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Chapter 1

The Resiliency of Multilevel Methods
on Next Generation Computing
Platforms: Probabilistic Model and Its
Analysis

Mark Ainsworth and Christian Glusa

Abstract The reduced reliability of next generation exascale systems means
that the resiliency properties of a numerical algorithm will become an impor-
tant factor in both the choice of algorithm, and in its analysis. The multigrid
algorithm is the workhorse for the distributed solution of linear systems but
little is known about its resiliency properties and convergence behavior in
a fault-prone environment. In the current work, we propose a probabilis-
tic model for the effect of faults involving random diagonal matrices. We
summarize results of the theoretical analysis of the model for the rate of
convergence of fault-prone multigrid methods which show that the standard
multigrid method will not be resilient. Finally, we present a modification of
the standard multigrid algorithm that will be resilient.

1.1 Introduction

Exascale computing is anticipated to have a huge impact on computational
simulation. However, as the number of components in a system becomes
larger, the likelihood of one or more components failing or function abnor-
mally during an application run increases. The problem is exacerbated by
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the decreasing physical size of basic components such as transistors, and the
accompanying increased possibility of quantum tunneling corrupting logic
states [6, 7].

Current day petascale systems already exhibit a diverse range of faults
that may occur during computation. These faults can arise from failures in
the physical components of the system, or intermittent software faults that
appear only in certain application states. One source of faults is cosmic radi-
ation with charged particles, which can lead to memory bit-flips or incorrect
behavior of logic units. Future HPC systems are expected to be built from
even larger numbers of components than current systems, and the rate of
faults in the system will increase accordingly. It is generally accepted that
future large-scale systems must operate within a 20MW power envelope. This
will require the usage of lower voltage logic thresholds. Moreover, cost con-
straints will result in greater utilization of consumer grade components, with
accompanying reduced reliability [7].

Roughly speaking, faults can be classified as follows [3]: hard or stop-
fail faults are faults which would otherwise lead to an immediate program
termination, unless treated on the system level. Soft faults are those leading
to program or data corruption, and which might only result in an erroneous
program termination after some delay.

Reported fault rates seem to vary significantly from system to system. On
current machines, hard faults have been reported as often as every 4 to 8
hours on the Blue Waters system [7], and (detected) L1-cache soft errors as
often as every 5 hours on a large BlueGene/L system [8]. The next-generation
supercomputers could have a mean-time to failure of about 30 minutes [21].

Many of the existing algorithms in use today were derived and analyzed
without taking account of the effect of these kinds of faults. We believe that
the dawning of the exascale era poses new, and exciting, challenges to the
numerical analyst in understanding and analyzing the behavior of numerical
algorithms on a fault-prone architecture. Our view is that on future exascale
systems, the possible impact of faults on the performance of a numerical
algorithm must be taken fully into account in the analysis of the method.

In order to alleviate the impact of faults and ensure resilience in a fault-
prone environment, several techniques have been proposed and implemented
in various parts of the hardware-software stack. Checkpointing on the system
and the application level as well as replication of critical program sections
are widely used [15, 7, 5]. These techniques can be coupled with statistical
analysis, fault models, and hardware health data [7]. On the application level,
Algorithm-Based Fault Tolerance (ABFT) describes techniques that dupli-
cate application data to create redundancy [16]. ABFT has been explored in
the context of sparse linear algebra [20, 19], and specifically for matrix-vector
products in stationary iterative solvers [10, 8, 9, 17, 22]. All methods have
in common that a balance needs to be struck between protecting against
corruption of results and keeping the overhead reasonable.
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The multigrid method is the workhorse for distributed solution of linear
systems but little is known about about its resiliency properties and con-
vergence behavior in a fault-prone environment [12, 17]. The current article
presents a summary of our recent work addressing this problem [1, 2].

The outline of the remainder of this article is as follows: We give a short
introduction to multi-level methods in Section 1.2. In Section 1.3, we intro-
duce a model for faults and show simulations of the convergence behavior
of a fault-prone two-level method for a finite element method. Finally, in
Section 1.4, we summarize the analytic bounds on the convergence rate, and
illustrate their behavior with further simulations. We refer the interested
reader for further details and proof to the articles [1, 2].

1.2 Multi-level methods

Let 2 C R? be a polygonal domain and set V := Hg (£2). Starting from
an initial triangulation 7 of 2 into simplices, we obtain 7; through uniform
refinement of 7;_;. We define the finite element spaces V; := {v € H} (22) N
C(Q) such that v|K € Py (K), VK € T;}, and set n; := dimV]. For f €
H~1(£2), consider the well-posed problem:

Find w € V such that a(u,v) = L(v), Vv eV,
where a(u,v) = [, Vu- Vv and L(v) = [, fv. The discretized problem is:

Find w € V] such that a(u,v) = L(v), Yv e V.

Let (;Sl(z) for ¢ = 1,...,n; be the global shape function basis of V;, and ¢;
the vector of global shape functions. Then the stiffness matrix and the load
vector are defined as A; := a(¢;, ¢;) and b; := L(¢;), so that the problem
becomes:

Find u = ¢; - 2; € V; such that  A;x; = b;. (1.1)

Since V;_1 C V}, there exists a restriction matrix rf_H satisfying ¢; = Tf+1¢5l+1

along with the corresponding prolongation matrix pé“ = (rf H)T. In partic-

ular, this means that the stiffness matrix on level [ can be expressed in terms
of the matrix at level [ + 1:

A= a (g, 1) = rip1a (b1, diar) P =i Arapl T

We shall omit the sub- and superscripts on r and p whenever it is clear
which operator is meant. We shall consider solving the system (1.1) using
the multigrid method [4, 18, 13, 14, 23]. The coarse-grid correction is given
by x; < x4 —(—pAf_llr (by — Ax;), and has iteration matrix C; := I—pAf_lerl,
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while the damped Jacobi smoother is given by S; = I — HDl_lAl, where D is
the diagonal of A; and 0 the relaxation parameter. The multi-level method
for the solution of Apxy = by, is given in Algorithm 1. Here, 11 and vy are
the number of pre- and post-smoothing steps, 7 is the number of coarse-grid
corrections, and # is the smoothing parameter.

Function M (right-hand stde by, initial guess z;)

if [ =0 then return Aalxo (Exact solve on coarsest grid)
else
for i < 1 to v1 do
| T a1 + GDZ_I (by — Ayzy) (Pre-smoothing)
di—1 <1 (b — Axy) (Restriction to coarser grid)
e,(’O_)I 0
for j < 1 to v do
’ egjjl — M;_4 (dl_l,el(izl)) (Solve on coarser grid)
T T +pel(z)1 (Prolongation to finer grid)
for i < 1 to v7 do
| T 1 + GDfl (by — Ayzy) (Post-smoothing)
return z;

Algorithm 1: Multi-level method M;

1.3 Fault model

The first issue is to decide on how the effect of a fault should be incorporated
into the analysis of the algorithm. The simplest and most convenient course
of action if a component is subject to corruption, or fails to return a value,
is to overwrite the value by zero. We therefore propose to model the effect of
a fault on a vector using a random diagonal matrix X, of the form

X1
1 with probability 1 — ¢,

0 with probability q.
Xn

In particular, if a vector x € R" is subject to faults, then the corrupted
version of x is given by X'z. If all y; are independent, we will call the random
matrix a matrix of component-wise faults. More generally, we shall make the
following assumption on the set S of all the involved faults matrices X:

(A) There exist constants v, C. > 0, and for each X € S there exists ex > 0
such that for all X € S

a. X is a random diagonal matrix.
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b. ”VELI‘ [X]"Q = Inax; ; |COV [Xii,ij“ S V.
c. eX =exl.
d. lex — 1] < Cev.

We will think of v as being small. This means that each of the fault matrices
X is close to the identity matrix with high probability. Obviously, the model
for component-wise faults introduced above satisfies these assumptions.

In the remainder of this work, we write random matrices in bold letters.
If a symbol appears twice, the two occurrences represent the same random
matrix and are therefore dependent. If the power of a random matrix appears,
we mean the product of identically distributed independent factors.

In summary, we shall model the application of a fault-prone Jacobi
smoother as

T < T+ Xl(pre/pOSt)eDfl (by — Axy)

which has the same form as a standard Jacobi smoother in which the iteration
matrix has been replaced by a random iteration matrix

Sl(pre/post) —I_ Xl(pre/post) OD; ' A,

Here and in what follows, Xl(') are generic fault matrices. Suppose that only
the calculation of the update can be faulty, and that the previous iterate is
preserved. This could be achieved by writing the local components of the
current iterate to non-volatile memory or saving it on an adjacent node. The
matrices X,""/"*) and D' commute, so that without loss of generality,
we can assume that there is just one fault matrix, because any faults in the
calculation of the residual can be included in X l(pm/ Post) as well. Moreover,
while the application of D;” 1'and A; to a vector is fault-prone, we assume
that the entries of Dz_l and A; itself are not subject to corruption, since per-
manent changes to them would effectively make it impossible to converge to
the correct solution. The matrix entries are generally computed once and for
all, and can be stored in non-volatile memory which is protected against cor-
ruption. The low writing speed of NVRAM is not an issue since the matrices
are written at most once.
The fault-prone two-level method has iteration matrix

ETG,t (V1, 1/2) _ (Sl(post))’/2 c (Sl(pre))ljl |
where

Ci=1I-xPpA x0r x4,
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Function M (right-hand side by, initial guess ;)

if [ =0 then return AEIIQ (Exact solve on coarsest grid)
else
for i < 1 to v; do
’ T 1 + Xl(pm)GDl_l (by — Ayzy) (Pre-smoothing)
di_1 + XI(I)erl(A) (by — Ayay) (Restriction to coarser grid)
el(o_)l +~0
for j < 1 to v do
’ el(]_>1 — My_1 (dl_l,el(J_El)> (Solve on coarser grid)
T — x; + Xl(p)pel(z)l (Prolongation to finer grid)
for i + 1 to v2 do
| T — x; + Xl(pOSt)ﬂDfl (by — Ayzy) (Post-smoothing)
return z;

Algorithm 2: Fault-prone multi-level method M,

Similar arguments as for the smoother can be used to justify the model of
faults for the coarse-grid correction. The fault-prone multi-level algorithm is
given in Algorithm 2.

In order to illustrate the effect of the faults on the convergence of the
algorithm, we apply the two-level version of Algorithm 2 with one step of pre-
and post-smoothing using a damped Jacobi smoother with optimal smoothing
parameter 0 = % for a piecewise linear discretization of the Poisson problem
on a square domain.

Fig. 1.1 Mesh for the square domain.

The domain is partitioned by a uniform triangulation (Figure 1.1), and we
inject component-wise faults as given in eq. (1.2). We plot the evolution of
the residual norm over 30 iterations for varying number of degrees of freedom
ny, and different probabilities of faults ¢ in Figure 1.2 on page 11. We can
see that as ¢ increases, the curves start to fan out, with a slope depending
on the number of degrees of freedom nj.
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1.4 Summary of results on convergence

In [1, 2], a framework for the analysis of fault-prone stationary iterations was
proposed. We summarize the obtained convergence results whose proofs can
be found in [1, 2].

Theorem 1 ([1]). Let 2 C R? with 92 € C? or 2 convex and let A; be the
stiffness matrices associated to the finite element discretization of a second
order elliptic PDE on a hierarchy of quasi-uniform meshes, and let

Bre.p (vi,vs) = (Sl(:post)yz o (SI(;py-e))Vl

be the iteration matrix of the two-level method with component-wise faults of
rate q in prolongation, restriction, residual and smoother:

Cr=1-xPpA;t 2D rxi® A,
S}lpre/post) e [ Xl(;pre/post)DzlAL'

Assume that the usual conditions for multigrid convergence hold. Then the
rate of convergence of the fault-prone two-level method is bounded as

4—d
gn > d < 4,
0(Erg,r (v1,12)) < |Bra,L (vi,va)l4 +C 1 q(logny)? d =4,
q d >4,

where Erc r, Cr and Sp are the unperturbed two-level iteration matriz,
coarse-grid correction and Jacobi smoother and |-| 4 is the energy norm. C
1s independent of L and q.

In Figure 1.3 (top) on page 12, we plot the estimated rate of convergence
of the two-level method for the 2d Poisson problem introduced above. We use
1000 iterations to estimate o (Ere,r (1,1)) for component-wise faults with
varying probability ¢ and varying problem size ny. Moreover, we plot the
behavior predicted by Theorem 1 and the level of p (Erg,r(1,1)) = 1. We
can see that their slope matches.

Experimentally, it can be observed that the result also holds for the case
of an L-shaped domain and for block-wise faults, provided the size of the
blocks is fixed, even though the conditions of Theorem 1 are not satisfied.

The above results indicate that two-level methods without protection of
some components can not be used in a fault-prone environment. In order to
preserve convergence independent of the number of degrees of freedom, we will
have to protect one of the fault-prone operations. The cheapest operations are
the restriction and the prolongation. The next result shows that the two-level
method converges, if the prolongation is protected.

Theorem 2 ([1]). Let
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v Vi
ETG,L (1/17 V2) _ (S%DOSt)) G (Sgpm)>
with smoother and coarse-grid correction given by

S](_Jpre/post) 7 XépTE/pOSt)DzlAL7
Cp=T-pA7! 20 rai®a,.

Provided the usual conditions for multigrid convergence and Assumption (A)
with

5= {20, 2P, 20, 20

hold for some v > 0, we find for any level L that the fault-prone two-level
method converges with a rate bounded as

o(Erg,r (v1,v2)) < |Erg,L (v2,v1)], + Co.

and C' is independent of v and L.

We note that the result holds for more general types of faults including
block-wise faults. In Figure 1.3 (bottom) on page 12, we plot the rate of
convergence of the two-grid method for the already discussed example, this
time with protected prolongation. We can see that the rate is essentially
independent of the size of the problem, and even is smaller than one for large
values of ¢q. The protection can by achieved by standard techniques such as
replication. In order to retain performance, the protected prolongation could
be overlapped with the application of the post-smoother.

The following theorem shows that the result carries over to the multi-level
case:

Theorem 3 ([2]). Provided usual conditions for multigrid convergence and
Assumption (A) with

S:

=

{X[(:)]_a Xl(A)7 XI(PTE)’ Xl(POSt)}
l

1

hold, the number of smoothing steps is sufficient and that v sufficiently small,
the perturbed multi-level method converges with a rate bounded by

T3¢+ Cv, v 22,

E <
o L(V1,V2,7))_{ E+Cv, v=2,

2
1+v1-4C,€

where

&= IlnéaLx |Era,i (va, 1)y,
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and C, and C depend on vi, vy and the convergence rate of the two-level
method, but are independent of L and v.

We also plot the rate of convergence of fault prone multi-level algorithms
with one coarse-grid correction for component-wise faults and protected pro-
longation in Figure 1.4 on page 13, and observe the predicted behavior.

In the current work, we proposed a probabilistic model for the effect of
faults involving random diagonal matrices. We gave a summary of the theoret-
ical analysis of the model for the rate of convergence of fault-prone multigrid
methods which show that the standard multigrid method is not resilient. Fi-
nally, we presented a modification of the standard multigrid algorithm that
is fault resilient.

References

1. Ainsworth, M., Glusa, C.: Is the Multigrid Method Fault Tolerant? The Two-Grid
Case. SIAM Journal on Scientific Computing 39(2), C116-C143 (2017). DOI
10.1137/16M1100691

2. Ainsworth, M., Glusa, C.: Is the multigrid method fault tolerant? The Multilevel Case.
SIAM Journal on Scientific Computing (Accepted)

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing 1(1), 11-33 (2004)

4. Bramble, J.H.: Multigrid methods, vol. 294. CRC Press (1993)

5. Cappello, F.: Fault tolerance in petascale/exascale systems: Current knowledge, chal-
lenges and research opportunities. International Journal of High Performance Com-
puting Applications 23(3), 212-226 (2009)

6. Cappello, F., Geist, A., Gropp, B., Kale, L., Kramer, B., Snir, M.: Toward exascale
resilience. International Journal of High Performance Computing Applications 23(4),
374-388 (2009)

7. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale
resilience: 2014 update. Supercomputing frontiers and innovations 1(1), 5-28 (2014)

8. Casas, M., de Supinski, B.R., Bronevetsky, G., Schulz, M.: Fault Resilience of the
Algebraic Multi-grid Solver. In: Proceedings of the 26th ACM International Conference
on Supercomputing, ICS ’12, pp. 91-100. ACM, New York, NY, USA (2012). DOI
10.1145/2304576.2304590

9. Cui, T., Xu, J., Zhang, C.S.: An error-resilient redundant subspace correction method.
Computing and Visualization in Science 18(2), 65-77 (2017). DOI 10.1007/s00791-
016-0270-6. URL http://dx.doi.org/10.1007/s00791-016-0270-6

10. Elliott, J., Mueller, F., Stoyanov, M., Webster, C.G.: Quantifying the impact of single
bit flips on floating point arithmetic. Tech. Rep. ORNL/TM-2013/282, Oak Ridge
National Laboratory (2013)

11. Glusa, C.: Multigrid and domain decomposition methods in fault-prone environments.
Ph.D. thesis, Brown University (2017)

12. Goddeke, D., Altenbernd, M., Ribbrock, D.: Fault-tolerant finite-element multigrid
algorithms with hierarchically compressed asynchronous checkpointing. Parallel Com-
puting 49, 117-135 (2015)

13. Hackbusch, W.: Multi-grid methods and applications, vol. 4. Springer-Verlag Berlin
(1985). DOI 10.1007/978-3-662-02427-0



10

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Mark Ainsworth and Christian Glusa

Hackbusch, W.: Iterative solution of large sparse systems of equations, Applied Math-
ematical Sciences, vol. 95. Springer-Verlag, New York (1994). DOI 10.1007/978-1-
4612-4288-8

Herault, T., Robert, Y.: Fault-Tolerance Techniques for High-Performance Computing.
Springer International Publishing (2015). DOI 10.1007/978-3-319-20943-2

Huang, K.H., Abraham, J.: Algorithm-based fault tolerance for matrix operations.
Computers, IEEE Transactions on 100(6), 518-528 (1984)

Huber, M., Gmeiner, B., Rude, U., Wohlmuth, B.: Resilience for massively parallel
multigrid solvers. SIAM Journal on Scientific Computing 38(5), S217-S239 (2016)
McCormick, S.F., Briggs, W.L., Henson, V.E.: A multigrid tutorial. STAM, Philadel-
phia (2000)

Shantharam, M., Srinivasmurthy, S., Raghavan, P.: Characterizing the Impact of Soft
Errors on Iterative Methods in Scientific Computing. In: Proceedings of the Interna-
tional Conference on Supercomputing, ICS 11, pp. 152-161. ACM, New York, NY,
USA (2011). DOI 10.1145/1995896.1995922

Sloan, J., Kumar, R., Bronevetsky, G.: Algorithmic approaches to low overhead fault
detection for sparse linear algebra. In: Dependable Systems and Networks (DSN), 2012
42nd Annual IEEE/IFIP International Conference on, pp. 1-12. IEEE, Boston, MA,
USA (2012)

Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P., Belak,
J., Bose, P., Cappello, F., Carlson, B., et al.: Addressing failures in exascale computing.
International Journal of High Performance Computing Applications 28(2), 129-173
(2014)

Stoyanov, M., Webster, C.: Numerical Analysis of Fixed Point Algorithms in the Pres-
ence of Hardware Faults. SIAM Journal on Scientific Computing 37(5), C532—-C553
(2015). DOI 10.1137/140991406

Trottenberg, U., Oosterlee, C.W., Schiiller, A.: Multigrid. Academic Press Inc., San
Diego, CA (2001). With contributions by A. Brandt, P. Oswald and K. Stiiben



1 Resiliency of Multilevel Methods on Next Generation Computing Platforms 11

— np =49 — np =3,969 e—e np =261,121 <— nL = 16,769,025
— np =225 — np=16,129 v n; =1,046,529 » » ng = 67,092,481
«— np =961 =—a np =065025+— ng=4,190,209

. q=0.0 g = 0.000158
10 E 1 1 1 1 | 3 | | I

g = 0.000251 q = 0.000398

1 1 1 I I

1 1 1

g = 0.000631 q = 0.00158

T T

Residual norm

3 T 3
3 i W _
>y L b T ]
. ¢ = 0.00251 ¢ = 0.00398
184 I I [SiSd I I E IS 1 1 I
;
L an = S <<§

Iterations

Fig. 1.2 Evolution of the norm of the residual of the two-level method for the 2d Poisson
problem on square domain and component-wise faults in prolongation, restriction, residual
and smoother.



12 Mark Ainsworth and Christian Glusa

20.0
13.0
8.448
5.49
3.568
2.319
1.507

Probability of faults ¢

10.9795

— O =gn}°®

e p=1 0.6366
104 b )l e el 0.4137
10? 10°® 10* 10° 10° 107
Degrees of freedom nr,

20.0

[ 13.0
107" 5 8.449
_ | 5.491
-y 3.569

5 2.32
1.508

Probability of faults ¢

107°F i B
: 1 [H0.9799
0.6369

1074 ot il el il 0.4139
10? 10° 10* 10° 10° 107
Degrees of freedom nr,

Fig. 1.3 Asymptotic convergence rate ¢ (Erq,r (1, 1)) of the fault-prone two-level method
for the 2d Poisson problem on square domain with component-wise faults in prolongation,
restriction, residual and smoother (top) and protected prolongation (bottom).
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Fig. 1.4 Asymptotic convergence rate ¢ (Er (1, 1,2)) of the fault-prone multi-level method
for the 2d Poisson problem on square domain with component-wise faults in prolongation,
restriction, residual and smoother (top) and protected prolongation (bottom).



