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I Motivation

• Tungsten is a candidate material for the divertor of
ITER and other future fusion reactors

Divertor will be subject to high temperatures and
particle fluxes of both hydrogen and helium

• Under hydrogen implantation, micron sized blisters
on the surface have been observed

• The presence of helium in the plasma, under
simultaneous or subsequent helium-hydrogen
irradiation, suppresses blisters

• It is hypothesized that the helium bubble layer
prevents hydrogen from diffusing deeper into the
material to form blisters, but could more strongly trap
hydrogen

• Here, we describe MD simulations to investigate He-
H synergies in W
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Subsurface Mixed H-He Bubble
Methods

6 nm x 6 nm x 6 nm simulation cell

Cavity first created with a 1 nm radius and
located 3 nm below the surface

• Concentrations of 3,3.5, or 4 He/V and 0.5 or
1 H/V are randomly distributed within the
bubble

• Simulation evolved for 100 ps and diffusion of
hydrogen is assessed

Temperatures of 1200 K, 1500 K, 1800 K, and
2000 K

• (110) and (111) surface orientations

Tersoff bond order potential for W-H
interactions developed by Juslin et al. [1] and
modified for H2 desorption by Guterl et al. [2]

[1] N. Juslin, et al., J. Applied Physics. 98, 123520 (2005)

[2] J. Guterl, et al., J. Nucl. Mater. 463, 263-267 (2015)

Blue: Helium
Green. Hydrogen
Grey: Tungsten
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Initial simulation setup with
inset image of a slice through
the bubble



Atomistic Snapshots after 100 ps

• Initially over-pressurized bubble leads to
expansion

• Bubble expansion and loop punching produces
adatom formations consistent with previous
MD work of helium bubbles

• Expansion occurs within first few ps

• More surface deformation and faster loop
punching at higher temperatures and helium
concentrations

• Bubble evolution independent of hydrogen

• Adatom/surface patterning depends on
surface orientation

• Significant diffusion of hydrogen to helium
bubble periphery

- Hydrogen segregation to the bubble edges is
observed for all simulations regardless of initial
parameters

Blue: Helium Green: Hydrogen
Grey: Tungsten Magenta: Tungsten Adatoms

1200 K
3.5 He/V 1 H/V

Imemarnstemn

(110)

Ej
2000 K

3.5 He/V 0.5 H/V

1200 K
4 He/V 1 H/V

1200 K
4 He/V 0.5 H/V



I Hydrogen Cumulative Radial Distributions
• Plots of H distribution from
bubble center

• Black line is at 0 ps and blue is at
100 ps

• Gray bar represents range of
bubble radius due to non-isotropic
expansion

• Circle and star represent hydrogen
in the bubble and at the periphery
respectively

• Large portion of hydrogen is
located at the bubble periphery,
—75-95% (17-22 H/nm3)

• Typically less than 20% remains in
the bubble interior and is mostly H2

• Standoff distance between helium
bubble and tungsten matrix creates
excess volume that could be a low
energy site for hydrogen, which
prefers vacancy-like defects
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I Placing the H Initially Throughout the Box

• Initially place hydrogen randomly
throughout the simulation cell

• Simulation run for 10 ns to allow
enough time for hydrogen to diffuse

Hydrogen still diffuses to bubble
periphery, —25-40% of total inventory
depending on initial temperature

• Hydrogen very rapidly accumulates at
the bubble periphery within first
nanosecond and remains there for rest of
simulation

• Additional hydrogen at either top or
bottom surface

• Hydrogen concentration at bubble
periphery higher than at the surface, 4.5
H/nm3 vs. 1.5 H/nm3

Blue: Helium Green Hydrogen
Grey: Tungsten Magenta: Tungsten Adatoms

(110) Surface at 1800 K and 3 He/V and 1 H/V
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I Binding/Trapping Energy Calculations

Simulations quenched and minimized after
100 ps

• Hydrogen atoms around the bubble are then
moved in 1 A steps, both towards and away from
the bubble, and the energy is minimized and
recorded

• The energy at each step is normalized to the
energy in the bulk and plotted for —100 hydrogen
atoms from 20 different simulations

• There is a clear trapping location at the bubble
periphery with a binding energy of 1.5-2.5 eV
The high energy within the helium bubble itself
will drive the hydrogen out of the bubble

• Moving hydrogen into the bubble is repulsive

• A binding energy of —2 eV and an activation
energy of —0.3 eV (migration energy of
interstitial H), implies desorption temperatures
> 1000 K -- the energy needed to overcome this
potential well could be as high as —2.3 eV
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1 Large Scale Hydrogen and Hydrogen-Helium Modeling

• Large scale 50 nm x 50 nm x 25 nm box with
a free surface in the z direction

• —4 million tungsten atoms with initial helium
implantation to a fluence of —1019 m-2

• Hydrogen implanted at thermal energy based
on 60 eV depth distribution from SRIM at an
effective flux of —1025 m-2s-1

• Compare hydrogen implantation in pure
tungsten and helium irradiated tungsten

• 933 K

• Two different hydrogen potentials compared

• Tersoff bond order potential for W-H
interactions developed by Juslin et al. [1] and
modified for H2 desorption by Guterl et al. [2]

• EAM W-H potential developed by Wang, et al [3]

[1] N. Juslin, et al., J. Applied Physics. 98, 123520 (2005)

[2] J. Guterl, et al., J. Nucl. Mater. 463, 263-267 (2015)

[3] XXXX
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I W-H and W-H-He at a fluence of 2.8 x 1017 m-2

Pure Tungsten
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• Hydrogen depth distributions modified in presence of helium

• In pure tungsten case, —80% of hydrogen is located directly at
the surface and some diffuses deeper into the bulk

• In the helium pre-implanted case, the hydrogen is preferentially
located in the helium bubble layer 5-10 Angstroms below the
surface, about 60% and 80% for the Tersoff and EAM potential
respectively

• More hydrogen has diffused deeper in the material for the pure
tungsten case. Very few, about —10 hydrogen atoms, have diffused
passed the bubble layer in the pre-implanted cases

20 40 60

Depth (Angstroms)
80 1 0



1 H Binding to He Clusters
(Observed Clusters from MD)

Snapshots of H He cluster interactions in MD simulations with pre-implanted He

Hydrogen Binding Energies to Small Clusters
Cluster Identified Using Tersoff

Configuration Tersoff Binding Energy (eV) EAM Binding Energy (eV)

He40H2V23
He16H1V3
He11H1V1
He41/1173.

0.26
1.71
1.11
1.48

0.25
0.32
0.82
0.79

Clusters Identified Using EAM
Configuration Tersoff Binding Energy (eV) EAM Binding Energy (eV)

Hei45H1V23

He20H1V4
He19H1V3
He9H1V3.

0.31
1.12
0.63
0.67

0.86
0.93
0.94
0.28

Blue: Helium
Green: Hydrogen

• 37.5% and 60% of the H
located in the He bubble
layer is located near a
helium cluster/bubble for
the Tersoff and EAM
potential respectively
(using a search algorithm
Et interaction cutoff
distance of 0.32 nm)

• Remainder of H is mostly
atomic with a few H2
molecules

• Binding energy tends to
be slightly lower with EAM



12  Planned Experimental Work

• Perform experiments to validate observations from modeling work, namely if
helium bubbles will trap hydrogen in tungsten

*Initially perform helium implantations to get the desired microstructure and bubble
density

•Subsequently expose the helium implantated tungsten samples to hydrogen using a
hydrogen permeation setup being built at ORNL

•Bulk helium implantation and subsequent annealing has been performed at SNL
and TEM is currently being utilized to observe bubble distribution.

•In-situ helium implantation and subsequent in-situ annealing was done at SNL to
observe bubble growth at different temperatures



Cross-section TEM of the initial bulk helium implanted samples
1 3 resulted in unexpected results

700keV He, 5x1016/cm2, RT implantation
Annealed @ 1000°C for 2 hours

•••

According to the SRIM simulation, He bubbles should be observed at a depth of 300 nm - 1.4 µ,m.
They were instead only observed at the surface.

•Samples were annealed after implantation, but bubbles were expected to grow in the same region
as the initial implantation.



14

ln-situ helium implantation and annealing were used to observe
bubble growth and migration kinetics

> FIB lift-out of W plate was used for TEM experiments

>He ion flux ranged from 1.29x1013-7.81x1013 ions/cm2/s

>JEOL single tilt stage was used for He implantation and Gatan double tilt heating stage was
used for annealing

)During in-situ annealing, due to the high melting temperature of W (3,422°C), the
temperature was ramped in 100°C increments. The temperature was held for 5 min at each step
until 900°C, when bubble growth was first observed.
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15 Bubbles were not observed until annealing at 900°C (Th = 0.32)

•Due to significant FIB & He implantation damage, small bubbles could not be observed
during in-situ He implantation

•Small bubbles were eventually observed during annealing at a temperature of 900°C.
• At this temperature, the FIB damage started to anneal away.

• Bubbles began to grow, making them easier to observe.

•In some cases, cavities appear to be diffusing through the W and coalescing.
• Surprising observation at this low of a homologous temperature, but maybe explains bulk results

After He implantation, -1 p.m
defocus



1 Conclusions
Subsurface Mixed H-He Bubbles
• Bubble (growth/loop punching) evolution is similar to previous MD results and depends on helium

concentration and temperature
O For all cases, the hydrogen diffuses to the bubble periphery, with about 75-95% of the hydrogen located
here after 100 ps

O A significant arnount of hydrogen diffuses to the bubble periphery, —25-40%, even when the hydrogen
is initially distributed throughout the simulation cell

O The hydrogen at the bubble periphery may be strongly bound, with a binding energy of —2-2.5 eV
O These results indicate that helium bubbles may be a significant trapping, site for hydrogen, and therefore
tritium — although validity of interatomic potentials and short-timeMD simulations necessitate further
study

Large-scale W-H-He
• When helium and helium bubbles are present, the H depth distribution is modified such that the
hydrogen is located within the subsurface helium bubble layer as opposed to directly at the surface

• Helium appears to limit deeper hydrogen diffusion into the material
• For the hydrogen that is in the bubble layer, —66% is clustered with helium which is consistent with the

results from the mixed bubble simulations
• Longer simulation times are needed to further assess these results

Experimental Results
O Experiments planned to investigate H-He interactions in tungsten
O Initial He implantation in tungsten performed and bubbles were observed using TEM after annealing to
900 K

O Subsequent exposure to hydrogen will be performed
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1 Sensitivity of Simulation Parameters
•Extended time
• Select simulations were run up to 1 ns

Some hydrogen starts to diffuse further from the
bubble but the majority still remains near the
bubble periphery

•Double the tungsten width from 6 nm to 12
nm
• Changes the areal density of bubbles due to

periodic boundary conditions

Affects the initial bubble expansion

• Leads to more destructive surface deformation
especially for the (110) surface and higher gas
atom concentrations

'Double the depth of the box from 6 nm to 12
nm and the bubble depth from 3 nm to 6 nm

Virtually no surface deformation

Bubble expands more laterally

• Does not affect hydrogen partitioning to the
bubble periphery

(111) Surface at 1800 K and 3 He/V and 1 H/V

6 nm x 6 nm x 6 nm
100 ps

12 nm x 12 nm x 6 nm
1 ns

6 nm x 6 nm x 6 nm
1 ns

6 nm x 6 nm x 12 nm
1 ns


