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INTRODUCTION



3 I Falling in Older Adults

Definition of a fall
• A fall is an event that causes a person to rest
inadvertently on the floor or other lower level

Each year 2.8 million adults are treated for fall
related injuries
• Broken bones, hip fractures, traumatic brain injury
• Results in 800,000 hospitalization each year
o Medical costs exceed $50 billion

Emotional Cost of falling
• Increase fear of falling
• Decline in physical activity
• Reduced social interactions
• Depression

Falls Prevention Research
• Research has focused on assessment, prevention, and

rehabilitation
• Prior research has focused on factors that attribute to

falling
o Qualitative- and mobility-based assessments
o Sensor systems for monitoring gait
o Machine learning for gait analysis

FALLS AMONG OLDER ADULTS ARE
1

illion Annually

$29 Billion Medicare
$12 Billion Private/Out-of-Pocket

$9 Billion Medicaid

lorence CS. Bergen G. Atherly A. Burns ER, Stswens JA, Drake C. Methcal Gosts al Fatal
arsh Nonfatal Falls in Older Adults. Arousal ths Arrienrcrarl Ger-rabrus Secret, March 2018.

Ionwrik

in 4
Older adults (65+)
falls each year i

-'-), PREVENTABL:
Clinicians can
use STEADI
to prevent falls
& reduce costs

4 CDC

•

111 1 in 4older adults will
fall this year.

Keep older adults STEADI
by screening for fall risk. www.cdc.gov
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I Gait Cycle

Heel strike

Double
support

4 

Stance Phase

Loadling
response

MA-stance Terminal stance

Single support

Pre-swing

Double
support

114 Swing Phase  ■

Toe-off

The 5 gait variables associated with falls risk
° Gait speed (cm/sec), cadence (step/min), stride length(cm)

° Swing time (%GC), double support time (%GC)

Mid-swing Terminal slAring

Single support  

The 5 gait variables will be used to determine level of risk later



6  The Risk of Falling

Extrinsic Risk Factors
O Medications: psychotropics, diabetes medication, cardiovascular medication
O Home environment: Poor lighting, loose rugs, etc.

O Footwear: use of slippers and walking barefoot

Intrinsic Risk Factors
o Demographics, Bodily system functioning, Disease associated symptoms

Demographics
O Adults over 85 fall 4x more than those between 65 and 74
o Women are 58% more likely than men to suffer a non-fatal fall

O Men are 46% more likely to experience a fatal fall

o White women are 2.5x more likely than African American women to experience a fatal fall

o White women have higher incidence of fall-related hip fractures than African American
women

System Decline
o Gait and balance disorders, Decrease in strength, Decline in vision

Disease Associated Symptoms
Dizziness, Vertigo, Cardiovascular disease, Dementia, Depression

Gait and Balance disorders are one of the strongest indicators of risk



I7 Sensors for Gait Analysis

Sensor for Gait Analysis
o 3-D motion capture

o Pressure sensitive walkways

o Inertial sensors

Smartphones for gait measurement
o Suite of sensors ideal for monitoring falls risk

o Microelectromechanical Systems (MEMS) inertial
measurement units

. 6- or 9-axis inertial sensors

o Open development environment

o Powerful processing capabilities

. Mobile Machine Learning and Deep Learning APIs

o Continuous gait monitoring

. In-home gait monitoring

. Removes the need for domain experts to analysis test results

-

1

MEMS sensors provide a low cost solution for gait monitoring



8 I Identifying at Risk Older Adults

Methods for Label Assignment:
O Survey based methods

o Clinical based methods

Survey Based Methods:
o Falls risk screenings (CDC STEADI)

o Comprehensive Falls Risk Screening Instrument
(CFRSI) [Multi-component method]

Clinical Based Methods:
o Timed Up & Go:

. Individuals who take > 12 s are considered at risk of
falling

o 30-sec Chair Stand:

. Individuals whose score is below a given threshold are at
risk of falling,

. age > 75 threshold is 11 (Men) and 10 (Women)

O 4-Stage Balance Test:

. Individual's unable to hold a tandem stand for 10s is at
risk of falling

https://www.cdc.gov/steadi/materials.html



I9 Features for Falls Prediction

,
Features

 .4

Position and
Angle

c -•
Pcak-to-Pcak
Amplitude
 .4

[ Trunk Tilt )

Postural Sway
During Stance

Angular
Velocity

[ Ma 

,
Mean
 .4

c .N
Peak-to-Peak
Amplitude

\.. .4

( ,
Min

.4

RMS During
Stance

3-D RMS
During Stance

Signal
Variability
 .4

Linear
Acceleration

( Median 

[ Std. Dev. )

[
1

Peak-to-Peak
Amplitude ./

( 1

RMS
..4

1

[ 3-D RMS
 ..4

RMS During
Stancc

3-D RMS
During Stance

Spatial Gait
Parameters

[  

-•
No. Steps

.4

 .N
[ Step Length
 .4

Energy

c .N
Local Wavelet

Energy
 ..4

r- Temporal
Gait

Parameters
c

Gait Speed

c
Std. Dev. Stride

Time
•. 
c 
Step Duration

\. 

Step Duration
Variability

Cadence
 .4

c 1
Stridc Timc
 .4

% Time Spent
in Double
Support

Spectral

Spectral Edge
Frequency

Ratio of Area
Under 1st

Harmonic to
Reinaining

Area

Power
Spectrum
Energy

Ratio of first 4
Harmonics to

first 6

c '1

No. FFT Peaks
\_ .4

/-
l s t FFT Peak

1

Parameters
 .4

1
25%/50%/75%

Quartile
Frcqucncy

f
Dominate FFT

1

Pcak
 .4

Ratio of Even
& Odd

Harmonics

Dominate FFT
Pcak

Parameters

Spectral features are the most discriminative



10 Classifiers for Falls Prediction
Falls Classification Problems:

Falls Prediction 4 Classification using retrospective falls history for label assignment
. Faller/Non-Faller Labels

Prospective Falls Prediction 4 Classification that an individual will experience a future
fall
. Prospective Faller/Non-Faller

Falls Risk Classification 4 Classification of risk of experiencing a future fall
. Low/High Risk Labels

Classifiers

. Logistic Regression (89.1% ACC), neural networks (MLP) (91% ACC), naïve Bayes (95% ACC),
SVM (85% ACC)

Prospective fallers: Random Forests (73.4% ACC)

. Best classifiers used frequency domain features

Feature Selection

Correlation feature selection

. Fast correlation feature selection

. Relief-F

. Features selection provided 9% increase in model performance

Neural networks (MLP) and Naïve Bayes are the best classifiers



11 Anomaly Detection for Falls Risk Prediction
M. Martinez, P. L. De Leon, and D. Keeley, "Novelty Detection for Predicting Falls Risk
using Smartphone Gait Data", in Pro. IEEE Int. Conf. Acoustics, Speech & Signal Proc.
(ICASSP), 2017

Dataset
o Walkway measurements of biomechanical data
. Inertial measurement based

Data Labeling
o Used walkway data to determine low and high risk labels
o Low/high risk labels were based on independent thresholds risk ratios

Features
. Extracted 21 features from the harmonic spectrum
o Fundamental frequency
. Ratio of the area under the 1st harmonic to the area under the first 6 harmonics
o Ratio of the area under the first 6 harmonics to the total spectrum
o Ratio of the area under the even harmonics to the area under the odd harmonics

Analyzed Anomaly Detection Methods
o One-Class Support Vector Machine (Hyperplane)
o Support Vector Data Decision (Sphere)

Results: Achieved F1 score of 79.07% for SVDD with RBF kernel

Improvement needed for data labeling, feature extraction, and classification



12  Motivations and Contributions

Challenges in Falls Prediction Research
. Feature engineering

. Retrospective falls history

. Models trained on low number of examples

Contributions

. Propose using gait variables associated with an increase risk of falling to provide label
assignment

. Propose using deep neural networks for learning features related to human motion

. Apply transfer learning to adapt a pre-trained network for falls risk classification

Summary of Dissertation Results
. We demonstrate by using k-means we can cluster vectors of risk ratio as low/high falls

risk

. We show that by using a Bayesian classifier we can classify vectors of gait variables as
low/high risk while quantifying classifier uncertainty

. We show how to pre-train a deep neural network to learn feature representation
related to human motion using publicly available pedestrian activity data

. We show how to use a pre-trained deep neural network as feature extractor for falls
risk classification

. We show how to classify falls risk using inertial gait measurements collected from a
srnartphone
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Older Adult Walkway Data



14  Older Adult Walkway Data

Data collected in partnership with the
Electronic Caregiver Company

Sensor System:

o TekScan® WalkwayTM System

o Measures plantar force and pressure

o Automatic foot strike detection, foot
labeling, segmentation

o Gait Variables, i.e. gait speed, cadence, stride
length, swing time, and 2x support

Data Collection:

Data collected from 854 participants

o Collected at 50 in Southern and
Southwestern US

o Participant Selection Criteria

o Age, cognitive ability

o Ability to read and understand liability waiver

Ability to ambulate for 30s w/ or w/o assistive
device

electronjc
caregiver

85.5

inches

 ►

14.5

inches

Use of gait datasets approved for secondary analysis by NMSU IRB reference #15405



15 Older Adult Walkway Data

White -

African Arnerican 5.6%

Hispanic 3.4%

Asian 1.0%

Native Arnerican 0.4%

Other 1.2%

No Response 5.6%

82.8%

0 20 40 60 80 100

[%]

A11 ethnicities except Whites are under represented



16 Older Adult Walkway Data

Variable Female (n=601) Male (n=253)

Age, y (std. dev.) 78.9 (7.9) 78.5 (7.8)

Weight, kg (std. dev.) 70.8 (16.5) 85.3 (17.4)

Cardiovascular (%) 237 (38.4) 91 (36.0)

Arthritis (%) 323 (53.7) 109 (43.1)

Neurologic (%) 183 (30.4) 68 (26.9)

Metabolic (%) 213 (35.4) 83 (32.8)

More-than-one (%) 248 (41.3) 89 (35.2)

Female/Male proportion is than the U.S. population

Healthier than the overall U.S. over the age of 65
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BAYESIAN CLASSIFICATION
FOR FALLS RISK USING WALKWAY DATA

M. Martinez, P. L. De Leon, and D. Keeley, "Bayesian Classification for Falls Risk",
Gait & Posture, vol. 67, pp. 99 - 103, Jan 2019



18  Falls Risk Labeling

Falls Risk Labels
Labels obtained from questionnaires 4 falls history, medication usage, home
environment

Clinical methods 4 Timed Up & Go, 30-s chair stand, 4-stage balance test

Challenges with questionnaires and clinical tests
Questionnaires are error prone

Thresholds to determine faller and non-faller

' Faller/Non-faller labels are indicative of an individual's falls history

o Do not account for biomechanical factors associated with a prospective fall

o Clinical test do not quantify the uncertainty in the classifier's decision

o Clinical methods do not provide a probability of adverse outcome

Bayesian Classifier
o Develop a Bayesian classifier for classifying older adults as low or high risk

- Walkway data will be used to train classifier

o Calculate risk vectors that quantify how falls risk changes with gait variables

o Risk vectors are used to train k-means

o Gait vectors are used to train a two-component GMM

o GMM calculated posterior probabilities are used to build Bayesian classifier

o Monte Carlo simulation to assess classifier performance



19 Biomechanical Risk Factors

Age related gait degradation
O Stiffer and less coordinated gait pattern

O Less capable of self-correcting after a slip
or trip

O Decrease in muscle strength tone,

O Decreased step height and length

O Reduction in body orienting reflexes

O Unable to rapidly and correct balance

Gait Variables Related To Risk
. 5 Variables
. Pace factor (3 variables)
. Rhythm factor (2 variables)

Risk Ratios:
. Ratio of probability of exposed group to

unexposed group
. RR = 1 4 outcome is not effected by exposure
. RR < 1 4 outcome is decreased by exposure
. RR > 1 4 outcome is increased by exposure



20 Biomechanical Risk Factors

Age related gait degradation
O Stiffer and less coordinated gait pattern

O Less capable of self-correcting after a slip
or trip

O Decrease in muscle strength tone,

O Decreased step height and length

O Reduction in body orienting reflexes

O Unable to rapidly and correct balance

Gait Variables Related To Risk
. 5 Variables

. Pace factor (3 variables)

. Rhythm factor (2 variables)

Risk Ratios:
. Ratio of probability of exposed group to

unexposed group

. RR = 1 4 outcome is not effected by exposure

. RR < 1 4 outcome is decreased by exposure

. RR > 1 4 outcome is increased by exposure

Gait Variable Median Unit Change Risk Ratio

Gait Speed

Cadence

Stride Length

Swing Phase

Double Support

95.1 cm/sec

101.8 steps/min

112.5 cm

36.6 %

26.6%

-10 cm

-10 steps/min

-10 cm

-10 %

+10 %

1
I

1
1.078

1.085 I
I

1.095 i

1.503 I

1.207



21 Data Labeling Using Risk Ratios

Challenge with Risk Ratios
o Quantify how risk changes with changes in gait
variables

o No method for calculating falls risk
Completely unlabeld data set

Apply k-means to derive risk based labels
o First, calculate change in risk

x
A risk =

—median x (risk ratio — 1)
unit change

° A risk < 0, then A risk =
o Cluster into two classes (low/high risk)

assume that data structure consists of two classes

Hard class decision or label assignment

k-means labels
o Use to risk labels to evaluate Bayesian classifier

Results
Low Risk: 511 (59.8%) High Risk: 343 (40.2%)

O low-risk

O high-risk

0

0
cps 9 000

.1 cl e   0

.440-7 •10, C>
10, f• • 

4,.• oir•••-.4.• 11.0.....,• •,% e 1•4 • IVA 0.•

NVIOVIAIPirOiSfreg,•.;tio• zo:.21tim-exte..1.74:vore-orsv.--,:piret•At, 0 & 0,...".. 4.1.0jvs, -vikt.061•110•4•) , e•- o
,s:A•Ltle,„,44,400.0.F.I.J•r * 00.40.4100 0
'0619411)°,40044.41, (10 ' 9 efill.p41 a •Pl° n--,,,,, 040.- • 64) Ile* 0 .40

•ip 0 0 0 0 0

° 0(6) Ci
0

0 e% 0
0

.

0
(-,g dps 9
0 0
.   

.44,146: °• e ° ( e RD C° 4'

fiel•Voittole ell. 10.0, r
Oi - 4

gal tel 11:
• -0

.":44.31)0r• tf'd a/%1S.A.'
.r.4.,,,tole,44041,4110•••4••,_, 

• 11

0,01
40,10;00.4.3.A..

401,.

-e.4//"0- ON 4111••_41,, 
iillatV410-: '-

ialtdditifitSreth•eiri•Pskr ,

•-- • 8) li. •Ire t04r. ,I _
•o (oZ

Normalized Risk
oo Vector Magnitude

o

6' 0
• il•P• cb9 o
0 o 0 0 o

o 0 06) °
o

0

o 0.2 0.4 0.6 0.8

Risk vectors are effectively clustered into low and high risk groups



22 Bayesian Classification

Bayesian Classifier

O Simple classifier constructed by Bayes Rule: p(Clx)

Training a Bayesian Classifier

O Learn a probability model for the likelihood

o Model class prior as equally likely or estimate class prior from data

Evaluating Classifier

o Maximum A Posteriori (MAP) decision

o Threshold using receiver operating characteristic analysis

Semi-supervised and Unsupervised Bayesian Classifier

O Assume that data is generate from a mixture distribution

O Number of components is equal to the number of classes

O Learning class structure through clustering algorithm

p(xIC)p(C)

p(x)

•

Class structure is learned through mixture models



2 3 Gaussian Mixture Modeling

Mixture Modeling
O Model data using 2-component GMM
• Components represent low/high risk

GMM Parameter Estimation
O Use Expectation-Maximization algorithm
• Training Data: Vector of 5 gait variables

O Gait variables measured from walkway
measurements

Model Training:
O Diagonal covariance matrix
• Low risk component is determined using
median values for gait vector

Train 2 different models
O Gender independent model
• Gender dependent model

Soft label assignment

Gender independent
0

o 0 0 V _ rt. . - ...:0.400.,]-4.0, -4 d' 4:
0 4- - i; , P, 7,4, s, , _ 4:77:11,f,•::/77 ,!), ;;:i. b4 0 r, ..... ,,,,sf 01,10,0,..,„,,,,.......,....,,. _ ,,, .
0 -5, "fel - Sio: Clibi***.j.-0 0 .49'

• P, -A p,s...__ - _'

0 o 
:44 r , speo %

.. • 4- it •
0 :.°•‘. •

0 O *woo

0o

0
o° 

Qio o
0 0
0 0

o

8
0

0

0

0

Gender dependent
0

0

0

p(C21x)

,
0.2 0.4 0.6 0 8

Risk assessment is performed using underlying biomechanics



24 Bayesian Classifier and Assessment Methodology

Bayesian Classifier

Ci , p(Ci lx) > 0

otherwiseC2,

Assessment

O Every walkway example has two labels: 1).
Risk based label and 2). GMM soft label

o Boot-strap the risk based labels (k-means) to
evaluate Bayesian classifier

o Apply threshold to posterior probabilities

Assessment
o Optimal threshold is computed by maximizing
Youden's J Statistic

J = sensitivity + specificity — 1

. Gives equal weight to false positive and false
negatives

o Sensitivity and specificity obtained from ROC
curve

Monte Carlo Simulation (100 trials)
o 80% used to train, 20% validation
o Stratified re-sampling scheme

Model AUC-ROC 0 ACC SPEC SENS

Gender-indep 99.1% 0.461 96.5% 95.4°/0 98.1%

Female 99.1% 0.464 96.8% 95.3°/0 98.7%

Male 99.1% 0.601 95.5% 95.5% 95.4%

1



25  Results

Final Model:
o Retrain on all data

o Use thresholds from MC simulation

O ACC:

. Gender independent 96.4%

o Gender dependent: 97% (female) 96.8%
(male)

o Minor improvement from gender

modeling

. High agreement between hard labels and GMM
labels

. Gender Dependent: 495 low, 359 high

. Gender Independent: 492 low, 362 high

Limitations:

. Walkway data collected in laboratory setting

. Self-reported health data

. Anonymity, biased statement avoidance, request
for truthful answers

o
o

low-risk
high-risk

Gender independent

o
o

low-risk
high-risk

o

Gender dependent

o

o

o

o

o

o

o

o

Gait vectors can effectively be classified according to risk level



26  Summary

Demonstrated method for classifying older adults as low or high risk
o Bayesian classifier

O Posteriors probabilities were obtained from a two-component GMM

o Using walkway data GMM parameters were estimated for gender independent
and dependent models.

Demonstrated good agreement with risk ratio based labels
o ROC curve analysis

Accuracies greater than 96%

Clinical Use
O Can be used to assist clinicians with identifying older adults' falls risk using gait
data

o Can improve clinicians' recommendations for intervention

The Bayesian classifier provides a method for assigning labels to inertial data
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FALLS RISK CLASSIFICATION
VIA TRANSFER LEARNING

M. Martinez, and P. L. De Leon "Falls Risk Classification of Older Adults using
Deep Neural Networks and Transfer Learning ", in Review IEEE J. Biomed. And
Health Inform. Submitted Sept. 2018



28 Deep Learning for Biomedical

Machine Learning and Deep Learning for Biomedical

O Detection of influenza epidemics using search engine data

O Skin cancer classification using deep convolutional neural networks

o Diabetic retinopathy detection using deep convolutional neural networks

Deep Learning for Gait Analysis and Gait Disorder Classification

O Gait parameter estimation (stride length, stride width, swing time, etc) foot mounted inertial
sensor data (CNN)

O Gait pattern classification from tomography sensor data (CNN)

O Detection of freezing of gait in Parkinson's patients (CNN)

Deep Learning for Falls Risk Classification

o To our knowledge first to use deep neural networks for falls risk classification from inertial
sensor data (6-axis)

Proposed Method:

O Train a deep neural network to classify sequences of inertial gait data as low/high risk

o First train a fully convolutional neural network for a pedestrian activity recognition task

o Use transfer learning to solver the falls risk classification problem
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31 Neural Networks
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Width 4 Function Approximation

Depth 4 Hierarchical Features



34  Convolutional Neural Networks

CNN
Specialized neural network for data with a grid like structure

1-D (time series), 2-D (images), or 3-D (volumetric images)

o CNNs are more computationally efficient (less trainable parameters)

O Matrix multiplication is replaced with convolution

h=g(x*W+b)

o Convolution allows network to process data of variable sizes



35 Convolutional Neural Networks

CNN
Specialized neural network for data with a grid like structure

1-D (time series), 2-D (images), or 3-D (volumetric images)

o CNNs are more computationally efficient (less trainable parameters)

O Matrix multiplication is replaced with convolution

h = g(x * W + b)

o Convolution allows network to process data of variable sizes

Properties of CNN
1). Sparse interactions

Hidden
Layer

Input
Layer

0 0 0 Hidden
Layer

Input
Layer

0 0 0 0 0

Adapted from "Deep Learning" Adapted from "Deep Learning"



36  Convolutional Neural Networks

CNN

o Specialized neural network for data with a grid like structure

0 1-D (time series), 2-D (images), or 3-D (volumetric images)

o CNNs are more computationally efficient (less trainable parameters)

O Matrix multiplication is replaced with convolution

h = g(x * W + b)

o Convolution allows network to process data of variable sizes

Properties of CNN

1). Sparse interactions 4 Computational and memory efficient

Hidden
Layer

Input
Layer

Hidden
Layer

Input
Layer

Adapted from "Deep Learning" Adapted from "Deep Learning"



37 Convolutional Neural Networks

CNN
Specialized neural network for data with a grid like structure

1-D (time series), 2-D (images), or 3-D (volumetric images)

o CNNs are more computationally efficient (less trainable parameters)

O Matrix multiplication is replaced with convolution

h = g(x * W + b)

o Convolution allows network to process data of variable sizes

Properties of CNN
, 1). Sparse interactions 4 Computational and memory efficient
, 2). Parameter sharing 4 Improved memory efficiency

Hidden nHidde
Layer 

O O O O O 
Layer

Input 'DI CI 'DI Input
Layer Layer

O 0 0 0 0

O 0 0 0
Adapted from "Deep Learning" Adapted from "Deep Learning"



38  Convolutional Neural Networks

CNN
Specialized neural network for data with a grid like structure

1-D (time series), 2-D (images), or 3-D (volumetric images)

o CNNs are more computationally efficient (less trainable parameters)

O Matrix multiplication is replaced with convolution

h = g(x * W + b)

o Convolution allows network to process data of variable sizes

Properties of CNN
, 1). Sparse interactions 4 Computational and memory efficient
, 2). Parameter sharing 4 Improved memory efficiency

o 3). Equivariant representations 4 When the input changes the output changes accordingly



39  Time series classification

Time Series Classification
o Classify a vector sequence, xt , to one of C classes

• Smartphone IMU data are treated as vector sequence

O Each element is a sample from an independent sensor channel

Human Activity Recognition
o Deep Convolutional Neural Networks

• Recurrent Neural Networks

o Sequence-to-sequence learning

o Hybrid CNN-RNN architectures

Fully Convolutional Neural Networks
O Typically used for semantic image segmentation
o Process arbitrary sequence since fully-connected layer is omitted

o Extract features at different time scales by using causal dilated convolutions

• FCNNs have outperformed RNNs on the same tasks

• Easier to train than RNNs

• Have less trainable parameters than RNNs

o Do not suffer from the vanishing/exploding gradient problem

Achieved state-of-the-art results for time series classification



40  Causal Convolutions
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41 Causal Convolutions
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42 Causal Dilated Convolutions
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43 ParNet: Pedestrian Activity Network
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44 ParNet: Pedestrian Activity Network
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45 ParNet: Pedestrian Activity Network

ParNet
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46 ParNet: Pedestrian Activity Network

ParNet
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47 ParNet: Pedestrian Activity Network

ParNet
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48 ParNet: Pedestrian Activity Network
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49 Human Activity Sensing Consortium Dai- Pi-

Data Sets for Human Activity Recognition

, Opportunity

o Physical Activity Monitoring Data Set

O UCI-Human Activity and Postural Transition Dataset

O Wireless Sensor Data Mining Dataset

o Human Activity Sensing Consortium

HASC-PAC2016

O 510 Participants (120 Femal, 390 Male)

o Segmented data (20 s duration)

o Data from accel/gyro/mag/barometer/proxy/wifi

O 111,027 segmented examples (for all sensor types)

o Activities: Stay, walk, run, skip, upstairs, downstairs

O Only used 100 Hz data

O 23,345 examples from all placement locations

o 5,970 examples from waist only placement
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50  Human Activity Sensing Consortium Dataset

Crop Signal

2 s 5 s



51 Human Activity Sensing Consortium Dataset
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2 s 5 s

Remove Effects of Gravity

1.2

1  

0 0. 8-a 
D
•E 0.6
0)

g 0.4

0.2

0

4th order Butterworth

fc = 0.15 Hz

x = x - xf

0 0.2 0.4 0.6 0.8 1

Frequency [Hz]



52 Human Activity Sensing Consortium Dataset
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53 Human Activity Sensing Consortium Dataset
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54 Human Activity Sensing Consortium Dataset

Crop Signal

2 s 5 s

Remove Effects of Gravity
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Digital polynomial smoothing filter
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Window = 51 and Order = 3

Data Augmentation

Randomly Crop Signal

Randomly Rotate Signals
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55  Human Activity Sensing Consortium Dataset
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56  Human Activity Sensing Consortium Data Set

Model Placement Sensor Type(s) Examples

ParNet(All, Accel) All Accel 42,125

ParNet(All, Accel + Gyro) All Accel + Gyro 42,125

ParNet(Waist, Accel) Waist Accel 12,882

ParNet(Waist, Accel + Gyro) Waist Accel + Gyro 12,882



57  Pedestrian Activity Recognition:Training

Models trained using 0 pyTorch
Trained and evaluated on 2x Nvidia GeForce® Gtx 980 GPUs

Each model was trained fully supervised for 250 epochs

Network Parameter Optimization

O Mini-batch gradient descent (batch size of 64 examples)

O minimize cross-entropy loss (measure of difference between probability distributions)

o Adaptive Moment Estimation (Adam) optimizer

O Learning rate of le-5

o L2 regularization with coefficient of 10e-2



58  Pedestrian Activity Recognition:Training

Models trained using 0 pyTorch
Trained and evaluated on 2x Nvidia GeForce® Gtx 980 GPUs

Each model was trained fully supervised for 250 epochs

Network Parameter Optimization

Mini-batch gradient descent (batch size of 64 examples)

minimize cross-entropy loss (measure of difference between probability distributions)

° Adaptive Moment Estimation (Adam) optimizer

0 Learning rate of le-5

° L2 regularization with coefficient of 10e-2
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ParNet models with accel + gyro have better performance than accel only



59 Pedestrian Activity Recognition: Evaluation

Model Acc Stay Walk Jog Skip Up Down

ParNet(All, Accel)

ParNet(All, Accel+Gyro)

ParNet(Waist, Accel)

ParNet(Waist, Accel + Gyro)

Random Forests(All, Accel)

Random Forests(All, Waist)

RNN

97.0% 99.6% 95.6% 97.4% 98.2% 98.0% 93.4%

97.4% 99.8% 96.5% 98.0% 98.4% 97.7% 94.5%

98.3% 99.7% 97.7% 98.7% 97.6% 97.6% 98.7%

98.8% 99.4% 98.3% 99.7% 98.5% 98.7% 98.4%

73.4%

81.4%

95.4%

I
1

I

1
1

ParNet has equivalent or better performance than previously published results



60  Transfer Learning For Neural Networks
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62 Transfer Learning For Neural Networks

Traditional ML

Classifier A

Task A

Classifier B

Task B

Transfer Learning

Classifier A

Transfer

Classifier B

Source Task Auxiliary Task

Transfer Learning for Neural Networks
o Transfer weights from classifier A to classifier B. Retrain only output layer.

o Transfer some weights from classifier A to classifier B. Retrain layers with non-
transferred weights.

o Transfer weights from classifier A to classifier B. Set layer-wise learning rates with
rates increasing with adepth. Retrain output layer
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64 FallsNet: Falls Risk Classification Network
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65 FallsNet: Falls Risk Classification Network
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66 FallsNet: Falls Risk Classification Network
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67 FallsNet: Falls Risk Classification Network
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68 FallsNet: Falls Risk Classification Network
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69 FallsNet: Falls Risk Classification Network
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70 Older Adult Smartphone Data

Data collected in partnership with the
Electronic Caregiver Company

Sensor System:

o TekScan® WalkwayTM System

O 2x Apple iPhone 6 (custom iOS app)

O Inertial measurements of gait

o 6 sensor channels, 3-axis accel, 3-axis gyro

ABCD LCNM

Participant: 5 Hip Placement

—  Left ID Right

Countdown Timer

10

sec

Logging Duration

30

10

Smartphone Data Collection:

Data collected from 256 of 854
participants

Attached to left and right hip using
holster clip and gait belt

Each participant has an example of
walkway (labeling) and inertial gait data
(prediction)
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76 Older Adult Smartphone Data
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77 Older Adult Gait Data

Inertial Gait Examples

. 657 examples, where the duration is greater than 3.5 seconds

. 436 from female participants

. 221 from male participants

Gait Segment Labeling

. Each gait segment has a corresponding vector of gait variables

. Used Bayesian classifier to label each gait segment

. 422 examples labeled as low risk

. 235 examples labeled as high risk

Additional Post-Processing

. Digital polynomial smoothing filter

. Savitzky-Golay filtering

. Window = 51 and Order = 3



78 Transfer Learning Experiment

Transfer Learning Experiment

o First llayers of ParNet are transferred to the first /
layers of FallsNet

, Remaining 6 — / layers are randomly initialized

o Only backpropagate through the randomly
initialized layers

Trained 24 different models
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Transfer Learning Experiment

o First llayers of ParNet are transferred to the first /
layers of FallsNet

, Remaining 6 — / layers are randomly initialized

o Only backpropagate through the randomly
initialized layers
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80  Transfer Learning Experiment

Transfer Learning Experiment

• First /layers of ParNet are transferred to the first /
layers of FallsNet

• Remaining 6 — / layers are randomly initialized

• Only backpropagate through the randomly
initialized layers

• Trained 24 different models
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81 Transfer Learning Experiment

Transfer Learning Experiment

. First /layers of ParNet are transferred to the first /
layers of FallsNet

. Remaining 6 — / layers are randomly initialized

. Only backpropagate through the randomly
initialized layers

. Trained 24 different models

. Trained 2 baseline models (/ = 0)
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82  Training and Evaluation
Models trained using

Trained and evaluated on 2x Nvidia GeForce® Gtx 980 GPUs

Each model was trained fully supervised for 250 epochs

Network Parameter Optimization
o Stratified Mini-batch gradient descent (batch size of 64 examples)

O minimize cross-entropy loss (measure of difference between probability distributions)

o Adaptive Moment Estimation (Adam) optimizer

O Learning Rate Scheduler 4 decreased learning rate by 10 3 after 10 epochs of no
improvement

o L2 regularization with coefficient of 10-2

o 80/20 Train/validation split

Network evaluated using Area Under the Receiver Operating Characteristic Curve



83  Training and Evaluation
Models trained using

Trained and evaluated on 2x Nvidia GeForce® Gtx 980 GPUs

Each model was trained fully supervised for 250 epochs

Network Parameter Optimization
° Stratified Mini-batch gradient descent (batch size of 64 examples)

0 minimize cross-entropy loss (measure of difference between probability distributions)

° Adaptive Moment Estimation (Adam) optimizer

0 Learning Rate Scheduler 4 decreased learning rate by 1 0 3 after 10 epochs of no
improvement

° L2 regularization with coefficient of 10-2

° 80/20 Train/validation split

Network evaluated using Area Under the Receiver Operating Characteristic Curve
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84 Evaluation

Baseline AUC-ROC: 82.9 (Accel) and 82.7 (Accel + Gyro)

Model
Layers Transferred,/, to FallsNet

1 2 3 4 5 6

ParNet(All, Accel) 92.1% 89.7% 90.4% 89.7% 87.0% 81.3%

ParNet(All, Accel + Gyro) 92.1% 91.7% 91.5% 90.1% 87.9% 71.9%

ParNet(Waist, Accel) 91.3% 91.2% 92.1% 88.8% 89.7% 79.2%

ParNet(Waist, Accel + Gyro) 93.3% 91.5% 90.3% 91.1% 86.9% 73.5%

Best AUC results obtained with / = 1 and Waist, Accel + Gyro

10.4% improvement in AUC-ROC over baseline



85 Discussion

Human Activity Recognition

• Inclusion of accelerometer and gyroscope gives better results over accelerometer only

• Training with only acceleration ParNet only learns features related to gait mechanics

O Training with acceleration and gyroscope ParNet learns features related to joint rotation

o Training on data with single placement location generalized better model trained on all
placement locations

Transfer Learning and Falls Risk Classification

• ParNet(Waist, Accel + Gyro)with / = 1 in terms of AUC-ROC has better transfer learning
ability

• Layers 1 and 2 of ParNet appear to sufficiently learn generalized features related to gait

• Performance degrades as deeper layers in ParNet are transferred to FallsNet



86  Summary

Proposed a deep neural network method for classifying older adults as low/high risk
of falling

Trained deep neural network (ParNet) for pedestrian activity recognition

Modified ParNet for falls risk classification (FallsNet)

Applied transfer learning to ParNet

Found that in terms of AUC-ROC only the first layer of ParNet needs to be
transferred to FallsNet

Networks trained on waist only data did better than data with all placement
locations
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Conclusion



88 Future Work

Data Collection

o Expand data collection to a longitudinal study
O Include follow-up into regularly defined intervals
o Use study for validating Bayesian classifier and FallsNet
O Include data collection (walkway and inertial) with follow up

Falls Risk Classifier to Gait Parameter Estimator

O Train FallsNet to estimate gait parameters from inertial measurements

O Using Bayesian classifier to provide falls risk classification decision

O Inertial Data 4 Gait Parameter Estimation 4 Bayesian Classification 4 Falls Risk Decision

Falls Risk Classification to Falls Risk Anomaly Detection

O Train only on inertial data from individual's identified as low risk

o Seq2Seq architectures used to like an autoencoder,
O seq 4 compressed version 4 reconstructed seq

o Reconstruction error for each sensor channel as features in classifier



89  Conclusions

Summary of Dissertation Results

O Demonstrated we can cluster vectors of risk ratio as low/high falls risk using k-means

O Showed that a Bayesian classifier we can classify vectors of gait variables as low/high risk
while quantifying classifier decision uncertainty

o Show how to pre-train a deep neural network to learn feature representation related to
human motion using publicly available pedestrian activity data

o Showed how to use a pre-trained deep neural network as feature extractor for falls risk
classification

o Showed how to classify falls risk using inertial gait measurements collected from a
smartphone

o End-to-end training of a deep neural network for falls risk classification from inertial
measurements of gait

Contributions

o Shown how to use gait variables associated with an increase risk of falling to provide a
low/high risk label

O Shown how to "learn" features related to human motion using a deep neural network

o Shown how to apply transfer learning to adapt a pre-trained network for falls risk
classification

§
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Backup



91 Pedestrian Activity Recognition: Evaluation
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92 Evaluation

Baseline Accuracy: 75.8 (Accel) and 75.8 (Accel + Gyro)

Model
Layers Transferred, /, to FallsNet

1 2 3 4 5 6

ParNet(All, Accel) 80.3% 82.6% 81.1% 75.8% 78.8% 37.1%

ParNet(All, Accel + Gyro) 84.1% 81.8% 78.8% 83.3% 78.8% 68.9%

ParNet(Waist, Accel) 84.1% 85.6% 85.6% 80.3% 83.3% 39.4%

ParNet(Waist, Accel + Gyro) 84.9% 76.5% 80.3% 84.1% 81.1% 64.4%

Best accuracy results obtained with / = 2 and Waist, Accel

9.8% improvement in accuracy over baseline



93 Evaluation

Baseline Specificity (1 - FPR): 76.0 (Accel) and 78.0 (Accel + Gyro)

ROC threshold set such that TPR == (1 — FPR)

Model
Layers Transferred, /, to FallsNet

1 2 3 4 5 6

ParNet(All, Accel) 81.0% 77.0% 79.0% 80.0% 77.0% 76.0%

ParNet(All, Accel + Gyro) 83.0% 80.0% 81.0% 83.0% 78.0% 68.0%

ParNet(Waist, Accel) 82.9% 85.0% 85.0% 80.0% 80.0% 73.0%

ParNet(Waist, Accel + Gyro) 84.0% 81.0% 80.0% 84.0% 80.0% 65.0%

Best specificity results obtained with / = 2, 3 and Waist, Accel

9% improvement in specificity over baseline


