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The numerical solution of risk-averse PDE-constrained optimization problems requires sub-
stantial computational effort resulting from the discretization of the underlying PDE in both
the physical and stochastic dimensions. To practically solve problems with high-dimensional
uncertainties, one must intelligently manage the individual discretization fidelities throughout
the optimization iteration. In this work, we combine an inexact trust-region algorithm with
the recently developed local reduced basis approximation to efficiently solve risk-averse opti-
mization problems with PDE constraints. The main contribution of this work is a numerical
framework for systematically constructing surrogate models for the trust-region subproblem
and the objective function using local reduced basis approximations. We demonstrate the
effectiveness of our approach through a numerical example.

I. Introduction

Many science and engineering applications can be formulated as PDE-constrained optimization problems that,
more often then not, are riddled with uncertainty. For such scenarios, it is critical that we determine optimal solutions
that, in some sense, mitigate the underlying uncertainties. In this paper, we model these problems as risk-averse
PDE-constrained optimization problems. Unfortunately, after discretization, these problems become large-scale
nonlinear (and often nonconvex) stochastic programming problems. The numerical solution of these fully discretized
problems faces tremendous computational challenges due to the shear size of the discretized PDE. Therefore, managing
the discretization fidelity in the physical and stochastic dimensions throughout the optimization procedure is essential to
tractably solve these problems.

In this work, we focus on PDE-constrained optimization problems in which the coefficients of the governing PDE are
uncertain and model risk aversion using the optimized certainty equivalent risk measures [3]. One important optimized
certainty equivalent risk measure is the conditional value at risk (CVaR) [12]. CVaR is a coherent risk measure [2]
and is commonly used in financial applications to determine risk-averse investment strategies [9]. The difficulty with
minimizing CVaR and coherent risk measures in general is that they typically are nonsmooth. Therefore, efficient
derivative-based optimization algorithms are often not applicable. Furthermore, accurately computing the risk measure
value using, e.g., Monte Carlo methods requires a large number of samples and hence a large number of PDE solves.
The recent work [11] has shown the feasibility of minimizing CVaR in the context of PDE-constrained optimization
problems. However, the computational cost to numerically obtain a solution is still overwhelming.

Our goal is to devise a computational framework to efficiently solve risk-averse PDE-constrained optimization
problems using cheap surrogate models for the PDE solutions. Few methods exist for constructing efficient surrogate
models in the context of PDE-constrained optimization under uncertainty. For example, the authors in [10] introduce
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an adaptive sparse-grid approach whereas the author in [15] introduces a global reduced basis method. However, to
obtain convergence of the optimization algorithm when using surrogate models, the errors associated with the surrogate
approximation need to be properly managed. To this end, both [10] and [15] employ an inexact trust-region (TR)
framework to manage the error in the surrogate approximations throughout the optimization process. Additionally,
under standard assumptions, the authors in [10] show that the inexact TR algorithm is guaranteed to converge from any
initial guess, provided that errors in the approximation of the objective function and its gradient are adequately bounded.

In this work, we combine the inexact TR framework of [10] with the adaptive local reduced basis (RB) method
proposed in [[16]. In [16], we demonstrated that the local RB method produces efficient and accurate approximations of
PDE solutions as well as approximations of risk measures of quantities of interest. We use the local RB method to
systematically construct the surrogate models for the TR subproblem and objective function evaluations. To this end, we
derive error bounds for the objective and gradient approximation using a posteriori error indicators and subsequently
introduce adaptive sampling schemes for the sequential construction of the surrogate models. Throughout the TR
approach, we maintain two separate surrogate models: one to approximate the objective function gradient and one
to approximate the objective function value. These two surrogate models employ different sets of basis functions
and different error indicators to efficiently achieve the required error bounds of the TR method. We demonstrate the
performance of our approach through a 1D advection-diffusion numerical example, which shows that our method
can solve risk-averse optimization problems with PDE constraints using far fewer high-fidelity PDE solves than those
required with Monte Carlo methods.

I1. Problem Formulation
Let (Q, 7, P) denote a probability space. Here, Q is the set of outcomes, ¥ C 22isa o -algebra of events and
P : ¥ — [0, 1] is a probability measure. We denote the uncertain inputs of our PDE by the random vector ¢ : Q — =
where E := £(Q) C R™ with m € N. Throughout, we abuse notation and let ¢ denote the random inputs as well as a
realization of the random inputs. We further denote the expectation of a random variable X : Q — R by

]E[X]:fX(a))dP(w)
o)

and we denote the space of random variables X : Q — R with p-finite moments for p € [1, o), i.e., E[|X|”] < oo, by
LP(Q,F, P). When p = oo, L*(Q, 7, P) denotes the space of essentially bounded random variables on (€, 7, P). We
denote the extension of LP (Q, ¥, P) for p € [1, co] to vector-valued random variables by L (Q, ¥, P; A) where A is a
Banach space. Additionally, for any two Banach spaces A and B, we denote the space of bounded linear operators that
map A into B by L(A, B). We further denote the dual space of A by A* = L(A,R) and the associated dual pairing by
(a*,a)a=a = a*(a) for a* € A and a € A. Finally, if A is a Hilbert space, we denote the inner product on A by {(a’, a)a
forall a’, a € A.

Now, let U, V and Z be real Hilbert spaces. Here, U is the deterministic state space (i.e., the space of PDE solutions)
and Z is the space of optimization variables. We will refer to z € Z as a control variable. Since controls typically must
be implemented prior to observing the uncertainty in the PDE solution, we require that Z is a space of deterministic
functions or vectors. We consider the following parametrized, linear PDE: for fixed z € Z, find 4 : = — U such that

Mu(&), z:&) = LEu(@) + Bz +{(§) =0 VEE€E ey

where L(&) € L(U,V*) for all ¢ € E is the parametrized PDE operator, 8(¢) € L(Z,V*) for all ¢ € E is the
parametrized control operator and £(£) € V* for all £ € E is the parametrized load or force. If U, V and Z are
finite-dimensional, £ (&) and B(&) are matrices and £(£) is a vector representing, e.g., the discretization of a PDE. We
make the following assumption regarding ({)).

Assumption 1 (PDE) We assume that the operators defining (1)) satisfy:
1) The differential operator satisfies the stability conditions: Ak > 0 independent of & € E such that for all ¢ € E

. KLEu, vyy-v]
i sup ——————""" = y(£) >k, YVEEE (2a)
w0} yeyro; Nallglvlly ) L VE

(LEu,vyyey ={(LE vu)yy+y =0 YuelU e v=20 (2b)

2) The control operator satisfies: A ko > 0 independent of € € E such that ||B(E)|lL(z,v+) < k2 forall ¢ € E;



3) The force satisfies: A k3 > 0 independent of ¢ € E such that ||€(€)|ly+ < k3 forall ¢ € E.

Under Assumption [T, the Banach-Necac-Babuska Theorem [6] ensures that a unique solution to () exists for all ¢ € &
and z € Z, and that the solution is bounded independent of & € E. We denote the solution of (I)) by S(¢;z) € U and
assume that S(£(-); z) is strongly measurable, i.e., S(£(:);z) € L=¥(Q, F, P;U) for all z € Z. Note that one could
achieve measurability of S(&(-); z) by imposing additional assumptions on the measurability of £(&(-)), B(£(+)) and
C(£(+)) (see, e.g., [8]). We omit these assumptions to simplify the presentation.

Turning our attention to the target optimization problem, let ¢ : Z — Rand G : U X & — R, and note that
G(S(é(w); 2), £(w)) is a function of w and hence is viewed as a random variable. We assume that G(S(&;z2), &) € X =
LP(Q, F, P) for some p € [1, oo] and seek to minimize

J(2) = R(G(S(£52),6)) + 9(2) 3)
where R : X — R is a risk measure with the form

R(X) = inf {1 + E[v(X - D]} “4)

Here, v : R — R is convex and satisfies v(0) = 0 and v(x) > x for x # 0. For example, when v(x) = (1 — ,fj’)‘l[x]Jr
with 8 € (0, 1) and [-]* = max{0, -}, the risk measure R is the conditional value-at-risk (CVaR) [[12],

R(X) = CVaRg[X] := rtl’gél {t + 1 ! E[X - t]+} . (5)
It is important to point out that the objective function in (3) may be nonsmooth in z depending on the function v.
Therefore, to take advantage of gradient-based optimization algorithms, we only consider differentiable v. In the context
of CVaR, the associated v is not differentiable at x = 0. As such, one could consider a smooth approximation similar to
those studied in [[11].

To minimize (3)), we incorporate ¢ from the definition of R as an additional optimization variable and solve

, nin_ J(t,z) where J(t,2) =t +E[v(G(S(&:2),8) —1)] + 9(2). (6)

Under appropriate assumptions on M, G, ¢ and v, the objective function Tis continuously Fréchet differentiable and the
partial derivatives J are

V. J(t,2) =B [V (G(S(£;2),€) = NBE)* A(E)] + Vo(z) (7a)
V J(t,2) = 1 -E [v/(G(S(&;2), ) - 1)] (7b)

where A : 2 — V solves the adjoint equation

LEAE) =-VuG(S(&:2).6) VE€E. ®)

Notice that the computation of the gradient requires the solution of the state equation (I)) and the solution of the adjoint
equation (8)) for all ¢ € E. We denote the adjoint solution for a fixed state variable u by A(&;u). For example, in (8)),
we can write A (Af) = A&f ;S(&;2)) for € € E. To simplify notation in the subsequent sections, we denote W := R X Z,
w=(t,z) and J(w) = J(t, 2).

III. Risk Measures

Since the objective function G(S(¢; +), £) is a random variable, we cannot directly minimize it. Instead, we minimize
the deterministic quantity R(G(S(&;-), £)) where the functional R : X — R is chosen to quantify the overall hazard or
risk associated with the uncertain objective function G(S(&;-), £). In this setting, we refer to R as a risk measure. The
risk measure R is said to be coherent [2] if it satisfies the following axioms:
(C1) Convexity: RtX + (1 -0)X') <tR(X)+ (1 -t)R(X’') forall X, X" € X and ¢ € [0, 1];
(C2) Monotonicity: R(X) < R(X’) whenever X, X’ € X with X < X’ almost surely;
(C3) Translation Equivariance: R(X +¢) = R(X) +tforall X € X andr € R;
(C4) Positive Homogeneity: R(1X) = tR(X) forall X € X and ¢ > 0.



In the context of engineering applications, (C4) ensures that R(X) inherits, e.g., any change of units in X while (C3)
and (C4) ensure that deterministic quantities are “riskless,” i.e., R(¢) = ¢ for all # € R. In addition, (C1) and (C4) are
equivalent to (C4) and R being subadditive, i.e., R(X + X’) < R(X) + R(X’) for all X, X’ € X. It is worth pointing
out that the common mean-plus-deviation risk measure of order p with p € [1, o0)

R(X) = E[X] + cE[|X — E[X]]’]?, ¢ >0,

is not coherent since it does not satisfy the monotonicity property (C2).

The risk measure R defined by (4) is called an optimized certainty equivalent [3]. Any such R satisfies (C1) and
(C3). Furthermore, R satisfies (C2) if and only if v(x) < 0 whenever x < 0 and satisfy (C4) if and only if v is positive
homogeneous [13]. Three common risk measures arising from (4) are the mean-plus-variance

R(X) = E[X] + cE[|X - E[X][*], ¢ >0,

in which case v(x) = x + cx? and p = 2, the conditional value-at-risk (5) in which case v(x) = (1 - ,8)‘1[x]Jr and p =1,
and the entropic risk
R(X) = log(E[exp(cX)]D/c, ¢ >0,

in which case v(x) = (exp(cx) — 1)/c and p = co. Note that the mean-plus-variance risk measure does not satisfy (C2)
and (C4) while the entropic risk measure fails to satisfy (C4). Since v is finite valued and convex, it is continuous.
Additionally, for R to be finite valued, we require that one of the following two properties to holds.

Assumption 2 (Growth Condition for v) The function v : R — R satisfies one of the following conditions:
(Vp) X =LP(Q,F,P)with p € [1,00) and there exists o, y1 € R with y; > 0 such that

()| < yo+yilxlP, VYxeR,;
(Vo) X = L¥(Q, F, P) and for all ¢ > O there exists y = y(c) > 0 such that
@) <y VxeR |x|<ec.

Under Assumption , v:X = LY(Q, F, P) is continuous [7, Thm. 4] and R(X) is finite for all X € X since E[v(X)] is.
Since our goal is to apply derivative-based optimization algorithms to minimize (3)), we further assume that v is
continuously differentiable and its derivative v’ satisfies one of the two following conditions.

Assumption 3 (Growth Condition for v’) The derivative v/ : R — R satisfies one of the following conditions:
(Dp) X = LP(Q,F, P)with p € (1,00) and there exists 69, 61 € R with 61 > 0 such that

WV (x)| < 60+ 611xIP7Y, VxeR;
(D) X = L®(Q, F, P) and for all ¢ > 0 there exists 6 = 6(c) > 0 such that
V(x| <6 VxeR, |x| <c.

Under Assumption 3, v : X — L(Q, ¥, P) is continuously Fréchet differentiable and its derivative at X € X is given
by v/(X) [7, Thm. 7]. Therefore, E[v(-)] is also continuously Fréchet differentiable. Note that we require a norm gap
between the domain and range of v, i.e., since the range is LY(Q, F, P), the domain must be L? (Q, F, P) with p>lin
order to obtain differentiability.

IV. Inexact Trust Region Algorithm with Adaptive Local Reduced Bases

To overcome the potentially enormous computational cost of minimizing 7, we develop an adaptive optimization
framework based on two key components. The first component is the adaptive reduced basis approximation introduced
in [16] to build computationally inexpensive approximations of S. Using these low-cost surrogate models, we can
approximate the objective function value and its gradient in a computationally tractable manner. The second key
component of our method is the inexact TR algorithm developed in [10], which prescribes accuracy requirements on the
surrogate model approximations that guarantee global convergence to local minimizers of J.



A. Inexact Trust Regions
We now briefly describe the inexact TR algorithm. For a concrete statement of the algorithm as well as the rigorous
convergence theory, see [10]. Given the current iterate wy = (tx, zx) € W, we construct a local model m;. of the
objective function s — f(wk + s5) in the region {s € W : ||si|lw < Ax}. Here Ax > 0 is the current TR radius and
|| - |lw denotes a norm on W, e.g., ||w||%v =Ph ||z||%. We determine the trial step s by approximately solving the TR
subproblem
Sn;w my(s) subjectto ||s|lw < Ax. ©)]

We require that any approximate solution to (9) satisfies the so called fraction of Cauchy decrease condition (see [10]
for more details). Once a step s is computed, we decide whether to accept or reject s based the ratio of the actual and
predicted reduction

aredy

Pk = where ared; := f(wk) - f(wk +sx) and pred; = mg(0) — my (sg).
pred,

Here, ared; denotes the actual reduction obtained by the step s while pred, denotes the predicted reduction based on
the model my.

Now, to ensure convergence of the TR algorithm from arbitrary initial guesses, we require that the model in ()
satisfies the inexact gradient condition

IV (0) = VI (wie) llw < kmin {[| Ve (0) llw, Ar ) (10)

where k > 0 is independent of k. Additionally, since the computation of ared, requires the evaluation of the true
objective J, which is computationally prohibitive or even impossible, we evaluate aredy inexactly. To this end, we
introduce a model Ji that approximates J and allows us to approximate aredy as

ared; ~ credy := JAk(wk) - Z((wk + Sk). (11)
Here, credy is the computed reduction. To guarantee convergence of the TR algorithm, we require that
laredy — credi| < KO  with 6}’ <5 min {pred;, r¢} (12)
for some K > 0, fixed w € (0, 1) and

n <min{n;,1 —n2} and rx >0 with lim rp =0
—00
where 0 < 171 < 172 < 1 are algorithmic constants and r is a forcing sequence. The authors in [10] prove that as long as
one can control the surrogate approximation error for the objective function value and gradient to satisfy conditions (10)
and (12), then the TR algorithm converges to a local minimizer for any starting point wy = (#9, zo)-

B. Local Reduced Bases
To construct approximations that satisfy (10) and (12)), we employ the local RB method [16]. In the local RB method,
we partition the parameter space into Voronoi cells, i.e., 2 = UZZIEk, seeded at n selected atoms &, k = 1,...,n.

Within each cell, we form a local basis for approximating the PDE solution using, e.g., full-order PDE solutions at a
fixed number of proximal atoms as well as the gradient of the solution at the given seed. For example, Figure [I] shows a
partition of a parameter domain Z C R? with 2,000 Monte Carlo samples of & in the background. The surrogate solution
at the large blue dot is computed using a basis consisting of full PDE solutions at the large solid red dots as well as the
solution and gradient at the large black dot. The number of neighbors N for the local basis is usually chosen to be a
fixed constant. In general, the number of neighbors is an algorithmic choice of the user, but can be chosen adaptively
depending on the desired accuracy of the local approximation.
The local RB surrogate model S(¢; z) of S(&; z) is given by

S(6:2) = ) 1=, (&) S(&2) (13)
k=1

where 1z, denotes the characteristic function of the set Zg, i.e., 1z, () = 1 if § € E¢ and 1z, (¢) = 0 otherwise, and
Sk (+;2) = ug : Ex — Uy is the solution of the reduced problem

(M(ui(£),2:6),v)vey =0 VveV, V&ekE.



Fig. 1 The local reduced basis method with two random parameters. The surrogate solution at the large blue
dot is computed using a basis consisting of the solution at the large solid red dots as well as the solution and
gradient at the large black dot. We plot 2,000 Monte Carlo samples of ¢ in the background.

Here, @y is a “local basis” within Eg, e.g.,

Oy = [S(Ek;2), Ve S(Er; 20, S(€k3 25 S (k3 s -5 S(Ekn3 D) 5

Ui = span(®y), and Vi is a finite-dimensional subspace of V. Since the cardinality of @y is typically much smaller
than the full discretization of the PDE, we often realize significant computational savings by using S(&; z) as a surrogate
model for S(&; 7). In addition, due to the local nature of the approximation, the evaluation cost of S(&;z) atany & € E
does not increase as the number of atoms 7 increases.

To efficiently construct the local RB surrogate, we employ a greedy adaptive sampling procedure to select the atom
set @ := {&};_, [16]. The adaptive selection of @ is guided by reliable a posteriori error indicators, denoted by €"(¢&; z),
ies

IS(£;2) = S(&; D)lly < €(£32)

where x < y denotes “x is less than or equal to a constant times y.” That is, given k atoms, the next atom &4 is
selected from the region of E where the current surrogate error is the largest. The error indicators € (¢; z) used in [16]
are residual-based error estimates which have been used with great success in adaptive finite elements [4] and in the
adaptive construction of reduced bases [[14]. In fact, we have shown in [16] that the error indicator €*(&; z) can be
further used to build more complex error indicators that are specifically targeted for the approximation of coherent
risk measures evaluated at quantities of interest depending on PDE solutions. The versatility provided by the adaptive
sampling procedure tailored to individual tasks is of fundamental importance for the algorithmic development in this

paper.

C. Inexact Trust Regions with Local Reduced Bases

To simplify the subsequent analysis, we assume that the random inputs ¢ are discretely distributed. Let {¢;} J"; !
denote the atoms of & with the associated probabilities {p; }j.V: ywithp; +...+py =1andp; >0forj=1,...,N. In
this setting, we can then rewrite (4)) as

N
R(G(S(:2).€)) = inf z+le,-v<G<s<§,-;z>,f,->—r) : (14)
=

For example, if {£;} are Monte Carlo samples of &, then p; = 1/N for j = 1,..., N. The assumption that £ is discretely
distributed can be relaxed if we are given a discrete approximation to & that can be refined to control its approximation
error (e.g., quadrature approximation or Monte Carlo).



As mentioned above, to obtain surrogate models that meet the accuracy requirements of the TR algorithm, we
employ the adaptive local RB method. To this end, we construct two surrogate models of S(&; z), denoted by Smod (€3 2)
and Sopj(¢; z), which we then use to construct my and Ji, respectively. Moreover, since (10) depends on gradient
information, we construct a surrogate model for the adjoint variable A(&;u), denoted Apoq(€;u). By constructing
Smod (€5 2), Amod(&; 1) and Sop;(€; z) adaptively, we aim to achieve the desired error levels with as few high-fidelity
solves as possible. To this end, we rely on the computable a posterior error indicators in the local RB method. We
denote the computable a posterior error indicators for Smoda(&; 2), Amod(&;u) and Sopi (€5 2) by €f04(&5 2), e[’,‘wd(f 7))
and egbj (¢; 2), respectively; that is,

1Smod (€5 2) — S(&; 2y S €loa(€s 2)
| Amod(&34) — A(E; w)lly S €hoq(&s 1)
1Sobj(é32) = S(&; Dy < €0 (€32)-

A

See [16] for the explicit form of these error indicators. We also require the following assumptions on G and v.

Assumption 4 (Lipschitz Continuous Derivatives) We require the following Lipschitz continuity conditions to hold:
1) G(., &) is continuously Fréchet differentiable for all ¢ € = and there exists Kg > 0 independent of ¢ such that

IViG W, &) = V.G, Oy < Kgllu—-u'lly Yu,u' eU VEéEeE;
2) There exists K,, > 0 such that
WVi(x)=v'(x)| < K,lx=x'| Yx, x"€R.

Using the local RB approximation Sp,04, one can choose, e.g., the trust-region subproblem model

N
mi(s) = (e + 1)+ D pv(G(Smoaléss 2k + ;€)= (tk + 1) |+ 9z + ) (15)
j=1

where s = (1, ) € W. Since this my is often highly nonlinear, solving the trust-region subproblem can be computationally
challenging. Instead, we typically employ the quadratic model

1
mi(s) = E(Hks’ Hw + {8k SHHw

where Hy € L(W, W) is an approximation of the Hessian of J(wy) and gk € W is an approximation of the gradient
of J(wy). We then can use efficient methods such as the truncated conjugate gradient method [5] to solve the TR
subproblem (9). Since our focus is on satisfying (10), we assume Hj is provided and is bounded for all k. We then
choose gx according to (7)) with S and A replaced by Sioq and Apog.

Now, let u(¢) = S(&;zk), uj = u(€)), u(¢) = Smod(&;26), Uy = u(éy), AE) = A& u(€), 4; = AE)),
P (&) = Amoa(&;u(€)) and 1 = 1 (&;). Using the explicit form of the gradient (7) and the triangle inequality, we arrive
at the following bounds

N
V2T (i) = Vo (0) 2 < ZP;IIV’(G(MJ, £) —ti)BE) A; = v/ (G( &) — 1) B(E))" A;lIz (16)

Jj=1
and
R N
IViJ(wi) = Vemy (0)] < ijlv/(G(uj» &) —t) =v'(G(uj, &) — 1)l (17
j=1
We then bound the individual samples on the right hand side of (16) by

IB(E)* V' (Guj, &) — tr) A — V' (G(@)j, &) — 1) Az <kalv'(G(uj, &) — ti) = v/ (G, £7) — ti)lll Al
+ V' (G, €7) — ti)lIA; = Ay (18)



Using Assumption @] and the integral mean value theorem, we bound the first term on the right hand side of (I8]) and the
right hand side of (17)) using

V'(G(uj, &) — 1) = v (Guj, ;) — ti)| < Ky|G(uj, &) — G(uj, &)

1
=I<Vfo<qu@-+t(u,-—ﬁn,gj),(u,-—ﬁj)mdr

1 - — —~
S KvKaluj = willg + KollVu GGy, ) lluj — w5117,

€ oa(€jr 21) + IVu G, £) lu €40a (€5 70)-

IA

A

Now, let /l?. = A, Ej), then we can bound the second term on the right hand side of (18) using

= = - ~ 4 ~
14, = A0y < 1147 = Al + 127 = A;llv < 1145 = Ay + 1) —wjlly < emoa(€) i) + €moa(€s 2)-
By combining these bounds, we obtain the gradient error bound

N
IVT(wi) = Vg (0)llw < Zl’j5mod(§j;wk) =: Emnod(Wk)

Jj=1

where
Omod(€3 W) = IV (Gt £7) = ti)|(Emoa (€72 1)) + Ettoa(€)r 7)) + Etmoa(€)2 21)” + IV G iy, €))L €tboa (&5 2k)-

and as long as Iv’(G(ﬁj, &) — ;)| and IIVuG(iZj, &)l are bounded for all iterations k, we can satisfy (10) by refining
our local reduced basis models Spoq and Apod. The error indicator Enog(zx) is only small provided we approximate
both forward and adjoint solutions accurately. We therefore modify the local RB method using a new set of local bases
that is composed of both forward and adjoint solutions as well as their gradients. Note that even though m; changes
at each TR step, we can employ the same Sp,0q to obtain my for all steps, which means that Sy,,q can have a basis
composed of solutions under different z;. The error indicator will guide the refinement of S04 at each step k so that
(10) is always satisfied. The recycling of Sy0q reduces the computational cost substantially since we do not need to
rebuild an Sy,0q whenever zj is updated in the optimization process. The same recycling strategy applies to Apoq. The
complete algorithm for constructing Smod and Ameq is listed in Algorithm [T

Algorithm 1: Adaptive algorithm to build Sy,0q and Apeqg for my

If &k = 0, model initialization:

e Let & = E[£] and build the initial surrogate models Spoq and Amog based on the solution S(&p; zo), its
gradient V£S8(&o; z0), the adjoint solution A(&p; S(&o; z0)) and its gradient VA (&p; S(&o; 20))-

Model refinement:

Given wy, Ay and Syoq, Which is recycled from step k£ — 1,

* Build my with Spoq, evaluate dmoa(&5; wi) forall j =1,..., N, compute Epoq(wi) and [[Vimy (0)]|z.

e While E,oq(wi) > «min {||Vm; (0)||z, Ax }, do

Select Emax = arg max;-y ..~ pjémod(‘fj; Wi ).
Compute S(Emax; 2k )> A(Emaxs S(Emaxs 2k))s V{ES(fmax; 7k ) and VfA(fmax; S(Emaxs 2k))-
— Incorporate the new information at &nax into Spmoq and Amoeg using the local RB method.
Update my with Spod and Amoq-

— Update 6moa(&j;wi) for j =1,..., N and Enoq (Wi ), and recompute ||V (0)||z.

End
Return S;,04 and Apod.

Similar to the TR subproblem model my, we approximate the objective function by

N
Tew) =14 )" piv(G(Sorj(£52,€) = 1) | + 9(2) (19)
j=1



By similar arguments as above, i.e., using Assumption f] and multiple applications of the integral mean value theorem,
we arrive at the bound

N
Tew) =TI < Y pjonj (€5 w) =t Eopj(w) (20)
j=1

where
Sobj(£j3w) 1= Eﬁbj(fj;z)z + [V (G(Sobj (€3 2)) — Dl €gy; (73 2).

Therefore, we can bound the difference between the actual and computed reduction by
laredy. — credy| < [Je(wi) = TVl + [Tk (i +51) = TOve + 501 $ Eapwi) + Eony(w +5%). 21

Again, as long as [v'(G(Smod (¢} 2k ), €j) — tx)| and [v/ (G (Smod (€3 2k + Lk ), €j) — (tx + 71))| are bounded for all iterates
wi = (tk, zx) and steps sx = (7%, {x ), we can satisfy (12)) by refining our local reduced basis model Soy;. The error
indicator Eopj(wy ) requires us to accurately approximate the solution to () at both wy and wy + sx. This motivates us
to use a local basis that is composed of solutions and gradients at both wy and wy + sx. We employ a similar recycling
scheme as above to save computations while refining Sqpj. The complete algorithm for constructing Sop; is listed in
Algorithm 2.

Algorithm 2: Adaptive algorithm to build Sep; for Z(

If k = 0, model initialization:

e Let & = E[£] and build the initial surrogate model Sp,0q based on the solution S(&, zo), the gradient
V£S(&o, 20)-

Else, model refinement:

Given wy, si, pred,, ri and Sepj, which is recycled from step k — 1,

e Compute y, = K (7 min {predk,rk})i, evaluate 8opi(€j; W), Oobj(éj3wr + sg) for j = 1,..., N and
compute Eopj(wi) and Eqpj (Wi + sk ).
¢ While Eobj (Wk) + Eobj (Wk + Sk) > Vi do
— Select Emax = argmax;_;  n pj (60bj(§j;wk) + Oobj (&3 wi + sk)).
— Compute S(&max» 2k )» st(fmax» 2k )s S(Emax> 2k + Lk ), and st(fmam 2k + Lk).
— Incorporate the new information at &max into Seb;j using the local RB method.
— Update 6moa(€j; wi) and dobi (€55 wi + si) for j = 1,..., N, update Eqpj(wi) and Egpj(wi + sk).
End
End
Return Sgp;.

V. Numerical Results.

The subsequent numerical example demonstrates that the above algorithms are quite efficient (in terms of the number
of high-fidelity PDE solves) for constructing surrogate models that meet their respective requirements imposed by the
TR algorithm. The efficiency can be largely attributed to our choice of the local bases that specifically aims to reduce
the error indicators. The example also highlights the flexibility of the local RB method in terms of the choice of the
local basis. We demonstrate the TR algorithm on the 1D advection-diffusion example from [16]. Let D = (0, 1) and
consider the weak form of the boundary value problem

0%u ou
—V— (X&) +b(x,é)—(x, &) = f(x), xeX, as. (22)
0x? Ox

u(©0,&) =u(l,€) =0, as.

The diffusivity, v, and source, f, are deterministic whereas the advection field, b, is a piecewise constant random field
given by
b(x,&) = [br + &1] Lj0,0.5(x) + [b2 + &] Ljo.5,17(x) (23)



where 1g(x) is one if x is in the set S and is zero otherwise. Here, & and &, are independent random variables that are
uniformly distributed on the interval [—1, 1]. For this problem, U =V = H L(D).
We define the general objective function as

1
Gu; &) = Sl Du - dliy (24)

where Y is a Hilbert space, © € L(U,Y) is an observation operator, and d € Y is a desired profile. For this problem, we
set Y = R? and D to evaluate the PDE solution u at nine equally spaced points x € {0.1,0.2, ...,0.9}. Note that since
D c R, U is continuously embedded in to C(D) [1] (i.e., u € U is a continuous function) and thus D is a bounded linear
operator. The target vector d is simply 3 sin(x) evaluated at the same set of points. Moreover, the control penalty is

a
p(2) = Ellzué, a>0 (25)

and the control is assumed to be piecewise constants, i.e., z(x) = 2}21 zily,(x) where I; = (0.1G - 1),0.1i),
i=1;: 505 10;

We solved the risk-averse optimization problem (6) with R set to a smooth approximation of CVaR at confidence
level 8 = 0.9 [[11] using the adaptive local TR/RB algorithm. We used the following TR parameters: n; = 0.05,
ny =0.75,v =050 =0.75 u=10, K =1 and Ay = 3. We set the penalty parameter to @ = 0.1 and employed
N = 5,000 Monte Carlo samples to approximate &. Finally, we used 3 neighbors to construct the local bases ®.

In Figure 2, we depict the optimal controls (left image) and the cumulative distribution functions (CDFs) with
the 0.9-quantile and 0.9-CVaR of G(u(¢), &) (right image) obtained by the TR method (red) and by solving the full
optimization problem using Monte Carlo (blue). In Figure 3, we depict the distribution of G(u(¢), &) over the entire
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i . ——Reference 90%
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Fig.2 The left image provides a comparison of the optimal controls computed by the proposed TR/RB method
(red) and those computed by solving the full-order Monte Carlo reference problem (blue). The right image
depicts the CDF of G(u, ¢) evaluated at the optimal state from the TR/RB method (red) and the optimal state
from the full-order Monte Carlo problem (blue). The dashed vertical lines correspond to the 0.9-quantile
whereas the solid vertical lines correspond to the 0.9-CVaR. These lines (blue for the reference solution and red
for the TR/RB solution) are virtually indistinguishable.

parameter space evaluated at the optimal control zop obtained using the full model S(&; zop) and the adaptive RB
model Sobj(€; Zopt). The adaptive TR results are virtually indistinguishable from the reference Monte Carlo solution. In
Figure @, we plot the atoms of the surrogate models Syoa (black) and Sop; (red) which we used to construct n; and JAk,
respectively. At each atom, the surrogate model construction required six high-fidelity solves for the entire optimization
process. We compare the total number of high-fidelity solves required for the reference Monte Carlo solution and the
total number of high-fidelity solves required for our adaptive TR method in Figure 5. Solving the full optimization
problem with Monte Carlo results in nearly 1,000,000 high-fidelity evaluations. In comparison, the total number of
high-fidelity evaluations for our TR approach is less than 1,000. Finally, we plot the norm of the true gradient at each
iteration of the adaptive TR algorithm in Figure [6. Notice that the norm of true gradient drops more than five orders
of magnitude by the fourth iteration, indicating that the algorithm makes significant progress towards satisfying the
necessary optimality conditions in few iterations and high-fidelity evaluations.
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Fig.3 The uncertain objective function G(u, £) evaluated at the optimal states from the full-order Monte Carlo
reference problem (left) and the proposed TR/RB method (right).
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Fig. 4 The atoms of the surrogate models 5,4 (black) and Sp; (red) that are used to build the models /; and
Ji, respectively. The blue dots are the 5,000 Monte Carlo samples used for the reference problem.
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Fig.5 A comparison of the total number of full-order PDE solves for the reference Monte Carlo approach and
our proposed TR/RB approach.

VI. Conclusion
In this work, we described an approach for solving risk-averse PDE-constrained optimization problems. Our
approach leverages two essential components to achieve computational efficiency: (i) we employed the local RB method
[L6] to build surrogate models to approximate the expensive objective value and gradient computations; and (ii) we
employed an inexact TR algorithm [[10] to control the surrogate approximation accuracy and achieve convergence. We
derived error indicators to guide the adaptive refinement of the surrogate models in an efficient manner. Also, to ensure
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Fig. 6 The norm of the true gradient evaluated at the iterates produced by our proposed TR/RB approach.

that our surrogate models rapidly satisfy the prescribed accuracy of the TR method, we employed local bases that were
specifically tailored for these error requirements.

In our numerical example, we applied the local reduced basis TR method to a risk-averse optimal control problem
constrained by a 1D advection-diffusion equation with a random advection field. We demonstrated the efficiency of our
method in terms of number of full PDE solves required to achieve a highly accurate solution. Our TR/RB approach
obtained virtually indistinguishable optimal controls with less than 1,000 full PDE solves when solving the full problem
without surrogate approximation required nearly 1,000,000 full PDE solves. This cost reduction is significant. The
developed method has the potential to be applied to more complicated and realistic problems in the future.
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