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Abstract 
The human brain is estimated to contain approximately 100 trillion neural connections. This 
complex map of connectivity (human connectome) underlies cognitive processes and 
informs disease states, but until recently, studying the human connectome has been 
hampered by the difficulty of collecting and processing suitable data for analysis. In this 
context, an initiative denominated The Human Connectome Project (HCP) was created to 
acquire and collect the largest, most cohesive set of brain data to accelerate neuroscience 
research. Recently the HCP released a magnetic resonance (MR) dataset of brain imagery 
with unprecedented scale and organization, together with high quality spatial and temporal 
resolution; however, fully taking advantage of this high-resolution brain imagery to estimate 
neurological connectivity networks requires high-performance computing (HPC). In this 
project, we explored the feasibility of using HPC resources at Lawrence Livermore to 
effectively estimate brain connectivity networks from this large set of imagery. Specifically, 
we addressed one of the main current challenges in brain connectomics, which is to advance 
the computation of individual structural and functional connectomes. To do this, we hosted 
the latest version of the HCP dataset and developed HPC software to compute 
computationally expensive tasks required to generate connectomes on the entire HCP 
cohort (~1200 subjects). This project has supported the NNSA goal of advancing the 
scientific, technical, and engineering competencies that are the foundation of the NNSA 
mission. Specifically, by strengthening our ability to compute with complex biological data 
and by constructing the efficient, datacentric software required to successfully achieve our 
goals, this project enhances the Laboratory's core competencies in HPC, simulation, and 
data science, as well as bioscience and bioengineering.  
 
Background and Research Objectives 
While many openly available MR datasets exist, the sample sizes are generally too small to 
increase confidence that any results are generalizable from one study to another, or from one 
cohort to another. This requires the development of careful and consistent experimental 
protocols, not only to ensure that the same exact imaging parameters were used from subject 
to subject, but also to standardize the collection of demographic and health information for 
all subjects. 
 
In order to address this deficiency, a consortium form Washington University in St. Louis, 
the University of Minnesota, and Oxford University called the Human Connectome Project 
(HCP) was formed [Glasser, Smith 2016]. A dataset has been openly released as part of the 
HCP, which consists of both diffusion and functional MR imagery. The 2017 release 
contains structural and functional data collected from 1,200 healthy adult subjects. A unified 
protocol was used to record these scans, resulting in a homogeneous dataset.  
 
Our objective is to demonstrate the capabilities of HPC for computing brain connectivity, 



centered around the following goals:  
1. Demonstrate high resolution tractography for the computation of structural 

connectivity,  
2. Demonstrate fast functional connectivity computations.  

 
The final connectome computation for both structural and functional versions requires and 
anatomical atlas. In this project, we used 3 different atlases: 

- Freesurfer Desikan-Killiany [Desikan 2006]; 
- Freesurfer updated [Destrieux 2010]; 
- Glasser [Glasser, Coalson 2016]. 

 
Scientific Approach and Accomplishments 
Structural connectivity refers to the extraction of mesoscopic axonal connections between 
neurons, or tractography. This is a computationally expensive process that leverages 
diffusion imaging, where image contrast is obtained from the asymmetric nature of water 
diffusion around myelinated axons (diffusion anisotropy). This step is vital in almost any 
type of brain imagery analysis, because it provides the roadmap on which activity (function) 
is measured. Any following computations are limited by this step, so it is important that it is 
performed carefully and at the highest resolution possible.  
 
We leveraged an established tractography software package called MRtrix to compute high 
resolution parcellation form the diffusion imagery. When performing tractography, a critical 
problem is that there may be multiple neuronal fibers intersecting within a single diffusion 
MR voxel. In fact, this is commonly the case. As opposed to older techniques, that are only 
capable of estimating a single fiber per voxel, this approach can delineate multiple fibers per 
voxel. The output of the algorithm is a probabilistic representation, where each tract has 
some likelihood of connectivity associated with it, instead of relying on a firm deterministic 
estimate. Figure 1 shows the pipeline that we assembled to compute structural connectivity. 
With reference to the tools used, the steps involved were: 

- Compute tissue segmented regions (5ttgen fsl); 
- Estimate fiber orientation distributions using spherical deconvolution (dwi2fod) 

[Tournier 2004]; 
- Anatomically constrained tractography using iFOD2 (tckgen) [Smith 2012]; 
- Perform spherical-deconvolution informed filtering of tractograms (tcksift) [Smith 

2013]. 
 
A key parameter in this algorithm is the number of random seeds used. The number of seeds 
is a critical value on which the resulting connectivity resolution depends. We performed 
streamline tractography using 25 million seeds per subject using a dynamic seeding 
methodology which oversamples under-represented regions. With this approach we were not 
able to restart tractography to push beyond the 25 million seed count. However, we also 
implemented scripting software that can run a uniformly sampled version of tractography 
which can concatenate multiple tractography runs. This allows for a large number of 
streamlines to be computed. Using this approach, we computed 40 million streamlines for a 
subject of approximately 450 unrelated subjects. Figure 2 shows an example of the tracts for 
one subject. Our computational output includes 27 structural connectomes per subject (3 
parcellations, 3 measures, and 3 sessions). 
 



 
Figure 1. Flow chart of the structural connectivity pipeline. The components in the diagram 

are: dMRI (diffusion MRI imaging data), WM FODs (white matter fibre orientation 
distributions), T1 Brain (T1 MRI image with the brain extracted), 5TT (5 tissue type image 
segmentation), Tracts (streamline tracts resulting from tractography), T1 (T1 MRI image), 
Parcellation (volumetric anatomical parcellation), and Connectivity (anatomical region-region 

structural connectivity measures). 
 

 
Figure 2. Example of white matter tracts (red) computed from the diffusion MRI along with 

the corresponding partial T1 structural MRI brain volume. 
 
 
Functional connectivity quantifies the spatial co-occurrence of neuronal function. The imaging in 
this case is performed with Blood Oxygenation Level-Dependent (BOLD) contrast, which 
measures differences in oxygenated vs. deoxygenated blood. Areas of the brain that are more 
active have greater blood oxygen levels, and thus we are able to measure which areas of the 
brain are active. Existing computational techniques are predominantly based on the notion 
of pairwise similarity. A similarity measure, such as empirical correlation or Granger 
causality, is computed for all voxel or region pairs within the imagery, possibly across many 
subjects. A subset of all pairs is then determined by thresholding the computed similarity 
measures, resulting in a connectivity network. The resulting network may then be analyzed 



to determine brain properties of interest, hub-like regions, pathological conditions, etc.  
 
As opposed to structural MR imaging, many volumes are acquired for functional imaging 
over the course of approximately 1 hour (1200 volumes for each 15 minute run). In this 
project, we will focus on computing functional connectivity using pairwise correlations of 
the spatial BOLD signals. A correlation matrix is computed over every subject, visit (i.e. test-
retest) and task (i.e. resting-state, working-memory, etc). Figure 3 shows the basic steps 
involved in computing functional connectivity. Our computational output results in 54 
functional connectomes per subject (3 parcellations, 9 sessions, 2 gradient directions). 
 

 
Figure 3. Diagram showing computation of the functional connectivity matrix. Anatomically 

parcellated timeseries are produced from the fMRI data, from which the connectivity 
matrix is computed. 

 
Impact on Mission  
This project will strengthen capabilities within the High-Performance Computing, Simulation and 
Data Science core competency, because it addresses computing network topology at scale 
from large amounts of data. The ability to compute with complex biological data and 
construct efficient data centric software is required to successfully complete this project. In 
addition, this project will pave the way for new scientific and neural engineering advances 
(Bioscience and Bioengineering core competency). The Chemical and Biological mission focus area 
may benefit from an increased understanding of brain function because of this project.  

Conclusion  
This work has paved the way for future work in the area of computational neuroimaging. We 
have identified additional potential collaborators in the space. These collaborations would 
leverage the data produced, software, and expertise developed in this project. The 
opportunity to quantify the structural connections inside the brain at a high level of detail are 
available to us. Instead of working with pairwise measures that describe the connectivity 
between a few hundred anatomical regions, we now have the capability to express complex 
geometric networks in the brain. This was not possible without the use of high-performance 
computing systems. We now turn to the development of novel machine learning and 
computer vision approaches to model and characterize the complexity that we have 
unearthed from the imagery. As we look to expand into this exciting and important area of 
research, this project will have served to determine foundational feasibility of the 



computational methods. 
 
We have obtained permission to release the derived data that were computed on this project, 
which we anticipate will be of great utility to the scientific community. This upcoming data 
release will serve to introduce our capabilities to the neuroscience community as well as 
contribute to the DOE mission of accelerating Artificial Intelligence through unique and 
challenging datasets. 
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