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Abstract

The human brain is estimated to contain approximately 100 trillion neural connections. This
complex map of connectivity (human connectome) underlies cognitive processes and
informs disease states, but until recently, studying the human connectome has been
hampered by the difficulty of collecting and processing suitable data for analysis. In this
context, an initiative denominated The Human Connectome Project (HCP) was created to
acquire and collect the largest, most cohesive set of brain data to accelerate neuroscience
research. Recently the HCP released a magnetic resonance (MR) dataset of brain imagery
with unprecedented scale and organization, together with high quality spatial and temporal
resolution; however, fully taking advantage of this high-resolution brain imagery to estimate
neurological connectivity networks requires high-performance computing (HPC). In this
project, we explored the feasibility of using HPC resources at Lawrence Livermore to
effectively estimate brain connectivity networks from this large set of imagery. Specifically,
we addressed one of the main current challenges in brain connectomics, which is to advance
the computation of individual structural and functional connectomes. To do this, we hosted
the latest version of the HCP dataset and developed HPC software to compute
computationally expensive tasks required to generate connectomes on the entire HCP
cohort (~1200 subjects). This project has supported the NNSA goal of advancing the
scientific, technical, and engineering competencies that are the foundation of the NNSA
mission. Specifically, by strengthening our ability to compute with complex biological data
and by constructing the efficient, datacentric software required to successfully achieve our
goals, this project enhances the Laboratory's core competencies in HPC, simulation, and
data science, as well as bioscience and bioengineering.

Background and Research Objectives

While many openly available MR datasets exist, the sample sizes are generally too small to
increase confidence that any results are generalizable from one study to another, or from one
cohortt to another. This requires the development of careful and consistent experimental
protocols, not only to ensure that the same exact imaging parameters were used from subject
to subject, but also to standardize the collection of demographic and health information for
all subjects.

In order to address this deficiency, a consortium form Washington University in St. Louis,
the University of Minnesota, and Oxford University called the Human Connectome Project
(HCP) was formed [Glasser, Smith 2016]. A dataset has been openly released as part of the
HCP, which consists of both diffusion and functional MR imagery. The 2017 release
contains structural and functional data collected from 1,200 healthy adult subjects. A unified
protocol was used to record these scans, resulting in a homogeneous dataset.

Our objective is to demonstrate the capabilities of HPC for computing brain connectivity,



centered around the following goals:
1. Demonstrate high resolution tractography for the computation of structural
connectivity,
2. Demonstrate fast functional connectivity computations.

The final connectome computation for both structural and functional versions requires and
anatomical atlas. In this project, we used 3 different atlases:

- Freesurfer Desikan-Killiany [Desikan 2000];

- Freesurfer updated [Destrieux 2010];

- Glasser [Glasser, Coalson 2016].

Scientific Approach and Accomplishments

Structural connectivity refers to the extraction of mesoscopic axonal connections between
neurons, or tractography. This is a computationally expensive process that leverages
diffusion imaging, where image contrast is obtained from the asymmetric nature of water
diffusion around myelinated axons (diffusion anisotropy). This step is vital in almost any
type of brain imagery analysis, because it provides the roadmap on which activity (function)
is measured. Any following computations are limited by this step, so it is important that it is
performed carefully and at the highest resolution possible.

We leveraged an established tractography software package called MRtrix to compute high
resolution parcellation form the diffusion imagery. When performing tractography, a critical
problem is that there may be multiple neuronal fibers intersecting within a single diffusion
MR vozxel. In fact, this is commonly the case. As opposed to older techniques, that are only
capable of estimating a single fiber per voxel, this approach can delineate multiple fibers per
voxel. The output of the algorithm is a probabilistic representation, where each tract has
some likelihood of connectivity associated with it, instead of relying on a firm deterministic
estimate. Figure 1 shows the pipeline that we assembled to compute structural connectivity.
With reference to the tools used, the steps involved were:
- Compute tissue segmented regions (5ttgen fsl);
- Estimate fiber orientation distributions using spherical deconvolution (dwi2fod)
[Tournier 2004,
- Anatomically constrained tractography using iFOD2 (tckgen) [Smith 2012];
- Perform spherical-deconvolution informed filtering of tractograms (tcksift) [Smith
2013].

A key parameter in this algorithm is the number of random seeds used. The number of seeds
is a critical value on which the resulting connectivity resolution depends. We performed
streamline tractography using 25 million seeds per subject using a dynamic seeding
methodology which oversamples under-represented regions. With this approach we were not
able to restart tractography to push beyond the 25 million seed count. However, we also
implemented scripting software that can run a uniformly sampled version of tractography
which can concatenate multiple tractography runs. This allows for a large number of
streamlines to be computed. Using this approach, we computed 40 million streamlines for a
subject of approximately 450 unrelated subjects. Figure 2 shows an example of the tracts for
one subject. Our computational output includes 27 structural connectomes per subject (3
parcellations, 3 measures, and 3 sessions).
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Figure 1. Flow chart of the structural connectivity pipeline. The components in the diagram
are: dMRI (diffusion MRI imaging data), WM FODs (white matter fibre orientation
distributions), T7 Brain (T1 MRI image with the brain extracted), 5T (5 tissue type image
segmentation), Tracts (streamline tracts resulting from tractography), T7 (I'1 MRI image),
Parcellation (volumetric anatomical parcellation), and Connectivity (anatomical region-region
structural connectivity measures).

Figure 2. Example of white matter tracts (red) computed from the diffusion MRI along with
the corresponding partial T1 structural MRI brain volume.

Functional connectivity quantifies the spatial co-occurrence of neuronal function. The imaging in
this case is performed with Blood Oxygenation Level-Dependent (BOLD) contrast, which
measures differences in oxygenated vs. deoxygenated blood. Areas of the brain that are more
active have greater blood oxygen levels, and thus we are able to measure which areas of the
brain are active. Existing computational techniques are predominantly based on the notion
of pairwise similarity. A similarity measure, such as empirical correlation or Granger
causality, is computed for all voxel or region pairs within the imagery, possibly across many
subjects. A subset of all pairs is then determined by thresholding the computed similarity
measures, resulting in a connectivity network. The resulting network may then be analyzed



to determine brain properties of interest, hub-like regions, pathological conditions, etc.

As opposed to structural MR imaging, many volumes are acquired for functional imaging
over the course of approximately 1 hour (1200 volumes for each 15 minute run). In this
project, we will focus on computing functional connectivity using pairwise correlations of
the spatial BOLD signals. A correlation matrix is computed over every subject, visit (i.e. test-
retest) and task (i.e. resting-state, working-memory, etc). Figure 3 shows the basic steps
involved in computing functional connectivity. Our computational output results in 54
functional connectomes per subject (3 parcellations, 9 sessions, 2 gradient directions).
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Figure 3. Diagram showing computation of the functional connectivity matrix. Anatomically
parcellated timeseries are produced from the fMRI data, from which the connectivity
matrix is computed.

Impact on Mission

This project will strengthen capabilities within the High-Performance Computing, Simulation and
Data Science core competency, because it addresses computing network topology at scale
from large amounts of data. The ability to compute with complex biological data and
construct efficient data centric software is required to successfully complete this project. In
addition, this project will pave the way for new scientific and neural engineering advances
(Bioscience and Bioengineering core competency). The Chemzical and Biological mission focus area
may benefit from an increased understanding of brain function because of this project.

Conclusion

This work has paved the way for future work in the area of computational neuroimaging. We
have identified additional potential collaborators in the space. These collaborations would
leverage the data produced, software, and expertise developed in this project. The
opportunity to quantify the structural connections inside the brain at a high level of detail are
available to us. Instead of working with pairwise measures that describe the connectivity
between a few hundred anatomical regions, we now have the capability to express complex
geometric networks in the brain. This was not possible without the use of high-performance
computing systems. We now turn to the development of novel machine learning and
computer vision approaches to model and characterize the complexity that we have
unearthed from the imagery. As we look to expand into this exciting and important area of
research, this project will have served to determine foundational feasibility of the



computational methods.

We have obtained permission to release the derived data that were computed on this project,
which we anticipate will be of great utility to the scientific community. This upcoming data
release will serve to introduce our capabilities to the neuroscience community as well as
contribute to the DOE mission of accelerating Artificial Intelligence through unique and
challenging datasets.
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