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‘ Motivation

* Tungsten is a candidate material for the divertor of
ITER and other future fusion reactors

* Divertor will be subject to high temperatures and
particle fluxes of both hydrogen and helium

* Under hydrogen implantation, micron sized blisters
on the surface have been observed

* The presence of helium in the plasma, under
simultaneous or subsequent helium-hydrogen
irradiation, suppresses blisters

* It is hypothesized that the helium bubble layer
prevents hydrogen from diffusing deeper into the
material to form blisters, but could more strongly trap
hydrogen

* Here, we describe MD simulations to investigate He-
H synergies in W
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Subsurface Mixed H-He Bubble
Methods

° 6nm x 6 nm x 6 nm simulation cell

* Cavity first created with a 1 nm radius and
located 3 nm below the surface

* Concentrations of 3,3.5, or 4 He/V and 0.5 or
1 H/V atre randomly distributed within the
bubble

* Simulation evolved for 100 ps and diffusion of
hydrogen is assessed

* Temperatures of 1200 K, 1500 K, 1800 K, and
2000 K

* (110) and (111) surface orientations

* Tersoff bond order potential for W-H
interactions developed by Juslin et al. [1] and
modified for H, desorption by Guterl et al. [2]

[1] N. Juslin, et al., J. Applied Physics. 98, 123520 (2005)
[2] J. Guterl, et al., J. Nucl. Mater. 463, 263-267 (2015)
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inset image of a slice through
the bubble




Atomistic Snapshots after 100 ps

Blue: Helium  Green: Hydrogen
o . Grey: Tungsten Magenta: Tungsten Adatoms
* Initially over-pressurized bubble leads to

expansion 1200 K 1200 K

* Bubble expansion and loop punching produces 3.5He/V  1H/V 4He/V 1H/V

adatom formations consistent with previous
MD work of helium bubbles

* Expansion occurs within first few ps

* More surface deformation and faster loop (110)
punching at higher temperatures and helium
concentrations

* Bubble evolution independent of hydrogen

* Adatom/surface patterning depends on 2000 K 1200 K
sutface orientation 3.5He/V 0.5H/V 4 He/V 0.5H/V

* Significant diffusion of hydrogen to helium
bubble periphery

* Hydrogen segregation to the bubble edges is
observed for all simulations regardless of initial
parameters




‘ Hydrogen Cumulative Radial Distributions

* Plots of H distribution from
bubble center

* Black line is at O ps and blue is at
100 ps

* Gray bar represents range of
bubble radius due to non-isotropic
expansion

* Circle and star represent hydrogen
in the bubble and at the periphery

respectively

* Large portion of hydrogen is
located at the bubble periphery,
~75-95% (17-22 H/nm?)

* Typically less than 20% remains in
the bubble interior and is mostly H,

* Standoff distance between helium
bubble and tungsten matrix creates
excess volume that could be a low
energy site for hydrogen, which
prefers vacancy-like defects
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Placing the H Initially Throughout the Box L

Blue: Helium Green: Hydrogen
Grey: Tungsten Magenta: Tungsten Adatoms
* Initially place hydrogen randomly (110) Surface at 1800 K and 3 He/V and 1 H/V
throughout the simulation cell
0 ns 1ns 10 ns
* Simulation run for 10 ns to allow T —— o T T s
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enough time for hydrogen to diffuse

* Hydrogen still diffuses to bubble
periphery, ~25-40% of total inventory
depending on initial temperature

* Hydrogen very rapidly accumulates at

the bubble periphery within first
nanosecond and remains there for rest of
simulation 1.0|— 1ne

5ns
s 10:NS
== Bubble Radius

* Additional hydrogen at either top or G0l bl
% At Bubble Periphery
bottom surface
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* Hydrogen concentration at bubble §O \
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Binding/Trapping Energy Calculations

* Simulations quenched and minimized after

100 ps

* Hydrogen atoms around the bubble are then
moved in 1 A steps, both towards and away from
the bubble, and the energy is minimized and
recorded °f

Average Normalized Energy vs. Displacment

* The energy at each step is normalized to the
energy in the bulk and plotted for ~100 hydrogen
atoms from 20 different simulations

* There is a clear trapping location at the bubble
periphery with a binding energy of 1.5-2.5 eV
The high energy within the helium bubble itself

Binding Energy (eV)

will drive the hydrogen out of the bubble |

* Moving hydrogen into the bubble is repulsive -af

* A binding energy of ~2 eV and an activation I T R 0 5 10 15 20 25 30 ‘
energy of ~0.3 eV (migration energy of Displacemest (Rogstms)

> 1000 K -- the energy needed to overcome this

interstitial H), implies desorption temperatures
potential well could be as high as ~2.3 eV



Large Scale Hydrogen and Hydrogen-Helium Modeling

* Large scale 50 nm x 50 nm x 25 nm box with
a free surface in the z direction

* ~4 million tungsten atoms with initial helium
implantation to a fluence of ~10!” m

* Hydrogen implanted at thermal energy based
on 60 eV depth distribution from SRIM at an
effective flux of ~10% m~2s! 25

* Compare hydrogen implantation in pure nm
tungsten and helium irradiated tungsten

933 K

* Two different hydrogen potentials compared

* Tersotf bond order potential for W-H
interactions developed by Juslin et al. [1] and
modified for H, desorption by Guterl et al. [2]

* EAM W-H potential developed by Wang, et al [3]
[1] N. Juslin, et al., J. Applied Physics. 98, 123520 (2005)

[2] J. Guterl, et al., J. Nucl. Mater. 463, 263-267 (2015)
[3] XXXX
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Initial He distribution for W-H-He simulations




W-H and W-H-He at a fluence of 2.8 x 10!7 m-2

Pure Tungsten He Irradiated
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Tersoff Tersoff EAM

Hydrogen Depth Distribution with and without Pre-Implanted Helium

vl = Hydrogen depth distributions modified in presence of helium
= In pure tungsten case, ~80% of hydrogen is located directly at
08| the surface and some diffuses deeper into the bulk
< = In the helium pre-implanted case, the hydrogen is preferentially
g oe located in the helium bubble layer 5-10 Angstroms below the
RS surface, about 60% and 80% for the Tersotf and EAM potential
T o4l respectively
- :Z :::::mplanted - Tersoff * More hydrogen has diffused deeper in the material for the pure
planted - EAM .
0.2t == pyre Tungsten tungsten case. Very few, about ~10 hydrogen atoms, have diffused
— Initial H Implantation depth passed the bubble layer in the pre-implanted cases
00 0 20 20 60 80 100

Depth (Angstroms)



H Binding to He Clusters
(Observed Clusters from MD)

Snapshots of H - He cluster interactions in MD simulations with pre-implanted He

sida

Hydrogen Binding Energies to Small Clusters
Cluster Identified Using Tersoff
Configuration | Tersoff Binding Energy (eV) | EAM Binding Energy (eV)
H€40H2Vv23 0.26 0.25
He H\V; 1.11 0.82
HeysH,V; 1.48 0.79
Clusters Identified Using EAM
Configuration | Tersoff Binding Energy (eV) | EAM Binding Energy (eV)
H€145H1‘/§3 031 086
HeyH, V, 1.12 0.93
HegH,V, 0.67 0.28

Blue: Helium
Green: Hydrogen

37.5% and 60% of the H
located in the He bubble
layer is located near a
helium cluster/bubble for
the Tersoff and EAM
potential respectively
(using a search algorithm
& interaction cutoff
distance of 0.32 nm)
Remainder of H is mostly
atomic with a few H,
molecules

Binding energy tends to
be slightly lower with EAM
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Planned Experimental Work

* Perform experiments to validate observations from modeling work, namely if
helium bubbles will trap hydrogen in tungsten

*Initially perform helium implantations to get the desired microstructure and bubble

density

*Subsequently expose the helium implantated tungsten samples to hydrogen using a
hydrogen permeation setup being built at ORNL

*Bulk helium implantation and subsequent annealing has been performed at SNL
and TEM is currently being utilized to observe bubble distribution.

*In-situ helium implantation and subsequent in-situ annealing was done at SNL to
observe bubble growth at different temperatures




Cross-section TEM of the initial bulk helium implanted samples
13 1 resulted in unexpected results

700keV He, 5x10'¢/cm?, RT implantation
Annealed @ 1000°C for 2 hours fusscazaza vy '?‘s %
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*According to the SRIM simulation, He bubbles should be observed at a depth of 300 nm - 1.4 um.
They were instead only observed at the surface.

*Samples were annealed after implantation, but bubbles were expected to grow in the same region

as the initial implantation.
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In-situ helium implantation and annealing were used to observe
bubble growth and migration kinetics

»FIB lift-out of W plate was used for TEM experiments
»He ion flux ranged from 1.29x10!%-7.81x10% ions/cm?/s

»JEOL single tilt stage was used for He implantation and Gatan double tilt heating stage was
used for annealing

»During in-situ annealing, due to the high melting temperature of W (3,422°C), the
temperature was ramped in 100°C increments. The temperature was held for 5 min at each step
until 900°C, when bubble growth was first observed.

Approximate TEM

sample thickness
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15 | Bubbles were not observed until annealing at 900°C (T, = 0.32)

*Due to significant FIB & He implantation damage, small bubbles could not be obsetved
during in-situ He implantation

*Small bubbles were eventually observed during annealing at a temperature of 900°C.
* At this temperature, the FIB damage started to anneal away.
* Bubbles began to grow, making them easier to observe.

°In some cases, cavities appear to be diffusing through the W and coalescing.
* Surprising observation at this low of a homologous temperature, but maybe explains bulk results

After He implantation, -1 ym
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Conclusions

Subsurface Mixed H-He Bubbles

° Bubble (growth/loop punching) evolution is similar to previous MD results and depends on helium
concentration and temperature

> Por all cases, the hydrogen diffuses to the bubble periphery, with about 75-95% of the hydrogen located
here after 100 ps

° A significant amount of hydrogen diffuses to the bubble periphery, ~25-40%, even when the hydrogen
is initially distributed throughout the simulation cell

° The hydrogen at the bubble periphery may be strongly bound, with a binding energy of ~2-2.5¢eV

° These results indicate that helium bubbles may be a significant prap%i/ﬁ% site for hydrogen, and therefore
tr1t151m — although validity of interatomic potentials and short-time simulations necessitate further
stu y

Large-scale W-H-He

> When helium and helium bubbles are fpresent, the H depth distribution is modified such that the
hydrogen is located within the subsurface helium bubble layer as opposed to directly at the surface

° Helium appears to limit deeper hydrogen diffusion into the material

° For the hydrogen that is in the bubble layer, ~66% is clustered with helium which is consistent with the
results from the mixed bubble simulations

° Longer simulation times are needed to further assess these results

Experimental Results
> Experiments planned to investigate H-He interactions in tungsten

¢ g(l)i(giaé He implantation in tungsten performed and bubbles were observed using TEM after annealing to
I

> Subsequent exposure to hydrogen will be performed
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‘ Sensitivity of Simulation Parameters

(111) Surface at 1800 K and 3 He/V and 1 H/V

*Extended time
* Select simulations were run up to 1 ns 6 Nm X6 nm X6 nm
* Some hydrogen starts to diffuse further from the 100 ps
bubble but the majority still remains near the
bubble periphery

6 nm X 6 nm x 6 nm
1ns
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*Double the tungsten width from 6 nm to 12

nm
* Changes the areal density of bubbles due to
periodic boundary conditions
* Affects the initial bubble expansion
* LLeads to more destructive surface deformation

especially for the (110) surface and higher gas
atom concentrations 12 nm x 112 NMX6NM  ¢nmx6nmx12nm
L 1ns

*Double the depth of the box from 6 nm to 12
nm and the bubble depth from 3 nm to 6 nm

* Virtually no surface deformation
* Bubble expands more laterally

* Does not affect hydrogen partitioning to the
bubble periphery
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