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2 Problem Statement

• National security problem being addressed:

• Help electric utilities prepare and plan for catastrophic
events through optimal investments

• Power system utilities often have incentives to become
more reliable, however there are not similar incentives to

promote investments in resilience.

• Reliability metrics such as SAIDI and SAIFI, remove

resilience events (low probability-high consequence

events), reducing utilities incentives to improve resilience

even further
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3 I Solution Approaches
I

• The goal is to come up with optimization models to determine the

optimal investments to improve both resiliency and reliability.

• Help utilities be more proactive rather than reactive.

• Models/algorithms developed:
1. Stochastic mixed integer program for optimal reliability investments
2. Generalized dynamic programming algorithm for optimal reliability

investments
3. A stochastic mixed integer program for optimal resilience

investments
4. A two-stage stochastic generalized disjunctive programming

formulation for optimal resilience investments
5. A co-optimization technique for creating a pareto frontier of

reliability vs resiliency.



4 Data Considerations as Inputs to Optimization Models

Reliability models
• The reliability models takes historical outage data. ❑
• This is typically high quality data, high quantity data. 14°-.
• Utilities record every outage on there systems for L

years.
• We leverage the quality data in the model and

10 -

synthesize more data for scaling experimentation.

• Resilience models
• The models utilizes scenarios of certain threats as

its primary input.
• Each scenario includes outaged components and

time.
• Creating scenarios of hurricanes, earthquakes, etc. is

a whole research topic on its own.
• Historical data of these large scale events and how

they impact a power system is limited.

•
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5 Reliability Investment Modeling
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6 I Stochastic nonlinear MIP for optimal reliability investments
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SAIDIITp SAIFM
min

wEnSAIDIsyn
+ 

SAIMp =

CuYi,d,u < B

1
CO0TO0

N

1 V 
= CO,

N

CO, = mintCo uyi u co (1 — Yi040,u)}
liELTO

T 00 = nuarro,u3/10 ci, it + T0 (1 — Yio,do,u))uEvo

Number of customers
affected and duration as a
result of upgrade u only

V60 E

Vet) E

E ny E Ow

Vw E o E Ow

Budget constraint

SAIFI definition

SAID! definition

Fundamental Assumption: duration
and number of customers affected
post-upgrades is determined entirely
by most effective upgrades.



7  Linearization Technique
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Replace calculation of number of
customers affected with these three
constraints

Replace calculation of duration with
these three constraints

Deal with resulting product of binary
variables with these six constraints.

Product of customers affected and duration
takes a finite number of values and can be
calculated through binaries.

Deal with resulting product of binary
variables.



8 Generalized dynamic programming algorithm

Classic Dynamic Programming Algorithm
for 0-1 Knapsack Problem
• Effectively search binary tree where

each node decides whether or not to
make purchase

• Efficiency stems from use of cache
which eliminates redundant
calculations.

Generalized Dynamic Programming Algorithm
• Effectively searches a tree where each node

represents a feeder, device pair. Emanating
edges represent packages of upgrades that
can be purchased to improve resiliency for
that feeder, device pair.

• Efficiency here also stems from use of a
cache.
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9 I Results
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SNR vs GRDP Varying Feeders Runtimes

SNR vs GRDP Varying Budget Runtimes
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10 Stochastic mixed integer program for optimal resilience investments

E E E + AbK)DiL3Es-2 to- /dos bEs

s.t. E Cbzb + c,„ E c,z, K 11 Budget
bE13 1EL gEg

E E — E =
gEgo iE
P-rg,t t—i f SEIg — P y RUg)Vgld (Ey + RETOUWO Pyl1.y"1,t1

Unit < (Spg fg — Rpg).wgw.t (fg

Dò —

Commitment 114 rg,t

<— tt.g.t
uw < 1 —9 gt

jegrj PoLgw,t

ll < pin <

pt:e = yrtS (9`13f. — 0%r:du ,i)

- 7r Transmission- 4 —
3 — .1. so? 3

Switching
- Port yrt
Yrt 21

Effects of
Investment
Decisions

tiw— P9 9,1

• E B.Vt E T.Yw E iZ

Vy E g. Vt E T.Vw E
Vg c g. vt c T.Vw C 9

E g.vt E T.Vw E
b'rjEg.vtET.VwESt

Yg E Ç. Vt E T.Vw E
V!' E g.Vt E T.Vw E St
• E B. E E

V/ c L. Vt E T.Vw E Si

• E C. E T.YLo E

• E .C.Vt E T.Vw E

'V/ E L.Vt <

Vg E g. vt < X g
Nth € B. Yg E gb.vt < Xb

c 8.V1 E Ltb° U ern 1.Vt <

■



A two-stage stochastic generalized disjunctive programming formulation
11 for optimal resilience investments
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A transmission line either satisfies B-theta constraint or there
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outage in connected components.
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12 Cooptimization

• Solve both models for a range of
budgets. For each model, use the great
common divisor of all investment costs
to determine appropriate increment for
range of budgets.

• For a fixed budget, pair resiliency and
reliability results for respective
budgets that add up to the fixed
budget.

• Remove any Pareto-dominated points
to obtain pareto frontier.
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1 3 Some Results

Basic Reliability results on Full utility data
Objective vs Budget
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14 I Conclusion

• Inform utilities and their stakeholders, DHS, DOE, and policy makers of

those cost effective infrastructure investment decisions that simultaneously
improve both reliability and resilience.

• Inhibit impacts to resilience at the expense of reliability or vice versa.

• Characterize tradeoffs between resiliency and reliability, for given

infrastructure investment decisions.

• Aid utilities in formulating rate recovery cases to fund investments by
quantifying both reliability and resilience impacts of proposed investments.



1 5 Future Work

• Elicit feedback from utilities, RTO's, and/or ISO's to understand how our models can be used and
modified.

• Try different reliability assumptions on calculating duration and number of customers affected

• Research techniques for scaling resiliency model.

■



16 I ThankYou

• Questions?


