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Problem Statement

* National security problem being addressed:

* Help electric utilities prepare and plan for catastrophic
events through optimal investments

* Power system utilities often have incentives to become
more reliable, however there are not similar incentives to
promote investments in resilience.

* Reliability metrics such as SAIDI and SAIFI, remove
resilience events (low probability-high consequence
events), reducing utilities incentives to improve resilience
even further
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3 I Solution Approaches

* The goal is to come up with optimization models to determine the

optimal investments to improve both resiliency and reliability.

* Help utilities be more proactive rather than reactive.

* Models/algorithms developed:

1.
2.

Stochastic mixed integer program for optimal reliability investments
Generalized dynamic programming algorithm for optimal reliability
1nvestments

A stochastic mixed integer program for optimal resilience
1nvestments

A two-stage stochastic generalized disjunctive programming
formulation for optimal resilience investments

A co-optimization technique for creating a pareto frontier of
reliability vs resiliency.



4

Data Considerations as Inputs to Optimization Models

* Reliability models

The reliability models takes historical outage data.
This 1s typically high quality data, high quantity data.
Utilities record every outage on there systems for
years.

We leverage the quality data in the model and

synthesize more data for scaling experimentation.

e Resilience models

The models utilizes scenarios of certain threats as
its primary input.

Each scenario includes outaged components and
time.

Creating scenarios of hurricanes, earthquakes, etc. is
a whole research topic on its own.

Historical data of these large scale events and how
they impact a power system 1s limited.

Percent of Outages of Customers out for Specific Device

Percent of Outages of Duration for Specific Device

Number of Customers Out ‘
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Reliability Investment Modeling
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6 I Stochastic nonlinear MIP for optimal reliability investments

subject to
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Number of customers
affected and duration as a
result of upgrade u only

Budget constraint

SAIFI definition

SAIDI definition

Fundamental Assumption: duration
and number of customers affected
post-upgrades is determined entirely
by most effective upgrades.



7 | Linearization Technique
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Replace calculation of number of
customers affected with these three
constraints

Replace calculation of duration with
these three constraints

Deal with resulting product of binary
variables with these six constraints.

Product of customers affected and duration
takes a finite number of values and can be
calculated through binaries.

Deal with resulting product of binary
variables.



8 | Generalized dynamic programming algorithm

Classic Dynamic Programming Algorithm
for 0-1 Knapsack Problem

Effectively search binary tree where
each node decides whether or not to
make purchase

Efficiency stems from use of cache
which eliminates redundant
calculations.

Generalized Dynamic Programming Algorithm

« Effectively searches a tree where each node
represents a feeder, device pair. Emanating
edges represent packages of upgrades that
can be purchased to improve resiliency for
that feeder, device pair.

» Efficiency here also stems from use of a
cache.
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Results
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Stochastic mixed integer program for optimal resilience investments
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A two-stage stochastic generalized disjunctive programming formulation

for optimal resilience investments
min Zq ( Z Z*’Abp g+B ZJAF,UM)
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12 I Cooptimization Model Budget

Ranges
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13 I Some Results

Basic Reliability results on Full utility data

Objective vs Budget
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Co-op results on IEEE RTS-96 system
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Conclusion

* Inform utilities and their stakeholders, DHS, DOE, and policy makers of
those cost effective infrastructure investment decisions that simultaneously
improve both reliability and resilience.

* Inhibit impacts to resilience at the expense of reliability or vice versa.

* Characterize tradeoffs between resiliency and reliability, for given
infrastructure investment decisions.

* Aid utilities in formulating rate recovery cases to fund investments by

quantifying both reliability and resilience impacts of proposed investments.
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Future Work

* Elicit feedback from utilities, RTO’, and/or ISO’ to understand how our models can be used and

modified.

* Try different reliability assumptions on calculating duration and number of customers affected

* Research techniques for scaling resiliency model.



16 I Thank You

* Questions?




