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ABSTRACT

We implemented a computationally efficient model for a corner-supported, thin, rectangular, orthotropic poly-
vinylidene fluoride (PVDF) laminate membrane, actuated by a two-dimensional array of segmented electrodes.
The laminate can be used as shape-controlled electromagnetic reflector and the model estimates the reflector’s
shape given an array of control voltages. In this paper, we describe a model to determine the shape of the laminate
for a given distribution of control voltages. Then, we investigate the surface shape error and its sensitivity to
the model parameters. Subsequently, we analyze the simulated deflection of the actuated bimorph using a
Zernike polynomial decomposition. Finally, we provide a probabilistic description of reflector performance using
statistical methods to quantify uncertainty. We make design recommendations for nominal parameter values and
their tolerances based on optimization under uncertainty using multiple methods.

Keywords: Bimorph membrane, Zernike polynomials, PVDF, Sensitivity analysis, Uncertainty Quantification

1. INTRODUCTION

Thin, flexible membranes made of laminated smart materials can be used as electromagnetic reflectors. Reflectors
with controllable shapes may have great potential to be used on space-based scientific telescopes and communi-
cation antennae. In this work, polyvinylidene fluoride (PVDF) has been investigated as a flexible piezoelectric
material suitable for reflector shape control. A distributed array of actuators is required for shape correction and
the ability to maintain paraboloidal geometries is desired. PVDF is a polymer exhibiting strong piezoelectricity.
It is relatively low cost and is typically manufactured as thin films. To achieve shape control with piezoelectric
laminate actuators, it is necessary to develop models that predict displacements given field inputs. Mathemat-
ical models of a PVDF laminate with segmented actuators have been proposed.'? However, the sensitivity of
reflector performance to design parameter variations and the impact of uncertainty in those parameters have
not been addressed. As the design parameters and voltage distribution have their own tolerances, it is logical to
assume that the variation in these parameters will affect shape error.

In this work, we develop a computationally-efficient implementation of a model originally proposed by Massad
and Sumali! that simulates deflection of the laminate. Then, we quantify shape error and perform a sensitivity
analysis of its physical parameters. Subsequently, we report the important parameters of the model. Via uncer-
tainty propagation, we also show that the shape error has a bimodal distribution in the presence of parameter
uncertainty. Finally, we demonstrate that optimization under uncertainty can be performed to improve shape
error in the presence of design uncertainty.
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2. PROBLEM DESCRIPTION

The smart laminate is a membrane of rectangular shape with area a x b, where a and b are measured in the x
and y directions, respectively. The laminate simulated here has three layers: the top PVDF and bottom PVDF
layer are orthotropic and each have thickness h, The laminate z-axis is oriented along the polymer stretching
direction of the top PVDF layer. The bottom PVDF layer is oriented so that the stretching direction is along
the laminate y-axis, i.e. the bottom PVDF layer is oriented 90° with respect to the top PVDF layer. Between
the two PVDF layers, the middle layer is a bonding layer made of an isotropic material, such as epoxy, with
thickness h.. Hence, the total laminate thickness h is

h = 2h,, + he.

The membrane is equipped with electrode layers, which we assume to be of negligible thickness for this
analysis. On one side, a single grounded electrode covers the membrane, while on the opposite side, the membrane
has segmented electrodes, whose voltage can be controlled individually. We only consider rectangular electrodes
with sides parallel to the x and y-axes. We define x1, and x9, as the z-coordinates of the right and left side of
the i-th segment, and similarly, y;, and ys, are the y-coordinates of the bottom and top of i-th segment

{(l',y) |x11‘ ngx?i? Y1, §y§y2z} (1)

Aside from the above restrictions, the number and distribution of electrodes is not limited.

A voltage V; is applied to the i-th electrode on the top, while the bottom electrode is grounded. On electrode
i, this voltage results in an electric field E; = V;/h that is assumed uniform through the cross section of the
laminate. The electric field F; does not change signs throughout the whole thickness h. When the top PVDF
layer expands as a result of F;, the bottom PVDF layer contracts, and vice versa, thereby creating bimorph, out-
of-plane bending. We employ an energy-based model that predicts the deflection of a laminate with orthotropic
active layers given a distribution of electrode voltages. The fundamental principle we employ is that the laminate
responds to a voltage distribution in such a way that the deformation potential energy is minimized.

We implement an efficient model that allows us to quickly calculate the laminate shape for an arbitrary
electrode pattern and voltage distribution and use model-based optimization techniques. The model output
allows us to compare the numerically calculated surface shape to an ideal shape. We compare the deflection
w calculated by the model to a reference paraboloid as it has been shown that uniform actuation results in a
paraboloidal shape of deflection.’

2.1 Mathematical model

We implemented a Ritz-based model® that can calculate the deflection of the orthotropic laminate for a given
distribution of segment voltages. The deflection of a corner-supported plate is approximated by the finite
expansion

Jmazx

w(x,y) ~ jzz:l a; cos (mﬂrg) sin (njw%) + b; cos (mjw%) sin (nyr%) ) (2)

where the basis functions satisfy the zero deflection condition at the corners,* and m; and n; are non-negative
and positive integers, respectively.? The model yields the linear matrix equation

2A C | |a Aact

|:C 2B:I [b] - |:Bact:| Va (3)
where A, B, C, A2t and B2°* are nonlinear functions of the design parameters, such that C € RimaxXJjmax jg
the matrix of elements Cj, A, B € RimaxXJmax are diagonal matrices containing A; and Bj; respectively, and

a,b € Rimax are vectors of the Reed coefficients,* a; and b;. The matrices A2°t, Bact ¢ RimaxXimax contain
Q%A?C“ and %B}wti, respectively, and V € R'=ax ig the voltage distribution with i-th component V;.



The entries of the parameter matrices are

4
e
Aj = W [D11b4m§ + 2(D12 + 2D66)a2b2m5n? + ’YjD22a47’Lﬂ 5 (4)
4
= W [,ijHb4n? + 2(D12 + 2D66)a2b2m?n? + D22a4mﬂ 3 (5)

where the orthotropic plate stiffness constants have the form

Yehg (Yll =+ }/22)hp

D1y = Dyy = 20— 22) T 1201 = sravm) (4h2 4 6hphe + 3R2), (6)
Dy = 12”("'1th53) 5 (:fyif:;f; y (4h2 + 6hyhe + 3h2), (7)
Des = 5 (?ﬁgy@) Glghf’ (4h2 + 6hyhe + 3R2), (8)
For m; # ny and my, # nj, the Cjj coeflicient has the form
Cjr = % o —Xﬁgﬂﬁg —) [Duib*m2n? + (Dia + 4Dgs)a®b>m2m3 + Di2a®b*nnl + Dasa’min?],  (9)
otherwise Cj; = 0. The orthogonality parameters are
v = {i ft}zjr;i and  xj = [(—1)™tme — 1] [(—1)ntme — 1], (10)

The actuation constants are calculated over the i-th actuator region (x1,,22,) X (y1,,¥2;). For nonzero m;,

) an; bm; . Lo, — T1; Lo, + X1, . Y2, — Y1, . Y2. + Y1,
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(11)

s am; bn; . T2, — X1, . T2, + 1, . Y2, — Y1, Y2, + Y1,
B;w =4 <WJJ + a—mjj> sin <TLj7TT> sin (njﬂ'T) sin (mjﬂ'T> cos (mﬂrT .

(12)
For m; =0,
57 = 2y 20 i (220 i (g2 ) (13)
act; (y2i — yli) : L2, — Ty, : T2, + 21,
Bj = 277an sin nﬂrT sin TLj?TT . (14)

Solving (3), the deflection of the laminate w(z, y) is calculated using formula (2). Throughout our simulations,
we used jmar = 32 basis functions. Whereas the system is linear in the coefficients a and b, the matrices on the
left and right hand side of (3) are nonlinear functions of the physical parameters, and hence the investigation
of the model as a function of these parameters is a non-trivial problem. The described model was validated
by experiments and finite element analysis.! The nominal values and tolerances for the physical and geometric
parameters are listed in Table 1. Throughout the paper we assumed uniformly spaced electrodes, for which
simulation results can be seen in Figure 1 for various voltage distributions. The model has been extended to
simulate unevenly distributed, rectangular electrodes as well to better accommodate variation and uncertainty
in the electrode dimensions.
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Figure 1: Electrode patterns and the simulated membrane shapes for various voltage distributions. The gray
area on the membrane is not covered by electrodes.
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Parameter Description Nominal value | Tolerance
Physical Parameters
Yi1 PVDF Young’s modulus 2.7 GPa +35%
Yoo PVDF Young’s modulus 2.5 GPa +35%
G2 PVDF shear modulus 0.935 GPa +5%
Y. Epoxy Young’s modulus 1.03 GPa +50%
Via PVDF Poisson ratio 0.326 +5%
Ve Epoxy Poisson ratio 0.35 +10%
ds31 Piezoeletric strain constant 23 x 10712 m/V +25%
ds Piezoeletric strain constant 2.3 x 1072 m/V +25%
Geometric Parameters
a,b Laminate length, width 97 mm +5%
ko PVDF thickness 52 pm +20%
he Epoxy thickness 30 pum +100%
Bor Non active PVDF border 5 mm +10%
Sep Separation between the electrodes 1 mm +5%
Other Parameter
% Voltage Between +200 V | +5%

Table 1: Model parameters and their nominal values used in this analysis.®> The range of uncertainty of each
parameter is indicated in the Tolerance column.

2.2 Implementation of the model

The implementation of the model, as well as the consequent simulations and analyses, were done in MATLAB. In
each simulation, the values of simulation parameters are first determined, including the physical and geometric
parameters, electrode voltages, and modeling parameters (e.g. jmaz). Then the matrices governing (3) are
calculated and the system is solved using MATLAB’s linear solvers. Finally, the membrane deflection (2) is
evaluated on a chosen grid. The scalar responses used for statistical analysis (see Sections 3.1-3.2) can be
calculated from the membrane deflection w.

The linear model described above is computationally efficient when calculating the coefficients a and b: our
investigation showed that even for moderate grid sizes — e.g. 256 x 256 — the evaluation of the deflection function
w could take 100 times longer than solving the linear model. To mitigate this effect, our implementation for the
evaluation of w precalculates the shape functions in (2) on the desired grid, hence large batches of simulations
can be efficiently performed without the need for reevaluating the shape functions. In rest of the paper, we
consider an 8 x 8 uniform electrode grid and uniform voltage distribution.

3. METHODS
3.1 Relative shape error
We compared the deflection calculated by the model to a reference paraboloid w,.r. We used the root square
error to quantify the relative shape error; namely,

[[wrer |2

(15)
where w and wy.y are the deflections at each discretization point on the membrane surface. Firstly, we param-
eterized a reference paraboloid that is symmetrical around the z-axis with zero height at the corners (z1,y1),
(x1,92), (z2,y1), and (z2,y2) of the rectangular domain, with center at (0,0) and with the peak height wpeqs-
The equation of a symmetric paraboloid is given as

Wref = Wrer (T, ) = k(2 + y°) + j(z +y) + hy. (16)



We also obtained two equations from the corner-supported condition:
0=k(zf +yi) +i(er+y1) +hy,  0=k(z3 +y3) +j(wz +y2) + Dy (17)
Solving the system (17) for the unknown coefficient & in terms of h, yielded

To+ Y2 — 21—

k=% .
(z1+y1) (23 +v3) — (22 +y2) (23 +7)

P

3.2 Zernike polynomial decomposition

Examining the deviation of membrane shapes from a perfect paraboloid can yield some understanding of the
error. However, decomposing the achieved shape into characteristic shapes can reveal more information about
the nature of shape error. A common method used in optics is decomposition into Zernike polynomial basis,’
where the even and odd Zernike polynomials are respectively given by the formulas

Zy'(pyp) = Ry (p) cos(mep),  Z,™(p,p) = Ry (p) sin(m o). (18)

Here m and n are natural numbers with n > m, ¢ is the azimuthal angle, p is the radial distance 0 < p <1, and
R, are the radial polynomials defined as

n—m

7o : (1" (n— k)! n-2k
R =
S e R

for (n — m) even, and are zeros for (n — m) odd. Zernike polinomials are orthogonal on the unit disk, and
|Z"(p, )| < 1. For our analysis, we chose the first twelve 12 Zernike polynomials, of which some are shown in
Figure 2. Then w/i(r,0) = 2;2:1 cpzp(r, 0) is an approximation of the simulated membrane deflection w. To

find ¢ = [c1, ¢3, ..., c12], We used a least squares approximation.

To use Zernike decomposition, we needed to map our rectangular domain onto the unit disk. There are
several ways of doing this, but unlike Sumali et al.,! we transformed a rectangular domain to a similar rectangle

using the rule
; 2 2

z = ——(x — Ax/2), —(y — Ay/2).

(19)
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Figure 2: Plots of select Zernike polynomials.

3.3 Sensitivity analysis

For any problem of uncertainty quantification and parameter estimation, it is important to ascertain the sensitive
and insensitive parameters. One of our main focuses in this work was to identify the sensitive and significant
parameters, so that the manufacturer can consider improving the tolerances of these physical or geometric



parameters. We defined our quantity of interest (Qol) to be the relative shape error (RSE) in (2). To identify the
significant and influential parameters of the model, we performed sensitivity analysis. We defined the tolerance
for each parameter in Table 1 based on product specifications and subject matter expertise. We computed
sensitivity of RSF to each parameter by performing one-at-a-time (OAT) variable sweep over a uniform interval,
by performing an multi-variable Latin Hypercube Sampling (LHS) over the parameter space for 14 parameters,
and by calculating Partial Rank Correlation Coefficient (PRCC).® We used these three methods to generate a
ranking of parameters based on their influence on model response.”

3.4 Optimization under uncertainty

Optimization under uncertainty is an inverse problem. We have performed two different types of optimization.
In one, we estimated the optimum mean value of the parameters under a specified tolerance; in the other, we
searched for improved tolerance value for each of the design parameters. We briefly describe these two approaches
below.

3.4.1 Mean value optimization

In this approach we maintained all the variations in the parameter and searched for a new mean or nominal
values that result in improved RSE distribution. We chose to minimize the value of an arbitrarily chosen RSE
quantile. MATLAB’s fminsearch method was used to estimate the optimum values for six most significant
parameters reported. The mean values and tolerances of other non-influential parameters were left unaltered.

3.4.2 Tolerance optimization

We also searched for improved upper and lower bounds for parameter variations that yield a distribution with
lower relative shape error despite input uncertainty. This can be considered as a combination of design and
process optimization. Differential Evolution (DE)®? is an effective evolution algorithm to find approximate
solutions to complex problems with minimal assumptions on the parameters. A typical Differential Evolution
algorithm starts with a set of initialization parameter values. For practical purposes, the difference between the
optimized upper and lower bounds cannot be too small, as we need to accommodate some uncertainty resulting
from the manufacturing process. We searched for a set of lower and upper bounds within the current boundaries,
so we modified the original DE to Constrained Differential Evolution (CDE) by adjusting the objective function.
The CDE algorithm takes the input of a combined vector of lower and upper bounds. We wish to evaluate
the estimated quantile value ¢ for each iteration of CDE. Ideally ¢ should be a value between 85% and 95%
to accommodate outliers. However, because of the generally expensive computation of DE, we decided to take
a small sample out of each interval and take the maximum value of the RSFE as the sampling distribution is
expected to have a shorter tail compared to the true distribution. Therefore, the objective function evaluated the
maximum of RSFE from the sampled parameters within the range. Note that during the iterations, the boundary
candidates could fall out of range. Hence a large penalty was added to the candidate which exceeds any set
bounds, and the order of lower and upper bounds were adjusted for the cases where they became distorted. The
rest of CDE followed the standard DE procedure after initialization with objective function, repeat mutation,
recombination and selection through our objective function.

4. RESULTS
4.1 Sensitivity analysis

Figure 3 represents the result from OAT sensitivity analysis when we change the mean value of one variable and
enforce other variables to remain at their nominal values. This figure shows that when the uncertainties of all
other parameters are absent, Bor, a, b, G12, and Yas are the most sensitive parameters. The slopes of the lines
represents the sensitivity of each of the parameters.

Figure 4 shows the change in RSFE against four parameters when all parameters were allowed to have uncer-
tainties specified in Table 4. We used a LHS scheme to generate 10000 samples in the 14-dimensional parameter
space. On the scatter plots of the parameter value against RSE, we fitted a straight line and used the slopes of
these lines to rank the parameters according to their influence on model response. We have conducted these two
analyses for all 14 parameters of our model and also calculated the sensitivity of the uniform voltage input.
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Figure 3: Sensitivity analysis for different parameters, evaluated one at a time. Each parameter is varied
independently while fixing others to their nominal values. The horizontal axis shows percentage change of the
parameter value from its nominal value; the vertical axes is the amount of relative shape error.
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Figure 4: LHS sensitivity analysis for parameters Y71, Yas, Ye, G12. RSE is plotted against parameter change,
while all parameters are allowed to vary within their uncertainty ranges. A line is fitted to elucidate the change
in RSE with changing parameter value.



Sensitivity rank | LHS sensitivity rank | Significance PRCC
Parameter (OAT) (Latin Hypercube) rank PRCC rank
hs 9 11 7 0.0121 11
he 10 13 7 0.0110 12
a 2 5 0.3866
b 2 5 -0.4387 1
Y11 5 10 3 -0.0307
Yoo 4 5 2 0.2411 4
Y, 11 12 7 0.0063 13
Gi2 3 6 1 -0.2712 3
V12 7 2 7 0.0277 7
Ve 8 7 (i -0.0153 10
D3y 13 8 7 -0.0168 9
Dss 12 9 7 0.0234 8
Bor 1 3 4 0.1042 5
Sep 4 6 0.0017 14

Table 2: Summary of OAT, LHS, and PRCC sensitivity analysis.

Table 2 represents the summary of the sensitivity analysis. We observe that, even though some parameters are
very sensitive, they do not have significant effect on the response (RSFE) as their range of variation (tolerance)
is very limited. Dimensions a and b have the highest sensitivity score, but as they vary by only 5%, their
significance rank is less than that of Gis or Yss. Finally, to further support our findings from the LHS, we
calculated the Partial Rank Correlation Coefficients (PRCC).6 The PRCC values are also given in Table 2 and
our visual observations and ranking using the slopes were consistent with the PRCC values.

4.2 Distribution of shape error

We calculated the distribution of shape error by propagating the uncertainty of input parameters to the output
response. We generated 10000 samples of all the 14 parameters by LHS from uniform distributions having the
mean values and bounds as shown in Table 4. We evaluated the RSE for each of these parameter vectors. We
found that the shape error has a bimodal distribution that can be seen in Figure 5. The “dip” between the two
modes is around 0.0245 as indicated by the vertical red dashed line in Figure 5.
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Figure 5: Relative shape error distribution generated from uncertainty propagation.
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Figure 6: Average membrane shapes and their difference.

We examined the qualitative and quantitative differences and similarities between the primary and secondary
modes of the shape error distribution. After separating the two modes of shape error distribution at 0.0245, we
averaged the a and b coefficients within each mode and calculated the corresponding membrane shape w. As it
can be seen in Figure 6, the average shapes corresponding to the primary and secondary modes differ significantly
in an asymmetric manner. We calculated the Zernike decomposition of the simulation results as described in
Section 3.2, to quantify this difference. The membrane deflections only had z1, z5, and zg components that were
non-zero, of which zg (astigmatism) is responsible for the asymmetry seen in Figures 6. The histogram of the z4
coefficient in Figure 7 shows a clear difference between the two modes; the primary mode itself is bimodal, while
the secondary mode of cg is severely skewed.
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Figure 7: Distribution of coefficients of the zg Zernike polynomial for the primary and secondary modes.

We also investigated the distributions of the parameter values in the two modes to find the parameters
potentially responsible for the bimodality. Figure 8 shows that the distributions of Y;; and G5 (which were found
to be significant parameters in the sensitivity analysis above) differ significantly between the two modes. This
indicates that Y7; and G152 may have important roles in the observed bimodality of the shape error distribution.
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4.3 Optimization under uncertainty

11
CDF's of G5 and Y7 for the primary and secondary modes.

We optimized the six most sensitive parameters to get a better RSFE distribution under specified uncertainty
and found a parameter set that produced improved RSE distributions compared to that of the nominal values.
Figure 9 shows the cumulative distribution function (CDF) of RSE with nominal parameter values as given in
Table 1, and the CDF of RSFE with optimized values given in Table 3. The CDF's were obtained by perturbing the
model with two different sets of 10000 random samples. This result demonstrates that even a simple algorithm
like fminsearch can find improved values for the design parameters of the reflectors. The mean values of the six
parameters before and after the optimization are listed in Table 3.

1

1 — s
0.8 _
0.6 - -
=
A
O
0.4 -
0.2+ |
= =Original CDF of RSE
——fminsearch-optimized CDF of RSE
0 | | | I
0 0.02 0.04 0.06 0.08

Relative Shape Error (RSE)
Figure 9: Comparison of shape error CDF's of fminsearch-optimized and original parameters.

Parameter | Original value | Optimized value | Unit
a 97 96.4 mm

b 97 97,1 mm

Yii 2:7 5.9359 GPa

Yoo 2.5 1.4729 GPa

Gi2 0.935 1.1106 GPa
Bor 5 3.2 mm

Table 3: Optimization results using MATLAB’s fminsearch.
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There is a difference between the optimized width and length of the laminate.
warranted to explain this phenomenon.

4.4 Tolerance optimization

Further investigation is

We generated 10000 random LHS samples from the original bounds and the optimized bounds obtained by CDE
respectively, then computed the RSE distribution for both set of samples. Figure 10 shows the CDF of the two
set of errors produced by two types of uncertainty bounds on the parameters (original tolerance bounds and
CDE-optimized tolerance bounds). The plot indicates that our method improves the error in most quantiles
of the distribution, and the magnitude of improvement is especially significant between quantiles 30% to 86%.
Table 4 shows the original and optimized parameter values and tolerance ranges. The table indicates that tighter
tolerances on some parameters (e.g. Gio, and Y71) will result in better error minimization.
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Figure 10: Comparison of shape error CDFs of Differential Evolution-optimized and original parameters.
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Original Original New New .
Parameter . . Unit
nominal values | tolerance (£%) | nominal values | tolerance (+%)
hp 52 20 44 .47 6.9 pm
he 30 100 14.38 100 pm
a 97 5 95.68 1.24 mm
b 97 5 97.62 1.06 mm
Y11 2.7 35 3.15 15.39 GPa
Yoo 2.5 35 2.367 31.35 GPa
Y, 1.03 50 0.866 2.48 GPa
Gi2 0.935 50 1.135 20.36 GPa
V12 0.3260 5 0.3260 5 GPa
Ve 0.35 10 0.335 0.32 -
ds1 23 25 25.78 11.02 m/V
dso 2.3 25 2.3 25 m/V
Bor 0.005 10 0.00468 3.89 m
Sep 0.001 5 0.001 4.76 m
v 200 5 199.76 2.92 A%

Table 4: Parameter values and tolerance ranges after optimizing with Constrained Differential Evolution
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5. CONCLUSION

In this work, we have implemented a model for a corner supported PVDF laminate to enable computational
sensitivity and uncertainty analyses. We defined a relative error measure to quantify the deformation of the
laminate from an ideal paraboloid shape. Using OAT and LHS scheme we have identified the sensitive and
significant parameters of the model. Via uncertainty propagation analysis, we found an unexpected bimodal
behavior in the RSE distribution under parameter uncertainty. Our investigation of the two modes via Zernike
decomposition revealed that astigmatism characterized their difference. We have performed optimization under
uncertainty for this model for two different scenarios, and identified nominal values for six important param-
eters that would produce a better RSFE distribution under manufacturer specified uncertainty of the design
parameters. Moreover, we have recommended the modification of the tolerance level of parameters to achieve an
improved RSFE distribution. Optimization obtained with fminsearch and CDE algorithms indicate that more
advanced methods can be incorporated to find the optimum design parameters for a desired shape or shape error
characteristics.
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