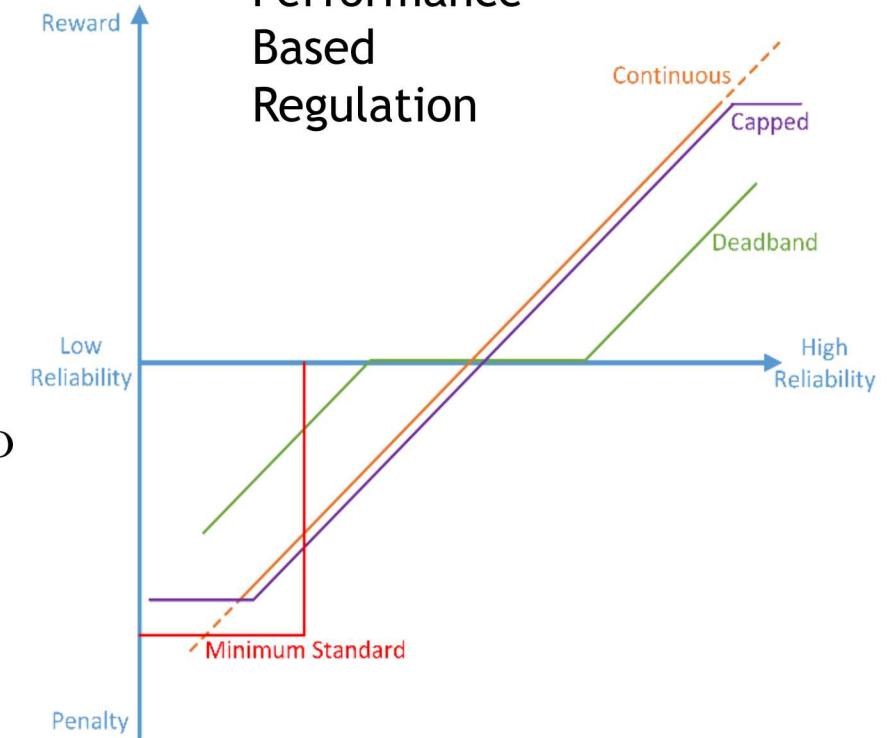


Co-optimization to Integrate Power System Reliability Decisions with Resiliency Decisions


Bryan Arguello

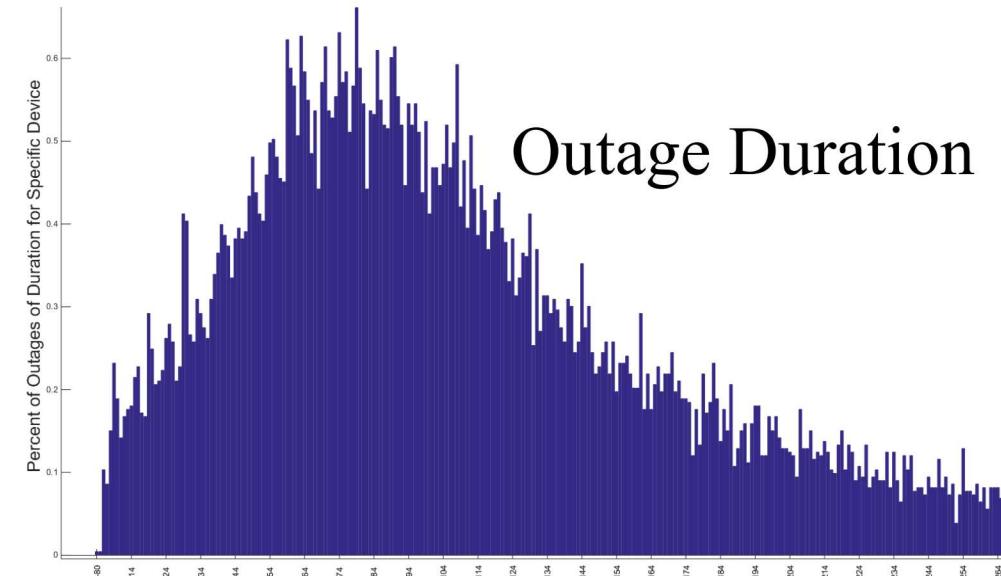
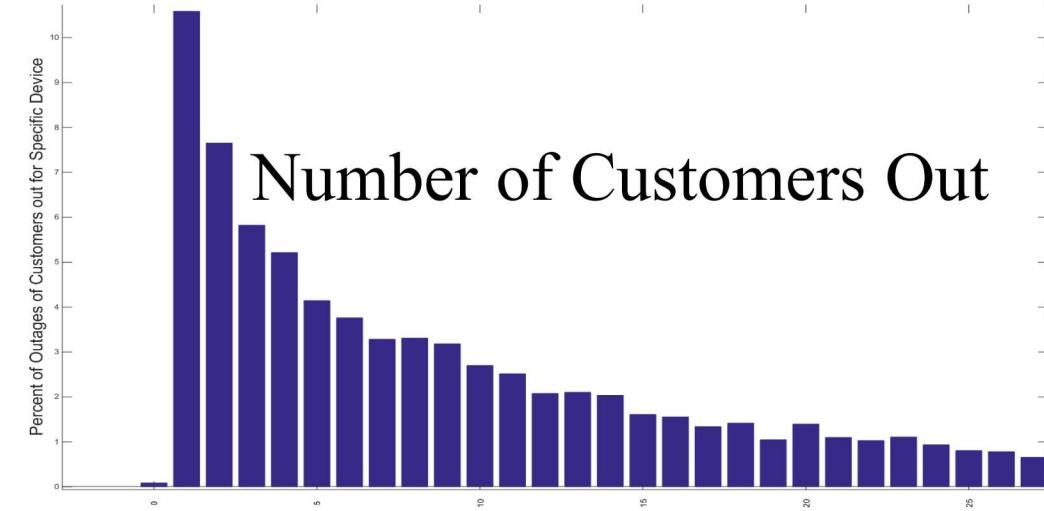
Team: Bryan Arguello, Brian Pierre, Jean Paul Watson, Shabbir Ahmed (Georgia Tech), Emma Johnson (Georgia Tech), Suhas Raja (Georgia Tech)

Problem Statement

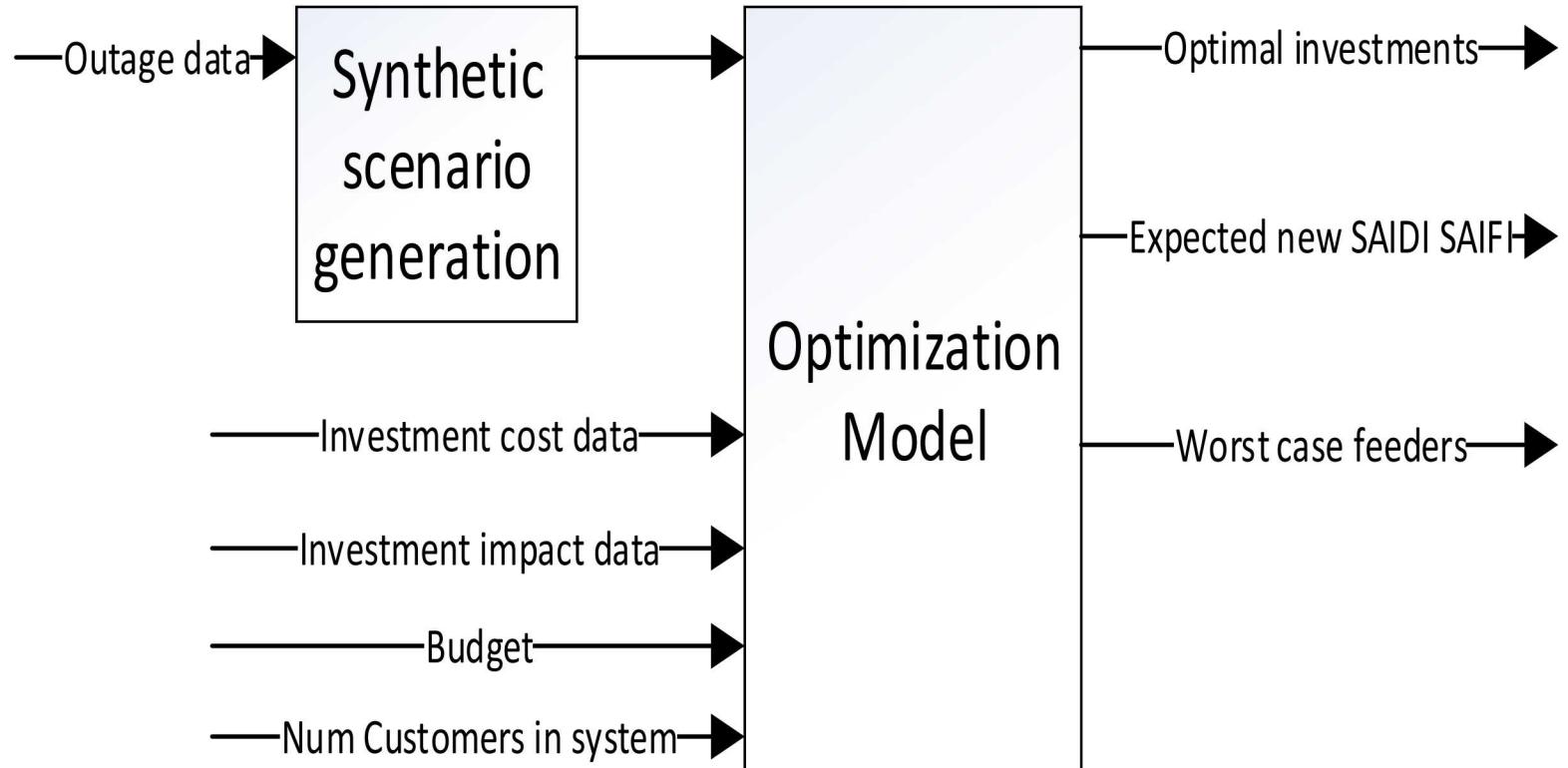
- **National security problem being addressed:**
 - Help electric utilities prepare and plan for catastrophic events through optimal investments
 - Power system utilities often have incentives to become more reliable, however there are not similar incentives to promote investments in resilience.
 - Reliability metrics such as SAIDI and SAIFI, remove resilience events (low probability-high consequence events), reducing utilities incentives to improve resilience even further

Solution Approaches

- The goal is to come up with optimization models to determine the optimal investments to improve both resiliency and reliability.
- Help utilities be more proactive rather than reactive.
- Models/algorithms developed:
 1. Stochastic mixed integer program for optimal reliability investments
 2. Generalized dynamic programming algorithm for optimal reliability investments
 3. A stochastic mixed integer program for optimal resilience investments
 4. A two-stage stochastic generalized disjunctive programming formulation for optimal resilience investments
 5. A co-optimization technique for creating a pareto frontier of reliability vs resiliency.



Data Considerations as Inputs to Optimization Models

- **Reliability models**


- The reliability models takes historical outage data.
- This is typically high quality data, high quantity data.
- Utilities record every outage on there systems for years.
- We leverage the quality data in the model and synthesize more data for scaling experimentation.

- **Resilience models**

- The models utilizes scenarios of certain threats as its primary input.
- Each scenario includes outaged components and time.
- Creating scenarios of hurricanes, earthquakes, etc. is a whole research topic on its own.
- Historical data of these large scale events and how they impact a power system is limited.

Reliability Investment Modeling

Stochastic nonlinear MIP for optimal reliability investments

$$\min \sum_{\omega \in \Omega} \frac{SAIDI_{up}^{\omega}}{SAIDI_{syn}} + \frac{SAIFI_{up}^{\omega}}{SAIFI_{syn}}$$

subject to

$$\sum_{i,d,u \in U_{i,d}} c_u y_{i,d,u} \leq B$$

Budget constraint

$$SAIFI_{up}^{\omega} = \frac{1}{N} \sum_{o \in O_{\omega}} CO_o TO_o \quad \forall \omega \in \Omega$$

SAIFI definition

$$SAIDI_{up}^{\omega} = \frac{1}{N} \sum_{o \in O_{\omega}} CO_o \quad \forall \omega \in \Omega$$

SAIDI definition

$$CO_o = \min_{u \in U_o} \{C_{o,u} y_{i_o,d_o,u} + C_o (1 - y_{i_o,d_o,u})\} \quad \forall \omega \in \Omega, o \in O_{\omega}$$

$$TO_o = \min_{u \in V_o} \{T_{o,u} y_{i_o,d_o,u} + T_o (1 - y_{i_o,d_o,u})\} \quad \forall \omega \in \Omega, o \in O_{\omega}$$

Number of customers
affected and duration as a
result of upgrade u only

Fundamental Assumption: duration and number of customers affected post-upgrades is determined entirely by most effective upgrades.

Linearization Technique

$$CO_o \leq C_{o,u} y_{i_o, d_o, u} + C_o (1 - y_{i_o, d_o, u}) \quad \forall o \in O, u \in U_o$$

$$CO_o \geq C_{o,u} [y_{i_o, d_o, u} + C_o (1 - y_{i_o, d_o, u})] m_{o,u} \quad \forall o \in O, u \in U_o$$

$$\sum_{u \in U_o} m_{o,u} = 1 \quad \forall o \in O$$

$$TO_o \leq T_{o,u} y_{i_o, d_o, u} + T_o (1 - y_{i_o, d_o, u}) \quad \forall o \in O, u \in V_o$$

$$TO_o \geq T_{o,u} [y_{i_o, d_o, u} + T_o (1 - y_{i_o, d_o, u})] n_{o,u}$$

$$\sum_{u \in V_o} n_{o,u} = 1 \quad \forall o \in O$$

$$my_{o,u} \leq m_{o,u} \quad \forall o \in O, u \in U_o$$

$$my_{o,u} \leq y_{i_o, d_o, u} \quad \forall o \in O, u \in U_o$$

$$my_{o,u} \geq m_{o,u} + y_{i_o, d_o, u} + 1 \quad \forall o \in O, u \in U_o$$

$$ny_{o,u} \leq n_{o,u} \quad \forall o \in O, u \in V_o$$

$$ny_{o,u} \leq y_{i_o, d_o, u} \quad \forall o \in O, u \in V_o$$

$$ny_{o,u} \geq n_{o,u} + y_{i_o, d_o, u} + 1 \quad \forall o \in O, u \in V_o$$

$$COTO_o = \sum_{u \in U_o} \sum_{u' \in V_o} C_{o,u} T_{o,u'} m_{o,u} n_{o,u'} \quad \forall o \in O$$

$$mn_{o,u,u'} \leq m_{o,u} \quad \forall o \in O, u \in U_o, u' \in V_o$$

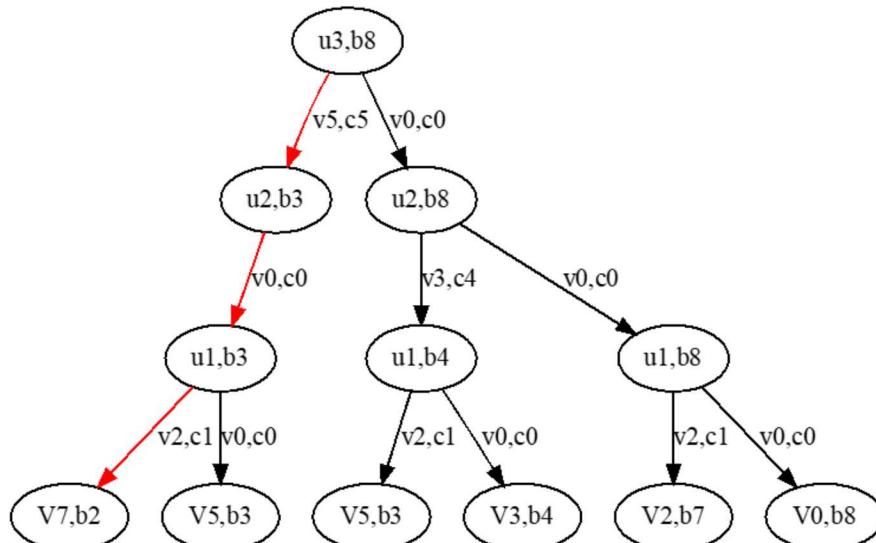
$$mn_{o,u,u'} \leq n_{o,u'} \quad \forall o \in O, u \in U_o, u' \in V_o$$

$$mn_{o,u,u'} \geq m_{o,u} + n_{o,u'} + 1 \quad \forall o \in O, u \in U_o, u' \in V_o$$

Replace calculation of number of customers affected with these three constraints

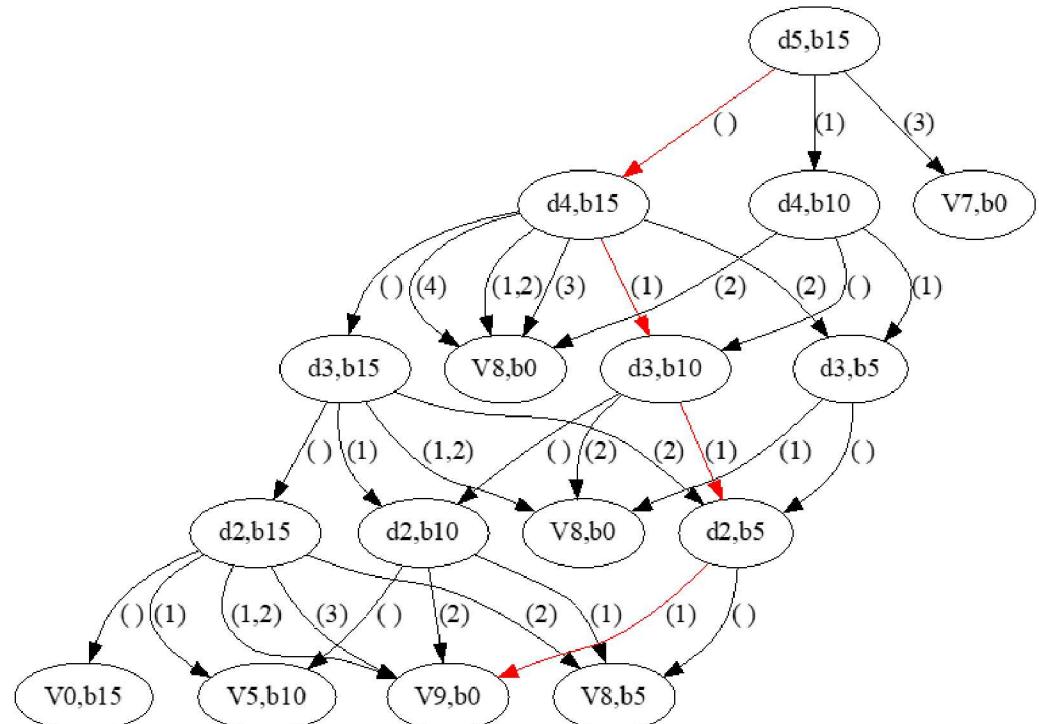
Replace calculation of duration with these three constraints

Deal with resulting product of binary variables with these six constraints.

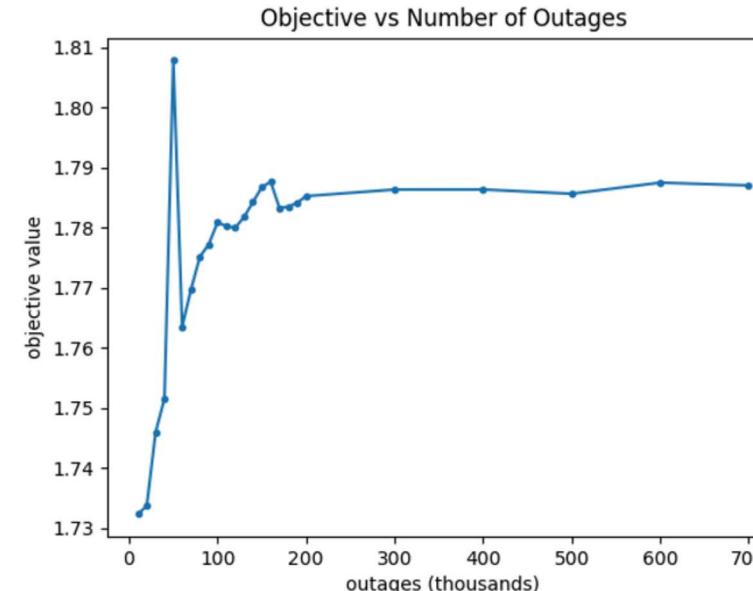
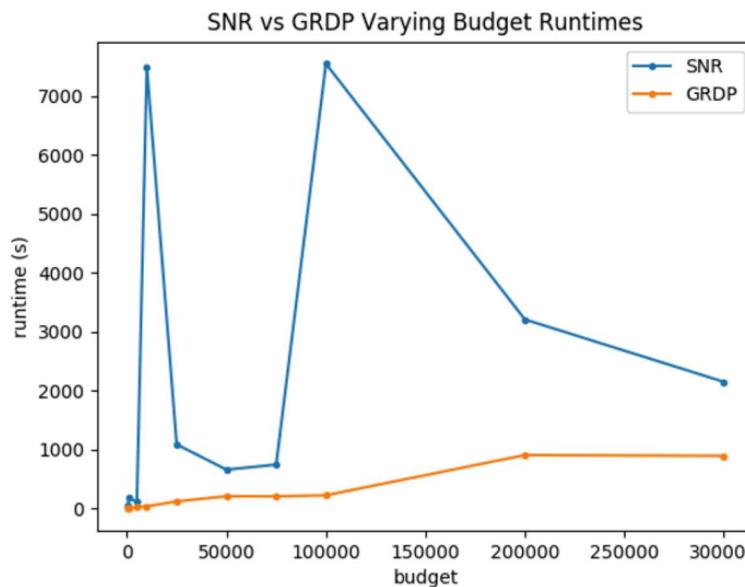
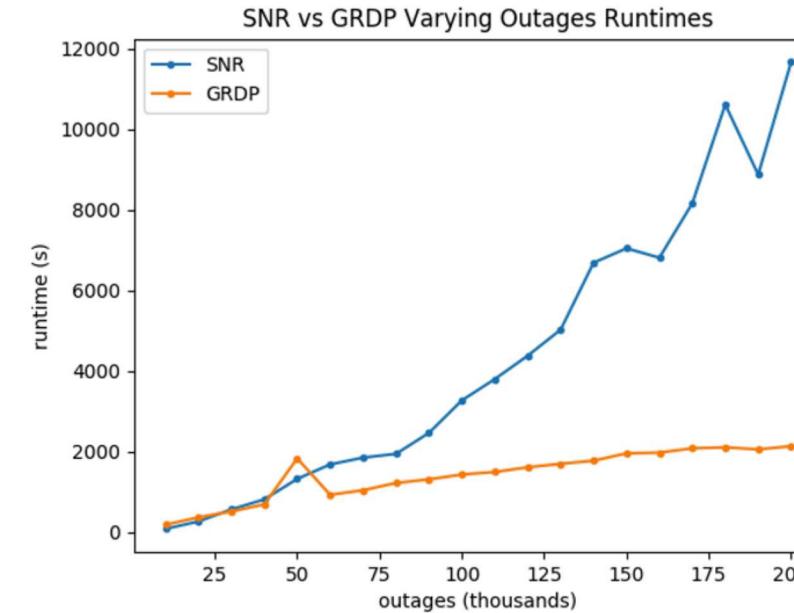
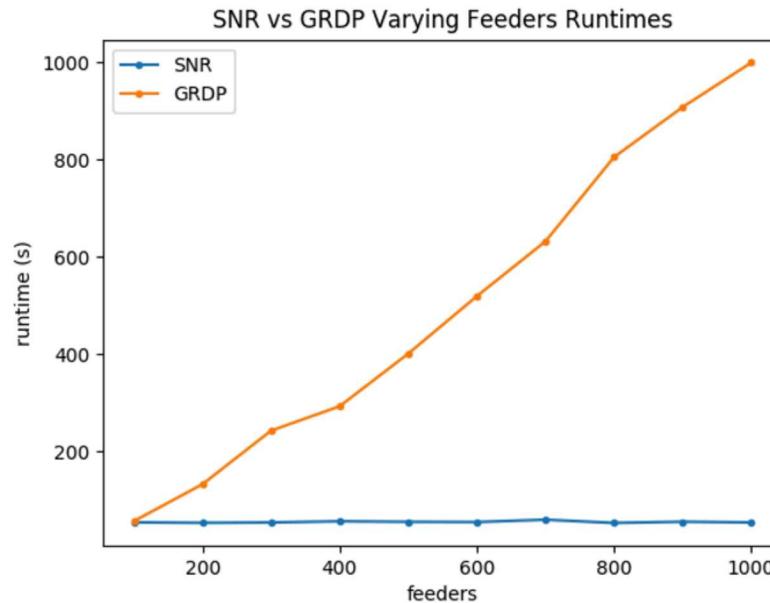

Product of customers affected and duration takes a finite number of values and can be calculated through binaries.

Deal with resulting product of binary variables.

Generalized dynamic programming algorithm


Classic Dynamic Programming Algorithm for 0-1 Knapsack Problem

- Effectively search binary tree where each node decides whether or not to make purchase
- Efficiency stems from use of cache which eliminates redundant calculations.

Generalized Dynamic Programming Algorithm

- Effectively searches a tree where each node represents a feeder, device pair. Emanating edges represent packages of upgrades that can be purchased to improve resiliency for that feeder, device pair.
- Efficiency here also stems from use of a cache.

Results

Stochastic mixed integer program for optimal resilience investments

$$\begin{aligned}
 \min \quad & \sum_{\omega \in \Omega} q_\omega \left(\frac{1}{B_1} \sum_{t \in T} \sum_{b \in \mathcal{B}} A_b p_{b,t}^\omega + \frac{1}{B_2} \sum_{b \in \mathcal{B}} A_b p_{b,1}^\omega \right) \\
 \text{s.t.} \quad & \sum_{b \in \mathcal{B}} C_b z_b + \sum_{l \in \mathcal{L}} C_l z_l + \sum_{g \in \mathcal{G}} C_g z_g \leq K \quad \text{Budget} \\
 & \sum_{g \in \mathcal{G}_b} p_{g,t}^\omega + \sum_{l \in \mathcal{L}_b^{\text{to}}} p_{l,t}^\omega - \sum_{l \in \mathcal{L}_b^{\text{from}}} p_{l,t}^\omega = D_b - p_{b,t}^\omega \quad \forall b \in \mathcal{B}, \forall t \in T, \forall \omega \in \Omega \\
 & p_{g,t}^\omega - p_{g,t-1}^\omega \leq (SU_g - \underline{P}_g - RU_g)v_{g,t}^\omega + (\underline{P}_g + RU_g)u_{g,t}^\omega - \underline{P}_g u_{g,t-1}^\omega \quad \forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega \\
 & p_{g,t-1}^\omega - p_{g,t}^\omega \leq (SD_g - \underline{P}_g - RD_g)w_{g,t}^\omega + (\underline{P}_g + RD_g)u_{g,t-1}^\omega - \underline{P}_g u_{g,t}^\omega \quad \forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega \\
 & u_{g,t}^\omega - u_{g,t-1}^\omega = v_{g,t}^\omega - w_{g,t}^\omega \quad \forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega \\
 & v_{g,t}^\omega \leq u_{g,t}^\omega \quad \forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega \\
 & u_{g,t}^\omega \leq 1 - w_{g,t}^\omega \quad \forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega \\
 & \underline{P}_g u_{g,t}^\omega \leq p_{g,t}^\omega \leq \overline{P}_g u_{g,t}^\omega \quad \forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega \\
 & 0 \leq p_{b,t}^\omega \leq D_b \quad \forall b \in \mathcal{B}, \forall t \in T, \forall \omega \in \Omega \\
 & p_{l,t}^\omega = y_{l,t}^\omega S_l(\theta_{B_l^{\text{to}},t}^\omega - \theta_{B_l^{\text{from}},t}^\omega) \quad \forall l \in \mathcal{L}, \forall t \in T, \forall \omega \in \Omega \\
 & -\frac{\pi}{3} \leq \theta_{B_l^{\text{to}},t}^\omega - \theta_{B_l^{\text{from}},t}^\omega \leq \frac{\pi}{3} \quad \forall l \in \mathcal{L}, \forall t \in T, \forall \omega \in \Omega \\
 & -\overline{P}_l y_{l,t}^\omega \leq p_{l,t}^\omega \leq \overline{P}_l y_{l,t}^\omega \quad \forall l \in \mathcal{L}, \forall t \in T, \forall \omega \in \Omega \\
 & y_{l,t}^\omega \leq z_l \quad \forall l \in \mathcal{L}, \forall t \leq X_l \\
 & u_{g,t}^\omega \leq z_g \quad \forall g \in \mathcal{G}, \forall t \leq X_g \\
 & u_{g,t}^\omega \leq z_b \quad \forall b \in \mathcal{B}, \forall g \in \mathcal{G}_b, \forall t \leq X_b \\
 & y_{l,t}^\omega \leq z_b \quad \forall b \in \mathcal{B}, \forall l \in \mathcal{L}_b^{\text{to}} \cup \mathcal{L}_b^{\text{from}}, \forall t \leq X_b
 \end{aligned}$$

Unit Commitment **Transmission Switching** **Effects of Investment Decisions**

A two-stage stochastic generalized disjunctive programming formulation for optimal resilience investments

$$\min \sum_{\omega \in \Omega} q_{\omega} \left(\frac{1}{B_1} \sum_{t \in T} \sum_{b \in \mathcal{B}} A_b p_{b,t}^{\omega} + \frac{1}{B_2} \sum_{b \in \mathcal{B}} A_b p_{b,1}^{\omega} \right)$$

$$\text{s.t. } \sum_{b \in \mathcal{B}} k_b + \sum_{l \in \mathcal{L}} k_l + \sum_{g \in \mathcal{G}} k_g \leq K$$

$$\sum_{g \in \mathcal{G}_b} p_{g,t}^{\omega} + \sum_{l \in \mathcal{L}_b^{\text{on}}} p_{l,t}^{\omega} - \sum_{l \in \mathcal{L}_b^{\text{off}}} p_{l,t}^{\omega} = D_b - p_{b,t}^{\omega}$$

$$\forall b \in \mathcal{B}, \forall t \in T, \forall \omega \in \Omega$$

$$\left[\begin{array}{l} \frac{P_g}{P_g} \leq p_{g,t}^{\omega} \\ \frac{P_g}{P_g} \leq p_{g,t-1}^{\omega} \\ -RD_g \leq p_{g,t}^{\omega} - p_{g,t-1}^{\omega} \\ p_{g,t}^{\omega} - p_{g,t-1}^{\omega} \leq RU_g \end{array} \right] \vee \left[\begin{array}{l} p_{g,t}^{\omega} = 0 \\ y_{g,t,\omega}^{\text{off}} = 0 \\ p_{g,t-1}^{\omega} \leq SD_g \end{array} \right] \vee$$

$$\left[\begin{array}{l} \frac{y_{g,t,\omega}^{\text{on}}}{P_g} \leq p_{g,t}^{\omega} \\ \frac{y_{g,t,\omega}^{\text{on}}}{P_g} \leq p_{g,t-1}^{\omega} \\ p_{g,t}^{\omega} - p_{g,t-1}^{\omega} \leq SU_g \\ p_{g,t-1}^{\omega} = 0 \end{array} \right] \forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega$$

$$y_{g,t,\omega}^{\text{on}} \vee y_{g,t,\omega}^{\text{off}} \vee y_{g,t,\omega}^{\text{startup}} = \text{True}$$

$$\forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega$$

$$\left[\begin{array}{l} p_{l,t}^{\omega} = S_l(\theta_{B_l^{\text{on}},t}^{\omega} - \theta_{B_l^{\text{from}},t}^{\omega}) \\ p_{l,t}^{\omega} = 0 \end{array} \right] \vee \left[\begin{array}{l} \neg y_{l,t}^{\omega} \\ p_{l,t}^{\omega} = 0 \end{array} \right]$$

$$\forall l \in \mathcal{L}, \forall t \in T, \forall \omega \in \Omega$$

$$\left[\begin{array}{l} z_l \\ k_l = C_l \end{array} \right] \vee \left[\begin{array}{l} \neg z_l \\ k_l = 0 \\ p_{l,t}^{\omega} = 0 \forall t \leq X_l \end{array} \right] \quad \forall l \in \mathcal{L}$$

$$\left[\begin{array}{l} z_g \\ k_g = C_g \end{array} \right] \vee \left[\begin{array}{l} \neg z_g \\ k_g = 0 \\ p_{g,t}^{\omega} = 0 \forall t \leq X_g \end{array} \right] \quad \forall g \in \mathcal{G}$$

$$\left[\begin{array}{l} z_b \\ k_b = C_b \end{array} \right] \vee \left[\begin{array}{l} \neg z_b \\ k_b = 0 \\ p_{l,t}^{\omega} = 0 \quad \forall t \leq X_b, \forall l \in \mathcal{L}_b \\ p_{g,t}^{\omega} = 0 \quad \forall t \leq X_b, \forall g \in \mathcal{G}_b \end{array} \right]$$

$$\forall b \in \mathcal{B}$$

$$0 \leq p_{b,t}^{\omega} \leq D_b \quad \forall b \in \mathcal{B}, \forall t \in T, \forall \omega \in \Omega$$

$$0 \leq p_{g,t}^{\omega} \leq \bar{P}_g \quad \forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega$$

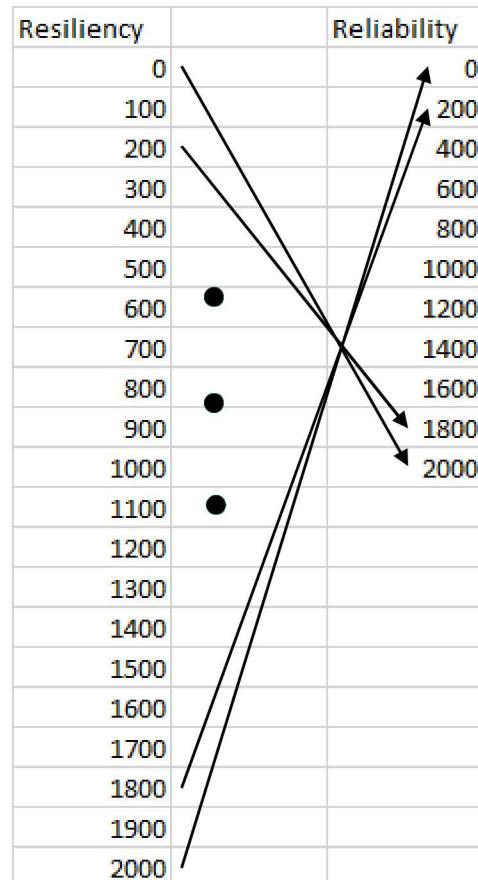
$$-\bar{P}_l \leq p_{l,t}^{\omega} \leq \bar{P}_l \quad \forall l \in \mathcal{L}, \forall t \in T, \forall \omega \in \Omega$$

$$-\frac{\pi}{3} \leq \theta_{B_l^{\text{on}},t}^{\omega} - \theta_{B_l^{\text{from}},t}^{\omega} \leq \frac{\pi}{3}$$

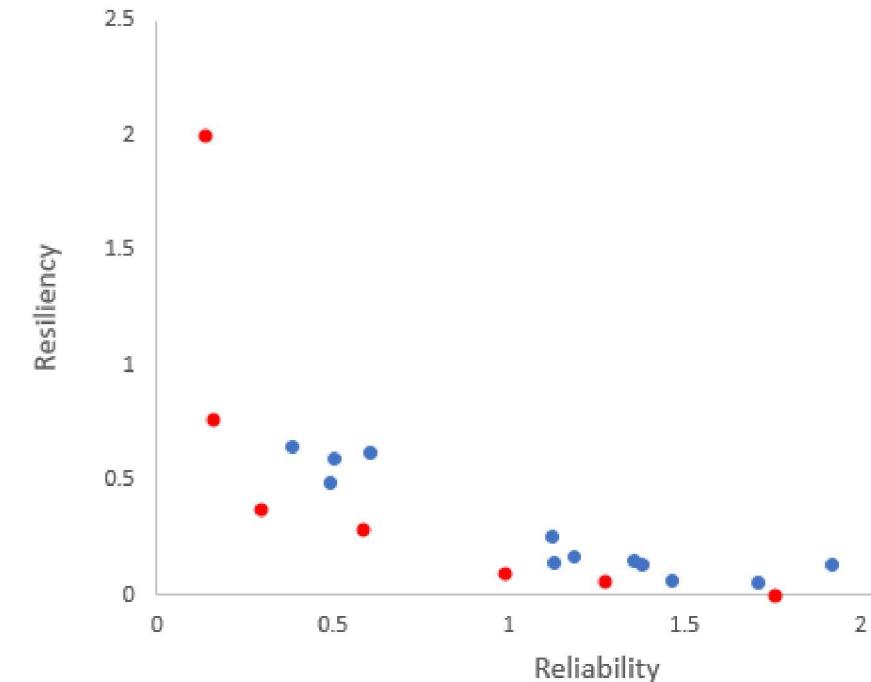
$$\forall l \in \mathcal{L}, \forall t \in T, \forall \omega \in \Omega$$

Generator constraints given status of unit (on, off, or in startup mode)

Unit can only be in one mode

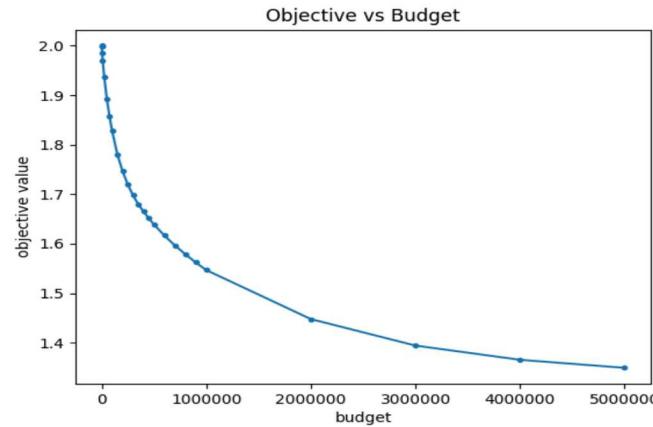

A transmission line either satisfies B-theta constraint or there is no power flowing on it.

Invest in a component and pay the price or experience outage in connected components.

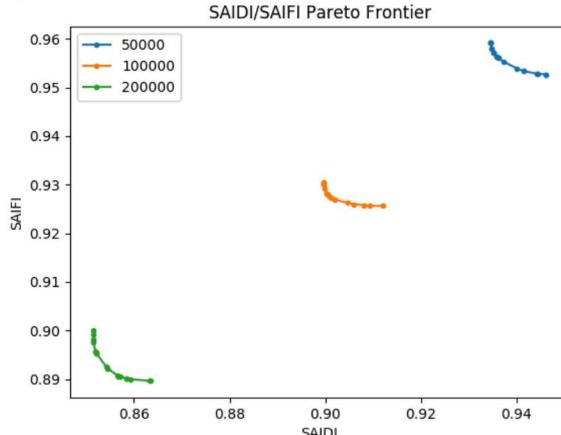

Cooptimization

- Solve both models for a range of budgets. For each model, use the greatest common divisor of all investment costs to determine appropriate increment for range of budgets.
- For a fixed budget, pair resiliency and reliability results for respective budgets that add up to the fixed budget.
- Remove any Pareto-dominated points to obtain pareto frontier.

Model Budget Ranges



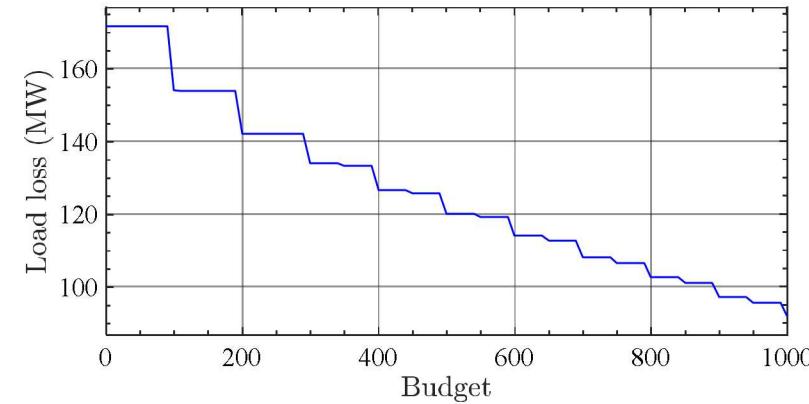
Pareto Frontier (Budget = 2000)



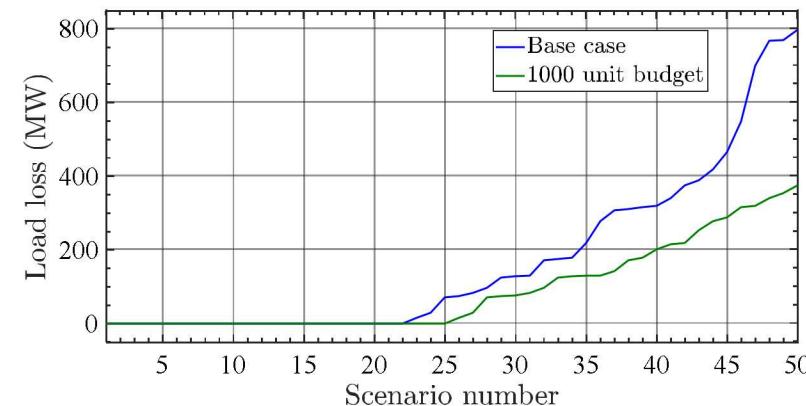
Some Results

Basic Reliability results on Full utility data

The improvement in reliability at budget increases.
The optimal investments are chosen for each budget



Pareto frontiers of weighting SAIDI or SAIFI more.
Whether you weight SAIDI (duration) more or SAIFI (frequency of events) more, the results are similar.


Co-op results on IEEE RTS-96 system

Basic Resilience results on IEEE RTS-96 system

The expected loss of load from 50 storm scenarios vs. the investment budget

The loss of load per scenario without investments and with an investment of 1000 units

Conclusion

- Inform utilities and their stakeholders, DHS, DOE, and policy makers of those cost effective infrastructure investment decisions that simultaneously improve both reliability and resilience.
- Inhibit impacts to resilience at the expense of reliability or vice versa.
- Characterize tradeoffs between resiliency and reliability, for given infrastructure investment decisions.
- Aid utilities in formulating rate recovery cases to fund investments by quantifying both reliability and resilience impacts of proposed investments.

Future Work

- Elicit feedback from utilities, RTO's, and/or ISO's to understand how our models can be used and modified.
- Try different reliability assumptions on calculating duration and number of customers affected
- Research techniques for scaling resiliency model.

Thank You

- Questions?