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Overview
.Motivation: Nonhydrostatic effects important to resolve at horizontal grid-scales of
<10km (target: 3km horizontal resolution).

.HOMME-NH: Nonhydrostatic dycore shares (for now) the same common code-base
as HOMME hydrostatic dycore.

.HOMME-NH will be ready to replace HOMME as the atmosphere dycore by E3SM
v2 code freeze.

Performance: Dynamics about 1.8 times slower, transport about 3 times faster.

.IMEX time integration required for efficient, stable time-integration.

.Current work: Coupling to physics (NGD nh-atm), testing at high resolution,
improving efficiency of IMEX.
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Model specs
.Horizontal: 4th order Spectral elements
on cubed sphere (Taylor and Fournier,
2010).

.Vertical: 2nd order SB81 with Lorenz
staggering (Simmons and Burridge,
1981).

.Spatial discretization is mass and
energy conserving.

.IMEX RK time integration (IMEX-KG 2-
3rd order methods).

.Lagrangian vertical coordinate.

.Hyperviscosity with dissipation to
hydrostatic background state.

.Can run in hydrostatic or
nonhydrostatic mode.
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Model formulation
.Laprise formulation (Laprise, 1992) of nh-primitive equations with some differences.

.Terrain following hydrostatic pressure as vertical coordinate.

.Virtual potential temperature formulation in terms of Gibb's potential.

.Density is hydrostatic pressure layer thickness.
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IMEX time integration 1 of 2
.Horizontally explicit vertically implicit (HEVI) splitting.

.SUNDIALS-ARKODE interface allows fast testing of a variety of methods (see Gardner et
all 2018 and Vogl et al 2018).

.Goal: methods running hydrostatic time-steps at nonhydrostatic resolutions.

.Careful derivation of methods with good coupled stability regions is key to large step size.
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Left: IMEX-KG254a (375s at 1 degree horiz. res.). Right: IMEX-KG254b (300s at
1 degree horiz. res.).



IMEX time integration 2 of 2

Method Explicit stages Implicit stages H-dt NH-dt Score

KGU35 (explicit) 5 N/A 375 <1 1.0

IMEX-KG232 3 2 175 175 0.78

IMEX-KG242 4 2 275 225 0.75

IMEX-KG243 4 3 275 275 0.92

IMEX-KG252 5 2 375 275 0.73

IMEX-KG253 5 3 375 325 0.87

IMEX-KG254a 5 4 375 300 0.80

IMEX-KG254b 5 4 375 375 1.0

IMEX-KG343a 4 3 250 250 0.83

IMEX-KG354a 5 4 375 300 0.80

Caption: H-dt is hydrostatic time-step, NH-dt is nonhydrostatic time-step. Scores
depend on number of explicit stages (implicit stages relatively cheap in HEVI).
Methods derived and analyzed in (Steyer et. al. 2018).



Performance

HOMME-NH (stand-alone nh-dynamics) is
about 1.8 times more expensive than
HOMME (h-dynamics).

Physics (52%) is spread over dozens of
parameterizations.

Dycore (transport + dynamics, 48% total)
has the most work per lines of code and is
usually our first porting/acceleration target.
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Results 1 of 3

PREQX Test 16-1, Large-scale precipitation
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Results 2 of 3
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PREQX Test 16-1, T850 hPa

t = 6

180

t = 12

180

120W

120W

degrees kelvin

60W

degrees kelvin

90N

60N

30N

30S

60S

90S

90N

60N

30N

30S

60S

90S

sow

0

Longitude

60E

60E

120E

120E

t = 9

180

t = 15

230 240 250 260 270 280 290 300

180

120W

120W

degrees kelvin

60W

degrees kelvin

60W



Results 3 of 3
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DCMIP2016 Supercell thunderstorm (500m resolution)
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• Klemp et al., JAMES 2015, small planet (120x) test case with good correspondence to flat plane
regional model results.

• Warm-rain Kessler-type physics.

• Single updraft with strong precip forms in the first 30min, starts to split by 60min, propagates
away from the equator for 2h.

• Strong convective cell, rotating updrafts, moist unstable convection

• Resolution independent physical viscosity (so should converge under mesh refinement).



THANKS!

QUESTIONS?
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