteration
spaces, especially in cases where sub-ranges of the sparse



space are contiguous. Expressing such contiguous sub-ranges
allows RAJA to vectorize the contiguous sub-ranges while
still doing sparse operations on the rest.

3) Traversal Template: RAJA traversal templates define
operations performed on a lambda loop body based on
execution policy specialization and an iteration space object.
RAJA provides several traversal templates. Most common are
forall, for the parallel-for idiom, and which map directly to
traditional C-style for-loops, or C++11 range based for-loops.

Some kernels have more complex structure, such as loop
nests, that do not map well to a simple forall construct.
RAJA provides more complex traversal templates via kernel
function overloads. A RAJA kernel template enables compo-
sition of multiple policies and iteration spaces, which define a
kernel structure within the C++ type system. RAJA forall
and kernel policies are discussed in Subsection III-C.

Another set of traversal templates that RAJA provides
supports portable scan operations. Scans are used commonly
in parallel work assignment, sorting, comparison, and stream
compaction as a method to parallelize otherwise serial work.
RAJA provides four types of scans: inclusive, exclusive, inclu-
sive in-place, and exclusive in-place. A RAJA scan template
requires an execution policy, an input iterable or begin/end
iterators, and an optional operator. RAJA has predefined
operators for all C++ standard library function objects such as
plus and multiply but can also take an arbitrarily complex
user-defined operator to apply in a prefix scan pattern.

RAJA provides two other classes of templates that do
not implement traversals. They provide users the ability to
perform reduction and atomic operations and are specialized
on policies similar to traversal templates. RAJA supplies five
different reduction operations, each accepting an execution
policy and an underlying storage type:

• ReduceSum: sum of all values
• ReduceMax: maximum value
• ReduceMin: minimum value
• ReduceMaxLoc: max value, plus index of max value
• ReduceMinLoc: min value, plus index of min value
The execution policy used with a reduction must be compati-

ble with the execution policy given to the forall or kernel
construct in which the reduction is used. A simple example
is shown below. Note that since they are independent of the
traversal, arbitrary other computation can be done in the same
loop, along with any number of reductions of arbitrary types. 2

ReduceMaxLoc<RedPol, double> max(0, -1);
forall<ExecPol> (iSpace, [=] (int i) {
max.maxloc(a[i], i);

});
double val = max.get();
int loc = max.getLoc();

RAJA portable atomic operations appear similar to the
interface provided by CUDA. Like reductions, execution
policies for atomics depend on the execution context in which

2A RAJA reduction operation can only apply its reduction operation within
a lambda expression. Setting a “local” value to some arbitrary expression
result is not supported.

they are used. RAJA also provides an “automatic” policy for
atomics that deduces the correct policy type in GPU/CUDA,
OpenMP, and sequential CPU execution contexts. An example
of RAJA atomic usage is:

double* sum = 0.0;
forall<ExecPol> (iSpace, [=] (int i) {
atomicAdd<auto_atomic>(sum, a[i]);

});
double res = *sum;

Lastly, RAJA provides atomic references and atomic views
over containers that are compatible with arbitrary memory loca-
tions and work with all atomic policies. An example of usage is:

int v = 1;
AtomicRef<int, comp_atomic> sum(&v);
++sum;
sum += 5;

B. Supported Backends

As of release v0.6.0 RAJA supports execution policies for
the following back-ends:

• sequential: forced sequential execution;
• simd: forced SIMD optimizations;
• loop: allows compiler to apply SIMD optimizations,

not forced;
• openmp: OpenMP without offload support;
• openmp_target: OpenMP with target offload;
• cuda: NVIDIA CUDA execution; and,
• tbb: Intel Threading Building Blocks.
Currently, only sequential, loop, openmp, and cuda

support all RAJA features (i.e., loops, reductions, scans, and
atomics). Other back-ends are works-in-progress and support a
subset of features. For example, reductions are not guaranteed
to be correct when using simd. The Intel TBB back-end lacks
atomics and kernel execution policy specializations. An
OpenACC back-end and support for reductions and kernel
policies in OpenMP with target offload is under development
as is a backend for AMD HIP.

C. Policy Implementation

A RAJA execution policy ties a loop traversal to a particular
programming model. For example, loop_exec uses a
standard for-loop. The specialization of the forall traversal
template looks like this:

auto begin = iter.begin();
auto end = iter.end();
auto dist = iter.size();
for (decltype(dist) i = 0; i < size; ++i) {
loop_body(begin[i]);

}

A for-loop traverses the iterates in a segment. For each
iterate, the lambda function representing the loop body is
called with a loop index.

RAJA seq_exec and simd_exec are similar but have
their for-loops decorated with OpenMP or compiler-specific
pragmas that either request strictly sequential or SIMD execu-
tion, respectively. The CUDA back-end is more complex since



it must launch a GPU kernel. This kernel takes the lambda as an
argument and calls it with the appropriate indices on the GPU.

The OpenMP specializations parallelize for-loops through the
use of OpenMP pragmas. The omp_parallel_for_exec
policy is implemented in two steps. Internally RAJA will first
uses the omp_parallel_exec specialization to establish
a parallel region: the it will call the omp_for_exec special-
ization to distribute iterates to threads in the parallel region.

Encapsulating more complex loop structures is done through
RAJA kernel policies. Kernel execution policies allow arbitrary
nesting of wrapper and loop policies. A kernel execution
policy can support arbitrary loop nests and specialized policies
that can perform loop transformations such as tiling, collapse,
and fusion. Kernel policies require that users specify which
lambdas should be inserted and where. Multiple lambdas are
supported, for example, when data initialization is required
and a simple loop nest would not be functionally equivalent.

// a policy definition for a 2-nested loop
// with loop permutation
KernelPolicy<
For<1, loop_exec,
For<0, omp_parallel_for_exec, Lambda<0>>

>
>

// a policy definition for a 2-nested loop
// with collapsing
KernelPolicy<
Collapse<omp_parallel_collapse_exec,
ArgList<1, 0>,
Lambda<0>

>
>

The primary difference for users between traversal concepts
in RAJA is that forall uses a single iteration space object,
while kernel supports multiple Iterable spaces passed as
a tuple type. Depending on where the Lambda tag is placed
within the kernel policy, more than one lambda argument may
also be required, allowing not just nested loops, but irregularly
nested loops.

In the example below, we show a RAJA kernel for a matrix
multiplication:

kernel<EXEC_POL>(make_tuple(col_range, row_range),
[=] RAJA_DEVICE(int col, int row) {
double dot = 0.0;
for(int k=0; k<N; ++k)
{
dot += Aview(row,k) * Bview(k,col);

}
Cview(row,col) = dot;

});

This kernel generates the equivalent of a two-level loop nest,
one for rows and one for columns.

D. Views and Data Layouts

RAJA provides a View abstraction that wraps a pointer to
a block of memory to simplify multi-dimensional indexing
via operators that perform integral offset computations. RAJA
also has optional strongly-typed indices with TypedView so
that users receive information about incorrect index usage at

compile-time. The RAJA AtomicViewWrapper defines a
view where all access and updates are performed atomically.

Various RAJA layout types are available to specify at View
creation the multi-dimensional access pattern for a block of
memory. Examples include a standard zero-based layout where
the last index has stride-one data access, a non-zero-based
(offset) index layout where the last index has stride-one data
access, and a permuted layout that can permute the order of
the indices, allowing the memory ordering to be shifted by
compile-time calculations.

E. Memory Model
From the beginning RAJA has made the decision to be

agnostic to the mechanism used to make memory available on
offload devices. The main reason for this is the overarching
goal of remaining non-invasive, while some codes wish to
explicitly manage their memory others want to rely on unified
memory access or mechanisms they already have for this
purpose. Notably, RAJA views and layouts work with arbitrary
pointers, but do not themselves manage placement of memory.

That said, there is an associated library called CHAI [13],
which performs automatic data copies between CPU and GPU
memory spaces based on hooks into RAJA. CHAI complements
RAJA by providing a managed array abstraction moves data to
an execution memory space, as needed, based on RAJA policies.

chai::ManagedArray<double> my_data(100);
// data transferred implicitly to GPU
forall<cuda_exec>(0, 100, [=] RAJA_DEVICE (int i) {
my_data[i] = i * 3.14;

});

// copy data back for host use
double* my_data_ptr = (double*) my_data;

RAJA informs CHAI where forall and kernel kernels
will execute based on the chosen execution policy, ensuring
data is moved to the correct memory location. CHAI allowed
incremental porting of codes to RAJA while providing
effectively manual data management. Also, there was no need
to choose between manual data management or vendor-specific
solutions like NVIDIA Unified Memory (UM).

F. Application Considerations
Applications that use RAJA can easily change how and

where compute kernels run by switching execution policies. For
rapid prototyping and portability, prudent application writers
usually define execution policies within header files. Different
header files can then be used to compile an application for
different platforms. Also, similar loop structures may share
execution policies across a large code base. RAJA promotes
the notion of parametrization of loop classes so that classes
of loops can be tuned rather than individual kernels.

RAJA provides abstractions to access and operate on data in
a platform-independent way; however, RAJA does not provide
a memory management model. Applications can use native
memory management techniques, or other abstraction layers
to ensure data is available in a RAJA kernel. In Section IV,
we discuss how three applications address data management
on heterogeneous architectures.



Platform Nodes CPUs per node Accelerators per node

Sequoia 98,304 IBM BlueGene/Q (16 cores) N/A
Zin 2,916 Intel Sandy Bridge (16 cores) N/A

Jade 1,302 Intel Broadwell (36 cores) N/A
HasGPU 20 Intel Haswell (20 cores) 4 NVIDIA K80 GPU

Manta 36 2 IBM Power8+ (20 cores) 4 NVIDIA P100 GPU
Sierra 4,320 2 IBM Power9 (44 cores) 4 NVIDIA V100 GPU

Cori 2,388 Intel Haswell (32 cores) 9,688 KNL (68 cores)

TABLE I
SYSTEMS USED IN RAJA CASE STUDIES.

IV. RAJA USE CASE STUDIES

In 2014, LLNL ASC applications started to explore the
impact of RAJA on source code and performance. Since then,
several production codes have adopted RAJA to prepare for
the Sierra system (Section II-C) with the hope that RAJA
will also be a long-term performance portability solution. In
this section, we describe the integration of RAJA into three
large application codes and report performance on various
computing platforms. We focus on comparing performance
between CPU-only and heterogeneous GPU-based systems;
the node architectures are summarized in Table I.

Before we begin discussing applications, we note several
important points. Each code manages heterogeneous memory
systems differently. Second, MPI usage for inter-node
parallelism is unchanged. Third, each team ensures that its
code remains correct via extensive regression test suites.
Fourth, each code uses RAJA as a single-source model in
each case so there are no GPU-enabled version without RAJA
to compare to. Fifth, each code team verifies that RAJA had
no negative performance impact by ensuring that base case
CPU run times of test suites do not degrade. One application
tracks performance for each change committed to its source
repository; others do so regularly, but less frequently.

The last two points imply that comparing RAJA
GPU performance against a native CUDA or OpenMP
implementation for a full application is difficult. We discuss
this for RAJA standalone as well as GPU performance
expectations for the applications in the following sections.

A. RAJA Performance Suite

As mentioned earlier, applications use RAJA as a single-
source model. So, it is necessary to compare RAJA performance
against native implementation performance another way. The
RAJA Performance Suite [14] contains a diverse set of kernels
to assess performance of RAJA features with different program-
ming models and compilers. Kernels come from stream bench-
marks, LCALS [15], [16] and Polybench [17] Suites, and real
applications. Each kernel appears in RAJA and non-RAJA vari-
ants for different programming models, summarized in Table II.

a) Implementation: The reference Sequential variant for
each kernel in the Performance Suite uses C-style for-loops.
All other RAJA and non-RAJA variants (Table II) are based
on that. All variants of each kernel share the same CPU data
allocation/deallocation and initialization routines. GPU variants
used manual CUDA or OpenMP API calls to copy data between

Variant Description

Sequential Reference sequential impl.
RAJA Sequential RAJA sequential impl.

OpenMP Reference OpenMP CPU multithreading
RAJA OpenMP RAJA OpenMP CPU multithreading
OpenMP-target Reference OpenMP 4.5 GPU offload

RAJA OpenMP-target RAJA OpenMP 4.5 GPU offload
CUDA Reference CUDA kernel impl.

RAJA CUDA RAJA CUDA impl.

TABLE II
KERNEL VARIANTS CURRENTLY IN THE RAJA PERFORMANCE SUITE.

host and device. Data allocation/deallocation, initialization and
necessary transfers are not included in execution timings.

Each kernel has a pre-defined size (number of loop iterations)
and number of times it is run to generate execution timings.
The Suite is configurable via command line arguments to
perform various performance experiments: select kernel sizes,
number of samples, subsets of kernels or variants to run, etc.

After the Suite is run, CSV-formatted text files are generated
to report: execution timings, speedup of each RAJA variant
with respect to the reference variant, Figure of Merit (run time
deviation between RAJA and reference variant), and result
checksums (to verify each variant of a kernel produces the
same results).

b) Results: Here, we present results for Performance
Suite on all HPC architectures described in Table I. All
variants supported on each platform were run, except for
OpenMP-target which is incomplete in RAJA.

Due to space limitations, Figure 1 shows performance
differences between RAJA and reference variants for
Sequential, OpenMP, and CUDA as histograms aggregated
over all Suite kernels. The clustering around 0% shows
that most kernels perform similarly for RAJA and reference
Sequential and CUDA variants. OpenMP shows a larger
variance and more RAJA kernels being slower than reference.
We believe this to be due to difficulties that C++ compilers
have optimizing OpenMP pragmas well when combined with
C++ template abstractions because many RAJA kernels that
are significantly slower or faster than reference are exercising
identical RAJA mechanisms. This is a topic of investigation
and we use the Suite to provide simple reproducers of
optimization issues to compiler vendors. Nevertheless, for
55% of the cases overall, RAJA performance is within 10% of
reference variants, and in 69 out of 140 kernel and platform
pairs (49%), performance of at least one RAJA variant is better
than the reference. It is important to note that the Suite isolates
performance differences between RAJA and reference. In our
experience, real applications do not exhibit this stark behavior.

B. ARES

ARES is a massively parallel, multi-dimensional,
multiphysics code at LLNL. Users run ARES for small
serial calculations to large-scale simulations on millions of
processors to simulate high-explosive experiments, Inertial
Confinement Fusion modeling, and hydrodynamic instability
experiments [18], [19]. ARES has over 700k lines of C/C++



100500-50-100

0

25

50

65

% Difference

N
um

be
r

of
K

er
ne

ls
Sequential

100500-50-100

0

10

20

30

% Difference

OpenMP

100500-50-100

0

10

20

30

% Difference

CUDA

Fig. 1. Performance difference (%) between RAJA and reference variants of Performance Suite kernels on five HPC platforms. Positive values mean that
the RAJA variant is faster than the reference.

Sequential OpenMP CUDA
Kernel Ref. RAJA Ref. RAJA Ref. RAJA

PRESSURE 1.1710 2.3769 0.2662 0.4972 0.0651 0.0660
ENERGY 1.7165 1.8971 0.2051 0.3010 0.0571 0.0566

VOL3D 1.1050 1.0947 0.0711 0.0848 0.0108 0.0100
DEL DOT VEC 2D 1.5785 1.5260 0.0921 0.1096 0.0131 0.0136

FIR 1.8179 1.9050 0.2439 0.1286 0.0122 0.0125
LTIMES 1.8655 1.8725 0.1026 0.1344 0.0200 0.0211

TABLE III
PERFORMANCE RESULTS FOR APPLICATION-BASED KERNELS.

Fig. 2. ARES simulation: Rayleigh-Taylor mixing layer in a convergent
geometry, 191.1 million zones.

code, uses MPI for distributed memory parallelism, and RAJA
for fine-grained parallelism on CPUs and GPUs. Physics
capabilities ported to RAJA currently include Lagrange and
Arbitrary Lagrangian Eulerian (ALE) hydrodynamics, analytic
Equations of State, grey radiation diffusion, material strength
models, thermonuclear burn, and sliding surfaces.

We first consider a Rayleigh-Taylor mixing layer in a
convergent geometry in Figure 2. The full 3D simulation (4π)
has 191.1 million zones, and converges in 14,500 time cycles.
Figure 3 shows that RAJA-enabled ARES strong-scales
well on CPU-only architectures. Because the radiation-
hydrodynamics component of ARES is largely bandwidth
bound, we compare the runtime on Jade, Manta, and Sierra
(system details in Table I) to the aggregate bandwidth of the
system run configurations in Figure 4. ARES performance
on configurations with similar aggregate bandwidth (e.g.,
4,608 Intel Broadwell CPU or 32 NVIDIA V100 GPUs) is
indeed similar. Runtime and across-system speedup is listed

Cores Nodes Agg.B/W (GB/sec) Runtime (min) Speedup

Ja
de

576 16 2,080 909 1
1,152 32 4,160 454 2
2,304 64 8,320 239 3.8
4,608 128 16,640 124 7.3

M
an

ta 32 8 17,600 131 6.9
64 16 35,200 83 10.9

Si
er

ra 32 8 27,200 97 9.6
64 16 54,400 69 13

TABLE IV
ARES RAYLEIGH–TAYLOR PROBLEM: SPEEDUP ACROSS SYSTEMS

576 1,152 2,304 4,608

1
2
3
4
5
6
7
8

Number of Processors

Sp
ee

du
p

(×
) Ideal Speedup

Intel Broadwell

Fig. 3. ARES strong scaling up to 4,068 MPI ranks of Intel Broadwell.

in Table IV, illustrating that using GPUs via RAJA CUDA
back-end results in 11×-13× speedup.

Next, we demonstrate a 191.1 million zone problem that
uses ALE hydrodynamics, dynamic species, grey radiation
diffusion, and thermonuclear burn. Runtime and speedup
are shown in Table V; the problem can not run on 8 nodes
of Manta due to memory constraints. While we have little
experience to date running some of the physics packages used
in this problem on GPUs, we already see speedup of over 9×
on a GPU system vs. a commodity CPU cluster.

We are also beginning to realize Sierra capabilities to run
high fidelity calculations. For example, we recently ran a 1.52
billion zone turbulent mixing problem, that would take a very
large CPU-only resource allocation, ran in 213 minutes using
64 nodes of Sierra (256 V100 GPUs). This makes several



2K 16K 35K 54K

56

200

400

600

800
909

Aggregate Memory Bandwidth (GB/sec)

R
un

tim
e

(m
in

ut
es

) Ideal Scaling
Jade

Manta
Sierra

Fig. 4. ARES runtime compared to aggregate bandwidth of run configuration.

Cores Nodes Agg.B/W (GB/sec) Runtime (min) Speedup

Ja
de

576 16 2,080 164.9 1
1,152 32 4,160 84.8 1.94
2,304 64 9,320 43.0 3.83
4,608 128 18,640 24.6 6.70

M
an

ta 32 8 17,600 – –
64 16 35,200 17.7 9.31

TABLE V
ARES MULTIPHYSICS PROBLEM: SPEEDUP ACROSS SYSTEMS

high fidelity runs practical to complete in a work day, which
is not possible otherwise.

C. ALE3D

ALE3D is a 2D and 3D Arbitrary Lagrangian-Eulerian (ALE)
multiphysics framework whose capabilities include: heat con-
duction, chemical kinetics and species diffusion, incompressible
flow, diverse material models, chemistry models, multi-phase
flow, and magneto-hydrodynamics. ALE3D contains over one
million lines of C++ code, uses MPI for distributed memory
parallelism, and is used for small calculations on a commodity
workstation, to massively parallel simulations running on
hundreds of thousands of processors. RAJA is being integrated
into ALE3D for fine-grained on-node parallelism.

Using RAJA, ALE3D currently targets both CPU and
GPU architectures and can scale from a single workstation to
thousands of processors. Figure 5 shows ALE3D weak scaling
up to 93,318 processes on the Sequoia system (See Table I
for details).

Table VI presents runtime of two ALE3D problems, Sedov
and Shaped Charge, on four architectures. The same source
code is compiled for different architectures using appropriate
RAJA back-ends. ALE3D achieves speedups of up to 5.8×
when comparing a single GPU to one node of an Intel Haswell
CPU architecture. Using all four GPUs on a node provides
additional speedup of 3.4× over one GPU, resulting in overall
speedup of 17× for one GPU-enabled node vs. one CPU-only
node. For analyzing performance on both CPU and GPU archi-
tectures, the ALE3D team ran studies using three different input
problems across four architectures. The results of these studies
are presented in the same code, but changing the execution
policy, allows ALE3D to achieve speedups of up to 5.8× when

16 128 1,024 8,192 27k 93.3k

0.3

0.3

0.31

0.32

0.33

Number of Processors

Ti
m

e
pe

r
cy

cl
e

(s
)

Ideal
Sequoia

Fig. 5. ALE3D weak scaling up to 93,318 processors of Sequoia.

Problem Jade Zin HasGPU Manta (1 GPU) Manta (4 GPU)

Sedov 7.319 10.23 8.288 1.794 0.616
Shaped Charge 113.229 - 173.362 67.187 19.8

TABLE VI
ALE3D RUNTIME (SECONDS) USING A SINGLE NODE OF CPU OR GPU

ARCHITECTURES WITH THE APPROPRIATE RAJA BACK-END.

comparing a single GPU to one node of a CPU-based architec-
ture like Intel ”Haswell”. Adding an additional 3 GPUs speeds
the code up another 3.4×, meaning a whole node of GPUs
can be up to 17× faster than a whole node of CPU resources.

D. ARDRA

ARDRA [20] is a massively parallel neutral particle
transport code at LLNL that models the nuclear interactions
of unbound neutrons and gamma rays as they move through
background materials in 1D, 2D and 3D geometries. ARDRA
solves the Discrete Ordinates form the Linear Boltzmann
Transport Equation[21], a PDE with unknowns spanning seven
dimensions in time, angle, energy and space. ARDRA is used
to model nuclear reactors, criticality experiments, shielding
problems, model detectors, and radiation dosages. ARDRA
has over 250k lines of C++, C and Fortran, and has historically
used an MPI and serial programming model. It uses MPI
to decompose space, angle, and energy (6-dimensions)
across processes and serial execution within each process.
Computation kernels in ARDRA are mostly matrix-free matrix-
vector operations. Workloads vary greatly, from single-process
1D calculations on thousands of unknowns on a personal
computer to large 3D problems using 1.5 million MPI ranks
and 47 trillion unknowns on Sequoia (system details in Table I).

Due to RAJA, ARDRA now has a single source code that
can execute on both CPU and GPU architectures. Figure 6
shows speedups of various ARDRA components when running
on four NVIDIA P100 GPUs (one Sierra EA system node),
compared to one node (36 cores) of Intel Broadwell CPU.
Sweep speedup contains the major MPI communications
algorithm, while NonSweep contains non-MPI algorithms.
Solve is the combined speedup. This node-for-node comparison
shows speedups of nearly 12×, depending on the problem size.



8k 125k 216k 343k 512k

1.31

4

8

11.21

Zones

Sp
ee

du
p

(J
ad

e
/

M
an

ta
)

Solve Sweep Other

Fig. 6. ARDRA speedup on one node of Manta with 4 P100 GPUs vs. one
node of Jade with 36 CPU cores using various zone sizes, 48 groups, 80
directions, P4 scattering.

8k 125k 216k 343k 512k

146.8M

400M

600M

800M
1424M

Zones

Fi
gr

e
of

M
er

it
(u

nk
no

w
ns

/s
ec

/it
er

)

Manta (P100)
Jade (Broadwell)

Fig. 7. ARDRA unknowns per second on one node of Manta with 4 P100
GPUs vs. one node of Jade with 36 CPU cores using various zone sizes, 48
groups, 80 directions, P4 scattering.

A key benefit of the GPU architecture is its high throughput,
which helps with high resolution calculations.

Figure 7 shows the overall figure of merit (unknowns per
second) when running on CPU and GPU-based architectures.
These results further highlight the increased efficiency of GPU
architectures when dealing with larger problem sizes.

V. CONCLUSION

This paper presents RAJA, a C++ performance portability
layer that is central to the current state of practice for running
ASC applications on modern HPC systems at LLNL. The
development of RAJA was motivated by the need to address
a two-fold problem. The first is to enable portability in
production codes to realize performance on next generation
supercomputers. The second is to provide a flexible program-
ming model that can adapt to changes in computer architecture
trends. Since many applications at LLNL are under continuous
development, maintaining hardware-specific versions is
unrealistic, and would negatively impact scientific productivity.

RAJA design and features were motivated by key algorithmic
patterns and maintenance requirements in real-world production

applications. This design has proven itself through its adoption
in several production codes. Developers with little CS
expertise find it straightforward to use; application teams are
multi-disciplinary with most members lacking deep knowledge
of hardware and parallel programming models. Incremental,
selective adoption is achievable in a large code; RAJA
integrates with existing algorithms and data structures and it
does not require changes to loop bodies in most cases. RAJA
promotes implementation flexibility via clean encapsulation.
Changes to execution patterns can be propagated across a
large code base by localizing type changes in header files;
users achieve good performance by parallelizing loop patterns
rather than individual kernels. Detailed performance tuning
can be performed by experts without disrupting application
source code that most developers work with.

RAJA has enabled rapid progress in enabling applications to
prepare for Sierra while maintaining single-source applications
in a production environment. Also, by easily accessing
different programming models, application developers can
bring the best tools (debuggers, thread checkers, etc.) to bear
when porting code. In addition, developers can be insulated
from negative productivity impacts due to immature vendor
compilers and system software on new platforms.

To demonstrate RAJA’s suitability as a performance
portability model, results from benchmarks and three ASC
production codes were presented. Prior to RAJA, each of
these codes was parallelized solely for distributed memory
parallelism via MPI. Each code developed a different approach
for RAJA integration, yet arrived at similar results and
conclusions. These applications show that RAJA has been used
to successfully port over 2 million lines of code so far. Most
importantly, RAJA has enabled each code to develop a single-
source, multi-architecture portability solution. GPU-only node
runtimes for ARES, ALE3D, and ARDRA have shown 13×,
17×, and 12× speedups over CPU-only node runs, respectively.

RAJA is in active development and will continue to evolve
with the needs of applications as its adoption expands. We plan
to share new user experiences and techniques for performance
portable application codes in the future.

VI. FUTURE WORK

Future work will focus on stabilizing interfaces, the
expansion of RAJA back-ends for other programming
models and platforms, and working with vendors and
standards organizations to better support the performance and
maintenance of portability layers like RAJA. Better access to
shared or constant memory on GPUs is a high priority for
performance. We also plan to develop a flexible asynchronous
queue mechanism that will support CUDA streams. Research
has shown great value in RAJA as an auto-tuning tool, but
the cost of pre-compiling every variant into a binary can be
prohibitive [22]. We are exploring JIT compilation for both
CPU and GPU kernels for performance and runtime policy
selection. Finally, the RAJA reduction interface, while easy
to use compared to options that require explicit parameter
passing or separate reduction loop execution methods, is far



harder to optimize and more complicated than desired due
to difficulty implementing the highly abstract interface.

ACKNOWLEDGMENT

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.
LLNL-CONF-748585.

REFERENCES

[1] RAJA. [Online]. Available: https://github.com/LLNL/RAJA
[2] OpenMP ARB, “OpenMP application programming interface version

4.5,” http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf, Nov.
2015. [Online]. Available: http://www.openmp.org/wp-content/uploads/
openmp-4.5.pdf

[3] “OpenACC 2.0 Application Programming Interface Specification,”
https://www.openacc.org/sites/default/files/inline-files/OpenACC\ 2\
0\ specification.pdf, Jun. 2013.

[4] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A Hybrid Multi-Core
Parallel Programming Environment,” in GPGPU 2007: Workshop on
General Purpose Processing on Graphics Processing Units, 2007.

[5] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel
Programming in CUDA,” in ACM Queue, vol. 6, no. 2, 2008, pp. 40–53.

[6] “The OpenCL Specification,” https://www.khronos.org/registry/cl/specs/
opencl-1.2.pdf, Nov. 2012.

[7] “HCC: Heterogeneous Compute Compiler,” https://gpuopen.com/
compute-product/hcc-heterogeneous-compute-compiler/, 2015.

[8] L. Howes and M. Rovatsou, “Sycl integrates opencl devices with modern
c++,” Khronos Group, 2015.

[9] LULESH. [Online]. Available: https://codesign.llnl.gov/lulesh.php
[10] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling

manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202 – 3216, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514001257

[11] agency-library/agency. [Online]. Available: https://github.com/
agency-library/agency

[12] Sierra. [Online]. Available: https://computation.llnl.gov/computers/sierra
[13] CHAI. [Online]. Available: https://github.com/LLNL/CHAI
[14] RAJAPerf. [Online]. Available: https://github.com/LLNL/RAJAPerf
[15] R. D. Hornung and J. A. Keasler, “A case for improved c++ compiler

support to enable performance portability in large physics simulation
codes,” Tech. Rep. LLNL-TR-635681, 2013.

[16] F. H. McMahon, “The livermore fortran kernels: A computer test of
the numerical performance range,” Tech. Rep. UCRL-53745, 1986.

[17] L.-N. Pouchet. (2012) Polybench: The polyhedral benchmark suite.
[Online]. Available: http://www.cs.ucla.edu/pouchet/software/polybench

[18] R. Darlington, T. McAbee, and G. Rodrigue, “A Study of ALE
Simulations of Rayleigh-Taylor Instability,” in Computer Physics
Communications, vol. 135, 2001, pp. 58–73.

[19] B. E. Morgan and J. A. Greenough, “Large-Eddy and Unsteady RANS
Simulations of a Shock-Accelerated Heavy Gas Cylinder,” in Shock
Waves, April 2015.

[20] U. Hanebutte and P. N. Brown, “Ardra, scalable parallel code system
to perform neutron and radiation transport calculations,” Lawrence
Livermore National Laboratory, Tech. Rep. UCRL-TB-132078, 1999.

[21] E. E. Lewis and W. F. Miller, Computational methods of Neutron
Transport. La Grange Park, IL, USA: American Nuclear Society, 1993.

[22] D. Beckingsale, O. Pearce, I. Laguna, and T. Gamblin, “Apollo: Reusable
models for fast, dynamic tuning of input-dependent code,” in IEEE
International Parallel and Distributed Processing Symposium. IEEE,
2017, pp. 307–316.



APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: [RAJA: PORTABLE PER-
FORMANCE FOR LARGE-SCALE SCIENTIFIC APPLICATIONS]

A. Abstract

This artifact contains instructions on how to reproduce the
experiments described in part IV. A of this paper, using the
open-source RAJA Performance Suite. We do not provide
instructions on how to reproduce experiments conducted using
restricted applications, as these codes cannot be made publicly
available. The output of the experiments is in text files in a
CSV format, and in this paper was plotted using PGFPlots.

B. Description

1) Check-list (artifact meta information): Fill in whatever
is applicable with some informal keywords and remove the rest

• Algorithm:
• Program: C++ code.
• Compilation:
• Binary: C++ executables generated by the RAJA Performance

Suite.
• Data set: N/A.
• Run-time environment: The experiments were produced on

five different high-performance computing platforms, with a
range of CPUs and GPUs.

• Hardware:
• Output: timings, figures of merit, and speedup values.
• Experiment workflow: clone software, configure and build

using provided scripts, run executable to generate results.
• Publicly available?: Yes.

2) How software can be obtained (if available): All open
source software used in this paper is available on GitHub. RAJA
can be obtained from the https://github.com/LLNL/RAJA,
and the RAJA Performance Suite can be obtained from
https://github.com/LLNL/RAJAPerf.

The experiments in this paper used the 0.2.3 version of the
RAJA Performance Suite, which is available under the git tag
“0.2.3”.

3) Hardware dependencies: RAJA will run on most CPUs,
and on NVIDIA GPUs. To generate the results in this paper, we
used supercomputers with the following node configurations:

• Power8+ CPU and NVIDIA P100 GPU.
• IBM BlueGene/Q CPU.
• Intel Haswell and NVIDIA K80 GPU.
• Intel Haswell CPU and Intel Xeon Ph accelerator.
4) Software dependencies: RAJA requires a compiler with

support for the C++11 standard. The oldest GCC version
supported is GCC 4.9.3. RAJA also requires CMake 3.9.2.

5) Datasets: The RAJA Performance Suite can take as
input command line arguments to change the default values for
the included benchmark kernels. We used the default values.
A complete list of arguments can be obtained by running
./rajaperf.exe --help.

C. Installation

Clone the RAJA Performance Suite:

git clone --branch 0.2.3 --recursive https://github.com/LLNL/RAJAPerf.git

Run CMake to configure software, substituting the
appropriate C++ compiler:

mkdir build && cd build
cmake -DCMAKE_CXX_COMPILER=<path to c++ compiler> ..

If running on a machine at Lawrence Livermore National
Laboratory or Argonne National Laboratory, you can use the
provided scripts to build with specific compilers:

./scripts/blueos_nvcc8.0_clang-coral.sh
cd build_blueos_nvcc8.0_clang-coral
make -j

D. Experiment workflow

To run the experiments, use the binary created by building
the software (described in the previous section):

./rajaperf.exe

This will generate four files: RAJAPerf-checksum.txt,
RAJAPerf-timing.csv, RAJAPerf-fom.csv, and
RAJAPerf-speedup.csv

E. Evaluation and expected result

The file RAJAPerf-checksum.txt should contain two
values for each kernel: the checksum value, and the checksum
diff. The diff should be 0, indicating that there is no difference
in solution between the baseline variant and any other.

F. Experiment customization

The experiment can be customized primarily by varying the
command line argument sizefact. This value is a multiple
used to increase the number of iterations each kernel is run
for. For example:

./rajaperf.exe --sizefact 2.0

will run twice as many iterations for ever kernel.

G. Notes

The performance of the RAJA Performance Suite is greatly
influenced by the compiler version and compiler flags used dur-
ing compilation. Using newer compilers will typically improve
performance. For more information about using RAJA and
the RAJA Performance Suite, please visit raja.readthedocs.io,
or email the RAJA development team at raja-dev@llnl.gov.


