
The principal Hugoniot of forsterite to 950 GPa U.S. DEPARTMENT OF

ENERGYSandia
National
Laboratories

Joshua P. Townsend', Seth Root', Erik Davies2, Raymond W. Lemke', David E. Bliss', Richard G. Kraus3, Dayne E. Fratanduono3, Marius Millot3, Dylan
Spaulding2, Luke Shulenburger', Sarah T. Stewart2, Stein B. Jacobsen4

'Sandia National Laboratories, Albuquerque, NM, 2University of California Davis, Davis, CA, 3Lawrence Livermore National Laboratory, Livermore, CA,
4Harvard University, Cambridge, MA

iL I I AAA

SA 1 .W ie%QA"
II kv /0-441

National Nuclear Security Administration

0 - Plain language summary

We performed shock wave compression experiments to investigate the properties
of Mg2SiO4 olivine above 200 GPa at the Z-Machine at Sandia National
Laboratories. In addition to the experiments, we also used quantum mechanical
calculations to better understand the experimental results. We find that the
measured and calculated shock states are in excellent agreement, but disagree
with previous analytic equations of state extrapolated from lower pressure data. In
addition, we examine whether liquid Mg25iO4 de-mixes into solid Mg0 + liquid
MgSiO3 and show that all experimental data to-date cannot distinguish a de-mixed
from a single liquid phase from the shock states alone.

1 - Importance of accurate Hugoniots for planetary materials

Hypervelocity impacts generate
strong shock waves in
thermodynamic regimes far
beyond those found in present
Earth.

Accurate Hugoniots and
thermodynamic properties
required for accurate accretion
and differentiation models.

2 - Shock wave compression experiments on the Z-Machine

The Z-Machine is the largest pulsed power facility in the world and is
capable of generating 20 MA currents in 100 ns, and is used to
accelerate a metal flyer plate to velocities approaching 40 kms/s.
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Figure: Sample target schematic.
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Figure: Schematic illustration
of shock wave propagation
into the sample due to impact
with the flyer.
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Figure: Velocity history of experiment.

3 - Density functional theory based molecular dynamics

In quantum molecular dynamics the electronic charge density comes
from a self-consistent calculation of a set of single particle states via
the Kohn-Sham implementation of density functional theory:
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The exchange correlation functional (Exc[p]) captures the correlation
energy missed in the single particle approximation, and is
parametrically given in this work according to the generalized
gradient approximation (GGA):

EGA 
= drio(r)FPA(s)ehom(p(o)

Where s= I Vp /2kfp, kf = (37,2if 1 /3,) and ext7°' is the correlation
energy of the homogeneous electron gas. The atoms are moved
according to the classical equations of motion:
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Where f is the force on the atom, computed from the
Hellman-Feynman theorem.

This approach makes accessible thermodynamic quantities such as
E, P, T, V, directly without making any assumptions about the
response of the material.
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4 - Hugoniot State Estimation

The Hugoniot states are inferred from the Rankine-Hugoniot
relations:

P = poUsup' io Po
1

1 Up

Us

And satisfy the Hugoniot equation:

E — E0 = —
2
(13 + P0)(V0 V)

Where the subscript 0 indicates the initial state of the material. In the
experiments, the shock Us, and particle Up velocities are measured
via the impedance matching techniquel. For the QMD calculations,
the Hugoniot states are computed from the interpolation of a number
of calculations with the same volume, but different temperature.
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Figure: QMD estimation of the Hugoniot state from a series
of isochoric calculations.
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Figure: Experimental estimation of the Hugoniot state from
the impedance matching technique.

5 - Hugoniot states
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show remarkable agreement in
Hugoniot states
QMD temperatures tend to be
lower than expts
Dunite ANEOS liquid Hugoniot
is softer and hotter than data

6 - Implications for planetary impact models
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