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Abstract— There are multiple factors involved in
successfully manufacturing ASIC/VLSI chips, and
ensuring operational specifications are maintained
throughout the design and manufacturing process is often
challenging. Dynamic timing analysis (DTA) is the
principal method used to validate that a manufactured
chip complies to its design specifications. In DTA
functionality of both synchronous and asynchronous
designs are verified by applying input signals and
checking for correct output signals. In complex designs
where the number of input signal permutations is
extremely large, the computing resources required to
properly verify the functionality of a chip is prohibitive.
In this paper, a strategy using reinforcement learning
(RL) for reducing DTA time and resources in such cases
is discussed. RL assisted DTA holds much promise in
ensuring that VLSI chip design and functionality are fully
and optimally verified.
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1. INTRODUCTION

A.  Overview

Speed, area and power are the three primary VLSI/ASIC
design properties that a designer must consider. In terms of
functionality, meeting timing constraints is the most
important design property [1]. A chip’s timing constraints
are tested at a set clock rate using either static (STA) [2] or
dynamic timing analysis (DTA) [3]. In DTA a set of signals
is input to the chip and functionality of the chip’s design is
verified and predicted output signals are observed. STA tests
the static delays within the ASIC chip’s circuits without the
injection of logic-dependent input signals. DTA’s goal is to
verify that an ASIC design can operate without errors at a
specified clock rate and is generally accomplished using the
simulated manufacturing design synthesis files [4,5]. The
goals of STA are similar to DTA verification but does not test
the full functionality of the design and does not require that
the functionality of the design be simulated. DTA and STA
are often used in a complimentary fashion with logic
functionality first verified with DTA prior to using STA to
refine circuit layouts based on simplified timing models
which mostly disregard circuit logic. STA is not able to verify
asynchronous designs while DTA can. For this reason, DTA
is an essential verification method for asynchronous designs.
Additionally, DTA is also the best choice when designs have
clocks crossing into many domains.

In verifying all logical paths within an ASIC, the quality of
DTA increases as the number of input signal permutations
increases. However, as the number of input signal
combinations increases, the simulation time also increases.
Since the more efficient STA cannot effectively test the
functionality of many designs, the only viable alternative is
to efficiently speed-up DTA design verification of complex
ASIC designs. In this paper, an efficient method using
reinforcement learning (RL) for generating an optimized set
of DTA input signals is illustrated. It is shown through
simulated RL generated input signals, that it is possible to
efficiently refine an ASIC design using DTA.

The remainder of this paper is structured as follows.
Section II discusses an RL optimized DTA (ODTA)



methodology and covers the key concepts involved in
generating an optimal set of ASIC input signals using RL.
Section III describes the experimental ASIC design dataset,
the simulations used and the analysis results. Finally, in
Section IV, conclusions and future work are discussed.

II.  METHODOLOGY

A. ASIC Logic Paths

Figure 1 for DTA conceptual illustration purposes shows a
very simple ASIC design which includes an AND gate, NOT
gate and OR gate [6].
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Figure 1: Simple ASIC Design.

To illustrate how DTA is performed, consider digital input
signals S;, S S3 in Figure 1. As shown in Figure 2 below,
signals S}, S>, S3 change state according to the specific logic
gates they are processed by on the leading-edge of each CI;
clock cycle. Signals S; and S propagate through gates G;, G»
and Gsand contributes to the output signal Ss on logic path P;
and output signal Sy on logic path P». Signal S; propagates
through gate G; and contribute the output signal S5 on logic
path P;. The input signals S}, S2 and S in period ¢; prior to the
first clock cycle, are initialized by the DT A simulator in states
{0, 0, 1} respectively, and the predicted output signal states
of Ssand S5 are observed at a target clocking rate.
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Figure 2: Logic Timing Diagram.

In this simple example, if each input signal in its intended
application fully varies between 1 and 0 in all permutations,
then the number of possible input signal S;, S> and S3 state
combinations is 23 or 8. Real-world System-on-Chip (SoC)
ASICs logic gate numbers often reach one million, and the
number of input signal state permutations required to fully
verify the ASIC using DTA often range in the hundreds of
thousands. In many cases, specific input signal permutations
may not be valid for the intended ASIC application; thus,
testing with such combinations wastes time and resources. It
is possible to speed-up DTA verification by reducing the
number of input signal state permutations introduced to the
ASIC design. If ground-truth output signal distributions for a
minimal set of logic testing input signals are available, RL
can form a policy which selects a valid subset of input signal
state permutations by sampling the output signal distributions
while strategically introducing input signal state
permutations to the ASIC during DTA. The following
sections discuss the methods for achieving DTA speedup in
this manner.

B. RL Policy Metric

During the ASIC design process, a set of baseline input
signals are used to characterize the basic logic operations of
the ASIC. In the characterization process, the baseline input
signals are injected, and the output signals are analyzed.
Injecting the set of baseline input signals into the ASIC
design will exercise known and intended logic states at a
target clocking rate but is not intended to fully exercise or test
all possible input and output signal states. In support of future
DTA simulations, the statistical distribution of each output
signal’s state transitions is captured. The goal of RL guided
DTA is to reduce DTA related processing time and resources
by strategically selecting a subset of all possible input signal
permutations. The effect of selecting a closely related subset
of input signal permutations in RL guided DTA is that only
those ASIC logic states most similar to the intended baseline
logic states are analyzed. This strategic selection is achieved
by optimally selecting those input signal permutations that
produce output signal distributions closely matching the
output baseline signal distributions. The primary metric used
to guide RL in finding the optimal set of input signal
permutations is the relative entropy between each DTA
synthesized output signal’s distribution and each baseline
output signal’s distribution. In relation to RL, each of the
input signals is considered a feature which the RL algorithm
will process. Feature Centric Entropy Analysis (FCEA) is
used to compare individual feature distribution relative
entropies. Using Equation 1, individual feature distribution
K-L Divergence values are calculated for baseline and DTA
generated signal distributions.  In Equation 1, K-L
Divergence measures the relative entropy change between
feature f;, and f’ q distributions. Where F;is a baseline

feature probability distribution and Fq' is a target or DTA
probability distribution.
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C. Reinforcement Learning

There two principal methods used to implement RL. The first
method called the policy gradients method [8, 9] is
implemented as an artificial neural network which learns a
policy for picking actions by adjusting it’s weights through
gradient descent [10] using feedback from the environment.
(ie. Function approximating neural network [11])

Using value functions is the second principal implementation
method. In the policy gradient method the optimal actions are
learned for each given state. Using value functions, the agent
predicts the reward for a given state, given specific sequences
of actions (ie. O-Learning [12]). O-learning (The Q function
returns the reward of an action while in a specific state) can
iteratively find an optimal actions decision policy given that
the environment follows a finite Markov Decision
Process[16]. Starting at the current state, the optimal actions
policy found maximizes the expected total reward when all
successive possible steps are considered. If the environment
follows a finite Markov Decision Process, (Q-learning
coupled with an e-Greedy [9] actions process over an infinite
exploration time, can find an optimal action-selection policy.

D. DTA and Reinforcement Learning

Figure 3 below illustrates how RL is used to select an
optimal subset of input signals in RL-guided DTA.
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Figure 3: DTA and RL used for optimal input signal
selection.

Policy Design Change Engine

In Figure 3, KL-Divergence (KLD) values are calculated over
multiple policy exploration steps of an RL episode. On each
RL episode step, an e-Greedy actions strategy is used by the
DTA agent to guide an optimal action based on either a value
function or policy gradient component (contained within the
Policy Design Change Engine - PDCE). On each step the
PDCE using the optimal policy derived at that point in the

episode, presents a specific input signal permutation to the
DTA simulation environment. The KLD values between the
individual baseline output signal distributions and the current
step’s individual output signal distributions are calculated on
each step. An action-state-reward (g, 01, Kldy) tuple is stored
in an action-state-reward matrix on each step to be referenced
in determining future rewards. On successive episode steps,
using the e-Greedy based strategy, the action-state matrix is
referenced to calculate the reward value for that current state
and action taken. Iteratively over time using the e-Greedy
strategy, a function approximator (See Figure 4) is trained to
recognize an optimal policy (x) for selecting future actions
based on past action-state-reward tuples.
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Figure 4: DTA and RL used for optimal input signal
selection.

Figure 5 below illustrates the related rewards (Kld.) predicted
by the PDCE in successive episode steps.
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Figure 5: Q-learning in RL-guided DTA.

When using a O-Learning value function, the Q, 4 value for
each successive episode step is determined using Equation 2.

Qg,q = qu( Qg,q + ymaxq/le,q/) (2)

Where:



y :discount factor (look ahead factor)
g : Previous policy recommended action.

m

q' : Current policy recommended action.
m

Q : Cumulative look ahead state.
o.q

r :Reward KId .

w
o Previous individual episode step state .
o' : Current Individual episode step state.

When using the policy gradient method a function
approximator neural network is trained iteratively by
adjusting the policy weights 8 based on the gradient of some
utility/performance measure Vg E,[R(7)] with respect to the
policy weights. Where 1 is a trajectory and R(7) is the return
for path . These methods seek to maximize performance, so
their updates approximate gradient ascent in Vo E,[R(7)]. For
gradient decent,

0i41= 0; + aVpE [R(D)] 3)

VoE.[R(t)] is a stochastic estimate whose expectation
approximates the gradient of the performance measure with
respect to ;. T denotes a state-action sequence with horizon
H, so,u0,"** ,Su-1,up—1 Wwith the total reward from trajectory t
being:

R(x) = Zg;ol R(s¢, ue) “4)
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EXPERIMENTAL RESULTS

A. Experiments

To illustrate the ODTA methodology an ASIC with a total of
5900 signals was analyzed. To test the timing of target logic
states in the ASIC, a subset of all input signal permutations
was injected into the ASIC, and all intermediate and output
signals were captured. Subsequently, randomly generated
input signal permutations for each step of the RL policy
derivation episode were injected into the ASIC. Figure 6
variations in agglomerative hierachial clustering [13] patterns
and compostion shows the degree to which statistical and
signal distribution variations exist between the baseline and a
single test case signal set. The Kld, (relative reward values)
were calculated between baseline and intermediate and
output signal test case signal ditributions. The Kld, was
stored within the action-state-reward (qm, o5, Kldy) tuple
matrix row during each episode step. Figure 7, shows the Kld,
values for a single episode step. As indicated by the arrows
in Figure 7, several signals were divergent from the baseline
in during this step. The degree of divergence indicated by the
Kld, value is directly proportional to the degree which the

ASIC’s logical behavior varies from the baseline test case.
The RL optimal DTA policy was then derived using an e-
Greedy strategy with policy gradient methodology.
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Figure 6: Clustering patterns and cluster composition
variations.

KLD between Baseline and Test

Highly divergent signals

>

KLD Value
o

L dd "
o Ll J
] 1000 2000 3000 4000 5000
Signal

Figure 7: KL-Divergence values between baseline and an
input signal permutation test case.

Given a large enough number of RL policy discovery
episodes and steps, the value function or policy gradient
method lead to finding an optimal action policy. However,
when using value functions alone, large changes in the policy
can occur while searching for the best actions at a specific
state. Such abrupt changes in policy are less likely using the
policy gradient method where the action-state space is
continuous. In application such as robotics, abrupt changes in
policy can result in actions that can damage equipment.



Because of the simplicity and directness, the policy gradient
method was utilized in our experiments.

B. Results

Summarizing, the ODTA methodology was implemented as
follows below.

The purpose of the initial discovery phase is to randomly
gather input signal permutation vectors to boot-strap the
training of the function approximator artificial neural
network. The function approximating neural network
iteratively learns how to select an optimal set of input signal
permutations. The initial discovery phase implemented is
depicted in Figure 8 and follows the below stated process:

e Randomly synthesized test input signal
permutations were generated and on each step of an
episode.

e  The respective Kld, values were calculated between
each episode step’s output signal and baseline
output signal distributions.

e Individual Kld, values, corresponding input signal
vectors, and state were recorded in the actions table.

e The above actions were repeated for the number of
steps in the initial discovery episode
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Figure 8: Randomly injected input signals.

In finding the optimal DTA policy the function approximator
in Figure 9 is trained using only those randomly generated
input signal permutation vectors stored in the actions table
that have a low Kld, value.

Figure 10 below shows those output signals permutations that
were least conforming and those output signals that were
most conforming. Those input signal permutations that
resulted in the set of most conforming output signal vectors
were used on completion of the initial discovery phase to boot
strap train the function approximator.
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Figure 9: Optimal policy convergence.
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Figure 10: After initial random search, the most and
least conforming signals are identified.

The function approximator artificial feed-forward neural
network in our experiments was composed of 4 hidden layers
with rectified linear unit (ReLU) activation function [14] and
Adaptive Moment Estimation (ADAM) optimization
learning algorithm [15]. The partially trained function
approximator was used to guide future policy decisions using
an e-Greedy strategy. On a selected number of episode steps
arandom input signal permutation was input to the ASIC and
on all other steps the function approximator was used to select
a policy guided input signal permutation for input based on
what it has learned previously. As the number of discovery
episode steps proceeded, the function approximator
continued to learn an optimal policy for selecting sets of input
signal permutations that resulted in low Kld, values as
depicted in Figure 11 convergence graph.
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Figure 11: The deep feed-forward NN convergence.



As shown in Figure 11, as training and testing progressed
using the observed optimal set of input signal vectors, the
mean square error (MSE) between target and predicted Kld,
values fell below the standard 5% accuracy threshold. It is
expected using the e-Greedy strategy with additional RL
training episodes, that the MSE would drop to even lower
values resulting in a global optimal ODTA policy
convergence.

II. CONCLUSIONS AND FUTURE WORK

In this paper it was shown that it’s possible to use RL to
strategically select ASIC design input signals during DTA.
Use of RL-aided input signal selection during DTA promises
to optimally extend ASIC logic functionality testing by
introducing input signal permutations to an ASIC that are not
in the heuristically derived test set. Introducing RL-derived
input signal permutations to the ASIC effectively increases
the accuracy of logic functionality testing in both
synchronous and asynchronous logic designs. Additionally,
RL-aided DTA minimizes processing time and computing
resources by only introducing the set of input signal
permutations that most closely produce known target output
signals.

Using additional ASIC DTA datasets, future analysis will
include quantifying aggregate logic testing accuracy,

computing resource and processing time efficiency gains
yielded when ODTA is utilized.
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