
Optimizing Dynamic Timing Analysis with
Reinforcement Learning

James Obert*, Angie Shia

Sandia National Labs
Albuquerque, NM, USA

{jobert, ashia }@sandia.gov

Abstract— There are multiple factors involved in
successfully manufacturing ASICIVLSI chips, and
ensuring operational specifications are maintained
throughout the design and manufacturing process is often
challenging. Dynamic timing analysis (DTA) is the
principal method used to validate that a manufactured
chip complies to its design specifications. In DTA
functionality of both synchronous and asynchronous
designs are verified by applying input signals and
checking for correct output signals. In complex designs
where the number of input signal permutations is
extremely large, the computing resources required to
properly verify the functionality of a chip is prohibitive.
In this paper, a strategy using reinforcement learning
(RL) for reducing DTA time and resources in such cases
is discussed. RL assisted DTA holds much promise in
ensuring that VLSI chip design and functionality are fully
and optimally verified.

Keywords— ASIC Design Verification; Reinforcment Learning;
Dynamic Timing Analysis; ASIC Design.

James Obert, Angie Shia are actively inolved in ASIC verification and
design anaylsis at Sandia National Labs. Sandia National Laboratories is a
multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-NA0003525.

NOTICE: This documenrt was prepared as an account of work sponsored
by an agency of the United States Government. Neither the United States
Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represent that its use would not infringe
privately owned rights. Reference herein to any speciflc commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein
do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

I. INTRODUCTION

A. Overview

Speed, area and power are the three primary VLSI/ASIC
design properties that a designer must consider. In terms of
functionality, meeting timing constraints is the most
important design property [1]. A chip's timing constraints
are tested at a set clock rate using either static (STA) [2] or
dynamic timing analysis (DTA) [3]. In DTA a set of signals
is input to the chip and functionality of the chip's design is
verified and predicted output signals are observed. STA tests
the static delays within the ASIC chip's circuits without the
injection of logic-dependent input signals. DTA's goal is to
verify that an ASIC design can operate without errors at a
specified clock rate and is generally accomplished using the
simulated manufacturing design synthesis files [4,5]. The
goals of STA are similar to DTA verification but does not test
the full functionality of the design and does not require that
the functionality of the design be simulated. DTA and STA
are often used in a complimentary fashion with logic
functionality first verified with DTA prior to using STA to
refine circuit layouts based on simplified timing models
which mostly disregard circuit logic. STA is not able to verify
asynchronous designs while DTA can. For this reason, DTA
is an essential verification method for asynchronous designs.
Additionally, DTA is also the best choice when designs have
clocks crossing into many domains.

In verifying all logical paths within an ASIC, the quality of
DTA increases as the number of input signal permutations
increases. However, as the number of input signal
combinations increases, the simulation time also increases.
Since the more efficient STA cannot effectively test the
functionality of many designs, the only viable altemative is
to efficiently speed-up DTA design verification of complex
ASIC designs. In this paper, an efficient method using
reinforcement learning (RL) for generating an optimized set
of DTA input signals is illustrated. It is shown through
simulated RL generated input signals, that it is possible to
efficiently refine an ASIC design using DTA.
The remainder of this paper is structured as follows.

Section II discusses an RL optimized DTA (ODTA)

SAND2019-13625R

methodology and covers the key concepts involved in
generating an optimal set of ASIC input signals using RL.
Section III describes the experimental ASIC design dataset,
the simulations used and the analysis results. Finally, in
Section IV, conclusions and future work are discussed.

II. METHODOLOGY

A. ASIC Logic Paths

Figure 1 for DTA conceptual illustration purposes shows a
very simple ASIC design which includes an AND gate, NOT
gate and OR gate [6].

Figure 1: Simple ASIC Design.

To illustrate how DTA is performed, consider digital input
signals Si, S2, S3 in Figure 1 . As shown in Figure 2 below,
signals Si, S2, S3 change state according to the specific logic
gates they are processed by on the leading-edge of each Cli
clock cycle. Signals Si and S2 propagate through gates Gi, G2
and G3 and contributes to the output signal S5 on logic path Pi
and output signal S4 on logic path P2. Signal S3 propagates
through gate Gi and contribute the output signal S5 on logic
path Pi. The input signals Si, S2 and S3 in period ti prior to the
first clock cycle, are initialized by the DTA simulator in states
{0, 0, 1 } respectively, and the predicted output signal states
of S4 and S5 are observed at a target clocking rate.

Figure 2: Logic Timing Diagram.

In this simple example, if each input signal in its intended
application fully varies between 1 and 0 in all permutations,
then the number of possible input signal Si, S2 and S3 state
combinations is 23 or 8. Real-world System-on-Chip (SoC)
ASICs logic gate numbers often reach one million, and the
number of input signal state permutations required to fully
verify the ASIC using DTA often range in the hundreds of
thousands. In many cases, specific input signal permutations
may not be valid for the intended ASIC application; thus,
testing with such combinations wastes time and resources. It
is possible to speed-up DTA verification by reducing the
number of input signal state permutations introduced to the
ASIC design. If ground-truth output signal distributions for a
minimal set of logic testing input signals are available, RL
can form a policy which selects a valid subset of input signal
state permutations by sampling the output signal distributions
while strategically introducing input signal state
permutations to the ASIC during DTA. The following
sections discuss the methods for achieving DTA speedup in
this manner

B. RL Policy Metric

During the ASIC design process, a set of baseline input
signals are used to characterize the basic logic operations of
the ASIC. In the characterization process, the baseline input
signals are injected, and the output signals are analyzed.
Injecting the set of baseline input signals into the ASIC
design will exercise known and intended logic states at a
target clocking rate but is not intended to fully exercise or test
all possible input and output signal states. In support of future
DTA simulations, the statistical distribution of each output
signal's state transitions is captured. The goal of RL guided
DTA is to reduce DTA related processing time and resources
by strategically selecting a subset of all possible input signal
permutations. The effect of selecting a closely related subset
of input signal permutations in RL guided DTA is that only
those ASIC logic states most similar to the intended baseline
logic states are analyzed. This strategic selection is achieved
by optimally selecting those input signal permutations that
produce output signal distributions closely matching the
output baseline signal distributions. The primary metric used
to guide RL in finding the optimal set of input signal
permutations is the relative entropy between each DTA
synthesized output signal's distribution and each baseline
output signal's distribution. In relation to RL, each of the
input signals is considered a feature which the RL algorithm
will process. Feature Centric Entropy Analysis (FCEA) is
used to compare individual feature distribution relative
entropies. Using Equation 1, individual feature distribution
K-L Divergence values are calculated for baseline and DTA
generated signal distributions. In Equation 1, K-L
Divergence measures the relative entropy change between
feature fq and f'q distributions. Where Fq is a baseline

feature probability distribution and Fq' is a target or DTA
probability distribution.

Prob(1 q)

DKLF(Fq' IWO = Efq,Pq Prob(f cd In Prob(fq) (1)

C. Reinforcement Learning

There two principal methods used to implement RL. The first
method called the policy gradients method [8, 9] is
implemented as an artificial neural network which learns a
policy for picking actions by adjusting it's weights through
gradient descent [10] using feedback from the environment.
(ie. Function approximating neural network [11])

Using value functions is the second principal implementation
method. In the policy gradient method the optimal actions are
learned for each given state. Using value functions, the agent
predicts the reward for a given state, given specific sequences
of actions (ie. Q-Learning [12]). Q-learning (The Q function
returns the reward of an action while in a specific state) can
iteratively find an optimal actions decision policy given that
the environment follows a finite Markov Decision
Process[1 6]. Starting at the current state, the optimal actions
policy found maximizes the expected total reward when all
successive possible steps are considered. If the environment
follows a finite Markov Decision Process, Q-learning
coupled with an e-Greedy [9] actions process over an infinite
exploration time, can find an optimal action-selection policy.

D. DTA and Reinforcement Learning

Figure 3 below illustrates how RL is used to select an
optimal subset of input signals in RL-guided DTA.

r Simulators
DTA Environment

1 ANC Signal lnpot Signal
Permutation Adjustments

Agent

DTA Dist. Adj. Detector

Path

• State-action
reward

Matrices

• Relative Entropy
Calculation Entropies calculations.

• Policy revision.
Next action
selection.

F t

Policy Design Change Engine

Figure 3: DTA and RL used for optimal input signal
selection.

In Figure 3, KL-Divergence (KLD) values are calculated over
multiple policy exploration steps of an RL episode. On each
RL episode step, an e-Greedy actions strategy is used by the
DTA agent to guide an optimal action based on either a value
function or policy gradient component (contained within the
Policy Design Change Engine - PDCE). On each step the
PDCE using the optimal policy derived at that point in the

episode, presents a specific input signal permutation to the
DTA simulation environment. The KLD values between the
individual baseline output signal distributions and the current
step's individual output signal distributions are calculated on
each step. An action-state-reward (q., oi, Kldu) tuple is stored
in an action-state-reward matrix on each step to be referenced
in determining future rewards. On successive episode steps,
using the e-Greedy based strategy, the action-state matrix is
referenced to calculate the reward value for that current state
and action taken. Iteratively over time using the e-Greedy
strategy, a function approximator (See Figure 4) is trained to
recognize an optimal policy (z) for selecting future actions
based on past action-state-reward tuples.

Dist;

Paths Kid value vector

dValises

Calalates
10 bet Pen

and ASIC
m lat on

ms,nwno

Path distribution vectors
using baseline training data where
random actions were taken.

Kld,

FunctionAppraulmator

• Furrs approx. neural

• OM with stochastic
grab, decent (.0)
training used to find
optimal arslons based
on PLO feedback en
each step of
erssode

AaPons

fictions randcgnly chosen
initially Later optimal
arsiors are dvsen based
on relative path eld

values

inmal actions pdicy based on
Function approximator oored.
initial polity ls used as basis for
future policy forming episodes.

Figure 4: DTA and RL used for optimal input signal
selection.

Figure 5 below illustrates the related rewards (Kldu) predicted
by the PDCE in successive episode steps.

2 = K1 d 2

r3 = Kld,

r4 = Kld4

Figure 5: Q-learning in RL-guided DTA.

When using a Q-Learning value function, the Qe,q value for
each successive episode step is determined using Equation 2.

Where:

Qe,q Eqm((2o,c/ yinaxgrQgf,q1) (2)

y : discount factor (look ahead factor)
q : Previous policy recommended action.

qm : Current policy recommended action.

Q : Cumulative look ahead state.
oq

r

e'

: Reward Kld .

: Previous individual episode step state .

: Current Individual episode step state.

When using the policy gradient method a function
approximator neural network is trained iteratively by
adjusting the policy weights B based on the gradient of some
utility/performance measure 170 IET [R (r)] with respect to the
policy weights. Where 'I is a trajectory and R(T) is the return
for path T. These methods seek to maximize performance, so
their updates approximate gradient ascent in VolET[R(r)]. For
gradient decent,

Ot+1= Ot + aVelEt[R(T)] (3)

VOIEJR(r)] is a stochastic estimate whose expectation
approximates the gradient of the performance measure with
respect to Bt. 'I denotes a state-action sequence with horizon
H, SI:01v • • ,sn-1,14-1 with the total reward from trajectory 'I
being:

R(r) = Eiti=01 R(st, ut) (4)

I. EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

A. Experiments

To illustrate the ODTA methodology an ASIC with a total of
5900 signals was analyzed. To test the timing of target logic
states in the ASIC, a subset of all input signal permutations
was injected into the ASIC, and all intermediate and output
signals were captured. Subsequently, randomly generated
input signal permutations for each step of the RL policy
derivation episode were injected into the ASIC. Figure 6
variations in agglomerative hierachial clustering [13] patterns
and compostion shows the degree to which statistical and
signal distribution variations exist between the baseline and a
single test case signal set. The Kldu (relative reward values)
were calculated between baseline and intermediate and
output signal test case signal ditributions. The Kldu was
stored within the action-state-reward (q„„ Kldu) tuple
matrix row during each episode step. Figure 7, shows the Kklu
values for a single episode step. As indicated by the arrows
in Figure 7, several signals were divergent from the baseline
in during this step. The degree of divergence indicated by the
Kldu value is directly proportional to the degree which the

ASIC 's logical behavior varies from the baseline test case.
The RL optimal DTA policy was then derived using an e-
Greedy strategy with policy gradient methodology.

''''..i.:'•
.
.

24

o

08

.' ' • ,' '
'•••t:•::17,,i.,•' '''

• ., '4 r; J;'•.
• '''•• , Ne 4 , -

:'• ' '
., ,,,,

. . • __._.
''' zo i"'",-; '

n
.

.
x

m

lo

c$

.

x .

!?' ' -' “;,

C''• ,

' ':
.1 .

. .
a , ,,.

(a) Baseline clusters (b) Test clusters

> P.M*.Ko

te,

nO

MO
g

1:: 11111111 1

Ino

apo

I 11111 ll

(c) Baseline cluster comp. (d) Test cluster comp.

Figure 6: Clustering patterns and cluster composition
variations.

2.5

1
> 1

0.5

KLD betwsan Sampans and Test S nals

Highly divergent signals

1000 2000 3000

Sign al

4 000 5000

Figure 7: KL-Divergence values between baseline and an
input signal permutation test case.

Given a large enough number of RL policy discovery
episodes and steps, the value function or policy gradient
method lead to finding an optimal action policy. However,
when using value functions alone, large changes in the policy
can occur while searching for the best actions at a specific
state. Such abrupt changes in policy are less likely using the
policy gradient method where the action-state space is
continuous. In application such as robotics, abrupt changes in
policy can result in actions that can damage equipment.

Because of the simplicity and directness, the policy gradient
method was utilized in our experiments.

B. Results

Summarizing, the ODTA methodology was implemented as
follows below.

The purpose of the initial discovery phase is to randomly
gather input signal permutation vectors to boot-strap the
training of the function approximator artificial neural
network. The function approximating neural network
iteratively learns how to select an optimal set of input signal
permutations. The initial discovery phase implemented is
depicted in Figure 8 and follows the below stated process:

• Randomly synthesized test input signal
permutations were generated and on each step of an
episode.

• The respective Kldu values were calculated between
each episode step's output signal and baseline
output signal distributions.

• Individual Kldu values, corresponding input signal
vectors, and state were recorded in the actions table.

• The above actions were repeated for the number of
steps in the initial discovery episode

Baseline Test

O

Ar 11,,,l(Q)-

KLD

Table

Random

Actions

Function

Figure 8: Randomly injected input signals.

In finding the optimal DTA policy the function approximator
in Figure 9 is trained using only those randomly generated
input signal permutation vectors stored in the actions table
that have a low Kldu value.

Figure 10 below shows those output signals permutations that
were least conforming and those output signals that were
most conforming. Those input signal permutations that
resulted in the set of most conforming output signal vectors
were used on completion of the initial discovery phase to boot
strap train the function approximator.

Baseline

O

Test

0

@-)

Action(Q)-
1.(LO

FuncApprox

Random
Actions
Function

Figure 9: Optimal policy convergence.

Conforming Signal After Iterative 5...arch

00

Figure 10: After initial random search, the most and
least conforming signals are identified.

The function approximator artificial feed-forward neural
network in our experiments was composed of 4 hidden layers
with rectified linear unit (ReLU) activation function [14] and
Adaptive Moment Estimation (ADAM) optimization
learning algorithm [15]. The partially trained function
approximator was used to guide future policy decisions using
an e-Greedy strategy. On a selected number of episode steps
a random input signal permutation was input to the ASIC and
on all other steps the function approximator was used to select
a policy guided input signal permutation for input based on
what it has learned previously. As the number of discovery
episode steps proceeded, the function approximator
continued to learn an optimal policy for selecting sets of input
signal permutations that resulted in low Kldu values as
depicted in Figure 11 convergence graph.

Training Convergence After 50 Epochs

2o

Figure 11: The deep feed-forward NN convergence.

As shown in Figure 11, as training and testing progressed
using the observed optimal set of input signal vectors, the
mean square error (MSE) between target and predicted Kldu
values fell below the standard 5% accuracy threshold. It is
expected using the e-Greedy strategy with additional RL
training episodes, that the MSE would drop to even lower
values resulting in a global optimal ODTA policy
convergence.

II. CONCLUSIONS AND FUTURE WORK

In this paper it was shown that it's possible to use RL to
strategically select ASIC design input signals during DTA.
Use of RL-aided input signal selection during DTA promises
to optimally extend ASIC logic functionality testing by
introducing input signal permutations to an ASIC that are not
in the heuristically derived test set. Introducing RL-derived
input signal permutations to the ASIC effectively increases
the accuracy of logic functionality testing in both
synchronous and asynchronous logic designs. Additionally,
RL-aided DTA minimizes processing time and computing
resources by only introducing the set of input signal
permutations that most closely produce known target output
signals.

Using additional ASIC DTA datasets, future analysis will
include quantifying aggregate logic testing accuracy,
computing resource and processing time efficiency gains
yielded when ODTA is utilized.

REFERENCES

F. Vahid, Register-transfer level (RTL) design, in
Digital Design with RTL Design,V erilog and VHDL,
2nd edn. (John Wiley & Sons, 2010), p. 247.A.
Lavagno, Martin, and Scheffer Electronic Design
Automation For Integrated Circuits Handbook,
ISBN 0-8493-3096-3.
Deepak Kumar Tala, "Verilog Tutoriar, www.asic-
world.com, 2001.
GE Calma, GDSIITM Stream Format Manual, Release 6.0,
Document No. B97E060, Calma Co., Sunnyvale, CA (1987).
J. R. Buchanan, The GDSII stream format (1996),
http://jupiter.math.nctu.edu.twLweng/courses/IC
2007/PROJECT_NCTU_MATH_CELL_LAYOUT/The_GDSII
Stream_Format.htm.
Null, Linda; Lobur, Julia (2006). The essentials of
computer organization and architecture. Jones &
Bartlett Publishers. p. 121. ISBN 978-0-7637-3769-6.
Barr, Keith (2007). ASIC Design in the Silicon
Sandbox: A Complete Guide to Building Mixed-signal
Integrated Circuits. New York: McGraw-Hill.
ISBN 978-0-07-148161-8. OCLC 76935560.
J. Peters and S. Schaal, \Policy gradient methods for
robotics," in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
(Beijing, China), 2006.

[9] R. S. Sutton and A. G. Barto., Reinforcement learning:
An Introduction. MIT Press, 1998.

[10] Barzilai, Jonathan; Borwein, Jonathan M. (1988).
"Two-Point Step Size Gradient Methods". IMA Journal
of Numerical Analysis. 8 (1): 141-148.

[11] Kurt Hornik (1991) "Approximation Capabilities of
Multilayer Feedforward Networks", Neural Networks,
4(2), 251-257.

[12] Russell, Stuart J.; Norvig, Peter (2010). Artificial
Intelligence: A Modern Approach (Third ed.). Prentice
Hall. p. 649. ISBN 978-0136042594.

[13] Kaufman, L.; Rousseeuw, P.J. (1990). Finding Groups
in Data: An Introduction to Cluster Analysis 0 ed.).
New York: John Wiley. ISBN 0-471-87876-6.

[14] Xavier Glorot, Antoine Bordes and Yoshua Bengio
(2011). Deep sparse rectifier neural networks,
AISTATS.

[15] DiederikP.Kingma, Jimmy Le Ba, ADAM: A Method
for Stochastic Optimization, ICLR 2015.

[16] Bellman, R. (1957). "A Markovian Decision Process".
Journal of Mathematics and Mechanics.

