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ABSTRACT

Lacayo et al. (Mechanical Systems and Signal Processing, 118, p. 133-157, 2019) recently proposed a
fast model updating approach for finite element models that include lwan models to represent mechanical
joints. The joints are defined by using RBE3 averaging constraints or RBAR rigid constraints to tie the
contact surface nodes to a single node on each side, and these nodes are then connected with discrete
lwan elements to capture tangential frictional forces that contribute to the nonlinear behavior of the
mechanical interfaces between bolted joints. Linear spring elements are used in the remaining directions
to capture the joint stiffness. The finite element model is reduced using a Hurty/Craig-Bampton approach
such that the physical interface nodes are preserved, and the Quasi-Static Modal Analysis approach is
used to quickly predict the effective natural frequency and damping ratio as a function of vibration
amplitude for each mode of interest. Model updating is then used to iteratively update the model such
that it reproduces the correct natural frequency and damping at each amplitude level of interest. In this
paper, Lacayo's updating approach is applied to the S4 Beam (Singh et al., IMAC XXXVI, 2018) giving
special attention to the size and type of the multi-point constraints used to connect the structures, and
their effect on the linear and nonlinear modal characteristics
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1. INTRODUCTION

Mechanical structures with complicated geometry can be accurately modeled with finite element
techniques if the structure is monolithic and manufactured from a single piece of material. However, even
with additive manufacturing, most structures cannot be manufactured as such and therefore mechanical
interfaces are introduced between sub-assemblies, which are then jointed with bolts, rivets or welds.
These joints introduce uncertainty and significant modeling challenges due to the physics involved with
frictional contact. While joints in general can introduce strong nonlinearity, resulting in complicated
phenomena such as modal coupling, response at higher harmonics, and even chaos, in many structures
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of practical interest the nonlinearity is weak and is observed as a change in the effective natural frequency
and damping of some of the structure's vibration modes as vibration amplitude increases.

While commercial finite element analysis or multi-body dynamics software can presumably solve contract
problems with friction [1], most practitioners do not appreciate the level to which the mesh must be refined
near the interface in order to obtain a predictive model. This was illustrated recently by Jewel et. al [2]
who found that tens of hours were required to obtain accurate solutions for the static response of a
structure with only one or two joints when the joint was meshed with adequate refinement and the solver
settings were tuned to accurately solve the contact problem. It would be extremely expensive to perform
dynamic simulations with such a model, and even more so for realistic structures with hundreds of joints.
As a result, the majority of dynamic models use relatively coarse meshes and then spider regions of the
structure to connect different parts through linear springs, whose stiffnesses can be tuned when the
model is updated to correlate with test data.

In some cases, nonlinear hysteretic models are used in place of linear springs when using this whole-
joint approach. These models represent the nonlinearity through constitutive equations between the
degrees of freedom of a single set of nodes. When introduced into a reduced order model (ROM), such
as a Hurty/Craig-Bampton (HCB) reduced model, they can capture nonlinear behavior while maintaining
tractable computational cost. An example of the whole-joint model is the four parameter lwan joint
introduced by Segalman in 2006 [3], which was derived based on analytical solutions to contact problems
and empirical data to best capture the energy dissipation observed in joints. These joint models can often
be used to capture the amplitude dependent frequency or damping measured in experiments, so long as
the joints remain in the micro-slip regime.

The parameters of a whole-joint model such as an lwan element cannot currently be predicted from first
principles, so measurements must be taken and model updating used to update the joint parameters until
the model reproduces the measured response. The Hilbert Transform can be used to extract the
frequency and damping as a function of amplitude from transient response measurements [4]. Then the
recently developed Quasi-Static Modal Analysis (QSMA) approach [5],[6] can be used to quickly compute
these quantities. Lacayo et al. [6] recently demonstrated this workflow to update a reduced model of the
Brake-Reuss (BRB) beam. Similarly, this paper investigates the model updating procedure and
applicability of the four parameter lwan joint with a new benchmark structure studied at Sandia's
Nonlinear Mechanics and Dynamics Institute in 2017 that is shown in Figure 1.
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Figure 1: The S4 Beam side view

The S4 Beam was studied experimentally by Singh et. al. [7], and data from their study is used in this
work. First, an HCB model is made for each beam and linear springs are inserted and updated to match
the measured linear frequencies. Then, lwan joints are inserted in place of some of the springs and
QSMA is used to compute and iterate on the amplitude dependent damping and frequency in an effort to
reproduce the experimentally measured frequency and damping. The experimental structure showed a
high degree of nonlinearity in the first shearing mode (Mode 6), so the goal is to use the methodology to
calibrate the model to capture this mode. In doing so, prior works have shown that a pareto front is often
observed, a case in which the model cannot be updated to capture both the stiffness and damping. This
work explores this issue by creating models with various types of spiders, or various ways to define the
Multi-Point Constraints (MPCs) used to reduce the contact surfaces to a single node.



2. MODELING APPROACH

2.1 Hurty/Craig Bampton Reduction

To incorporate the high geometric detail of the structures of interest, finite element models can
quickly become excessively large and computationally expensive. As a result, ROMs are used to
approximate the full-order model at a set of reduction nodes between the mechanical interfaces. The
approximation requires that these components remain linear and that the only source of nonlinearity
within in the joined system is at the contact interface [8]. Although many methods of model reduction
exist, this paper will focus on the HCB method as discussed in [9]. The FE discretized equations of motion
for an undamped multi-degree of freedom (MDOF) system are given by Equation 1, where M is the mass
matrix, K is the stiffness matrix, F is the external forcing, Fj(u) is the joint force (either linear or nonlinear)
and u is the physical displacement.

Mii + Ku + F1(u) = F (1)

The system can be equivalently written with matrices partitioned between the boundary and interface
DOFs as

[Mii [Kii Kibl + 0 0
Mbi Mbb fib Kbi Kbb (Fp, (lib)) (Fb)

(2)

where subscripts b and i represent the boundary and interface DOF respectively. Note that only the
boundary DOF are assumed to be forced either externally or internally through the joint. Then, a small
number of fixed interface modes1, (1), are computed and that basis is augmented with constraint modes2,
111, as detailed [10] to obtain the HCB transformation matrix in Eq. 3.

uLI fclkl IP]fclkI= THCB _
010 I-0 I -1010 (3)

This transformation then reduces the equations of motion to those shown in Eq. 4.

rn Tcrli__).[Mii Mib

Mbi Mbb 

1 HCB HCB TT.. fibl (T ) Kii Kib[Kb, Kbb1 HCB tqkT 
lib} • [FL ub)}

b0(

[FbOi
(4)

The ROM can be used to analyze the dynamic response of a structure more efficiently than a dynamic
simulation of a full finite element model.

2.2 Spidering

In order to connect the contact surfaces with one-dimensional linear or nonlinear elements, two
types of spider elements were used in this work, which shall be referred to as RBAR and RBE3 elements
(i.e. using NASTRAN's naming convention). An RBAR element is a rigid beam that rigidly constrains
each node to a single node with 6 DOF, whereas an RBE3 is an averaging element that ties the average
displacement and rotation of the surface to that of the slave node [11]. Both are types of MPCs. Figure
Error! Reference source not found. depicts an example of the MPC spiders on the S4B. Note that
separate virtual and HCB reduction nodes had to be created because the implementation of the HCB
method within Sandia National Laboratories Sierra Structural Dynamics (Sierra/SD) code doesn't allow
a virtual node to be used as an interface node in a HCB model [11]. These are shown expanded for
visualization, but in fact they are all concident.

Fixed interface modes are normal modes obtained by fixing the interface between two subcomponents
2 Constraint modes are obtained by deflecting a single mode by a unit displacement while fixing the other DOF
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Figure 2: Finite element model of the S48 depicting the CS

The spiders reduce an area of nodes to a single point that can be used to connect the surfaces. These
spiders can be used to attach linear springs or lwan elements to capture the linear/nonlinear dynamics
of the system.

2.3 Whole-joint Model

One of the most well-developed whole-joint models is Sega!man's 4-parameter lwan element. It was
developed as part of a large research effort at Sandia National Laboratories that considered both
analytical solutions for contact and empirical evidence that showed that joints exhibit power-law energy
dissipation versus force (or vibration amplitude) [3]. An lwan element is simply a collection of slider or
Jenkins elements in parallel, in which the slip force3 for each slider is chosen to create an element that
exhibits power-law energy dissipation. This approach simplifies joint modeling significantly; typical joint
models consider every point in the interface to be independent and goverened by several parameters,
i.e. the friction coefficient, normal force, etc.... When one multiplies these unknowns by the number of
contact elements there may be hundreds or thousands of free parameters. Sega!man's model
recognizes that the net effect of all of these parameters must be to produce power-law dissipation versus
vibration amplitude, which is goverened by only two of the four parameters in the lwan model. The other
two parameters control the transition to macro-slip when the joint slips completely. Macro-slip is typically
not observed in engineered joints if they are tightened properly, except perhaps under extreme loading.

The four parameter lwan model can be represented by four parameters: FS, KT, X, and given in Table 1.
For an in-depth discussion of the lwan element, refer to [3].

Fs

Table 1: Definition of lwan Parameters (physical description)

The force necessary to cause macroslip

3 lf all sliders have the same friction coefficient then the slip force is defined by the normal force for each slider.



KT The tangential stiffness of the Jenkins elements (i.e. the joint stiffness when no slip
occurs)

The exponent that describes the slope of the energy dissipation curve

The ratio of the number of Jenkins elements that slip before micro-slip and then at
macroslip

For the nonlinear analysis, the lwan joint replaces a linear spring between two spiders, and the
corresponding spring constant becomes the KT parameter of the lwan element.

2.4 Linear Model Updating

Between the single point reduced interfaces, six DOF springs are attached to calibrate the linear
natural frequencies of the model to the experimental data. Linear springs are attached with three
translational and three rotational spring constants. These constants were varied from 1e4 to 1 el() (lb/in
or in-lb/rad) in a Monte Carlo study to minimize the difference between the model and experimental
frequencies as shown in Equation 5.

(wmodel,i—cotest,i)2Objective Function = En i=,
cotesti

The results of the Monte Carlo updating are presented in Sections 3 and 4.

(5)

2.5 Nonlinear Model Updating

Quasi-Static Modal Analysis (QSMA) was originally proposed by Festjens et. al [5] as a method that
replaces a dynamic simulation of a joint with a quasi-static problem that can be solved to estimate the
effective natural frequency and damping of a single mode due to the joints in the structure. A quasi-static
distributed force is applied that replicates the inertial loading experienced during vibration in that mode
and coupling between the vibration modes is ignored. Lacayo and Allen further extended QSMA,
developing an even faster algorithm for the case where the joints are represented by lwan elements [14].
The theory is presented in depth in that paper and for brevity it will not be repeated here other than key
points. The HCB model still has the general form given in Eq. 1, and the nonlinear joints can be
represented through a nonlinear force Fj(u) as shown in Eq. 6.

Mii + Ku + F1(u) = F (6)

QSMA consists of solving the equation above for a static case, i.e. ii = 0, where the forcing is F = a[M]vi.
After solving Eq. 6, one obtains the static response, u(a), from which the modal velocity amplitude,
natural frequency, and damping ratio can be written as function of a as shown in Eq. 12-17 in [14]. The
damping ratio is obtained from a load-displacement hysteresis curve that is derived using Masing's Rules.
Given that all three variables are functions of amplitude, the damping and natural frequency can be
plotted in terms of modal velocity amplitude and this is the convention that will be used in this work.

3. APPLICATION TO S4 BEAM: LINEAR UPDATING

The finite element model used for the S4 Beam is shown in Figure 3. This high-fidelity model
incorporates two C shaped beams that are held together by bolts. The bolts were modeled separately
and glued to the top and bottom of the beam, but with the contact interfaces between the beams left free
to slide relative to each other or to penetrate.



Figure 3: Finite element model of the S48 depicting the coordinate system. The beam is segmented into blocks
with nodes corresponding to measurement points

Prior to adding the linear springs or nonlinear lwan elements, the FEM was reduced by creating a HCB
model in which only the spider DOF were retained as interface nodes to create a compact and efficient
model for the linear and nonlinear structure. The resulting model had 24 interface DOF (a six DOF virtual
node at each of the four interfaces) and 30 fixed interface modes. This reduced the FEM to 54 DOF. The
output transfer matrices were saved so that the response could be computed at 22 observation nodes,
which were spaced every 2.5" along the top and bottom of the beam.

For this paper, the spiders were defined over two different areas: the full interface and a reduced
interface, both of which are shown in Figure 4. The full interface consists of all nodes on the flat portion
where contact is possible whereas the reduced interface consists of nodes that were found to be in
contact in a nonlinear contact simulation that was performed in Abaqus. The result of this contact
simulation is also shown in Figure 4. Note that this simulation approximates the surfaces as perfectly
smooth and flat, and there is some evidence, as reported in [7], that the surfaces were not truly flat.
Nevertheless, these models are in line with the typical approach, considering the information that might
be available during the design of a structure. For each of the interface areas, two models were created,
one using RBAR elements and one using RBE3s, resulting in a total of four candidate HCB models.

Figure 4: (Left) Full contact area, (Middle) Reduced contact area, (Right) Abaqus Contact Simulation



3.1 Single Beam Calibration

Prior to calibrating the whole-joint models with linear springs, a finite element model for a single
beam was used to calibrate the material properties for steel. Table 2 lists the adjusted elastic modulus
and Poisson ratio for the single beam and shows the resulting agreement between the experimental
natural frequencies and those of the model. All model frequencies were within 1% of the experimental
frequencies, with the highest error in a second stiff bending mode. The densities of the model were
calibrated by measuring the mass of the experimental beams and dividing by the volume of the FEM to
ensure that the FEM has correct mass. The first four elastic bending modes were used to tune the elastic
modulus and the fifth and seventh modes (torsion) were used to tune the Poisson ratio. Although, Mode
6 for the single beam was identified by the experimental setup, it was not matched within the FEM and
thus was not used in the calibration of the beam. These properties were then used in all subsequent
modeling.

Table 2: Modes of a single beam (half of the S4 assembly) vs. model frequencies

Mode
Experimental

Description
Frequency [Hz]

Single Beam Model
Frequency [Hz]

Percent Error

1 1st Bending 177.87 177.29 -0.33%

2 2nd Bending 497.84 498.09 0.05%

3 1st Stiff Bending 576.00 576.84 0.14%

4 2nd Stiff Bending 979.84 988.44 0.88%

5 Torsion 1474.67 1471.22 -0.23%

6 1556.46

7 Torsion 1585.58 1595.47 0.62%

Table 3: Single beam material property updating

I Nominal Optimal

Elastic Modulus 29,000 [ksi] 27,245 [ksi] (-6.05%)

Poisson Ratio I 0.29 0.29 (0.00%)

3.2 Whole-joint Spring Calibration

Linear model updating was performed for all four candidate models, and after using a Monte Carlo
Simulation to minimize the objective function in Equation 5, a set of values was found for each of the six
spring constants. The springs on either end of the S4 beam were assumed to be identical. Tables 4 and
5 depict the percent error natural frequencies of the assembly after optimization and the spring stiffnesses
for each of the cases respectively.



Table 4: Natural frequency errors for each of the candidate models. The four candidate models contain different
spider areas (full vs. reduced) and different constraint elements (RBAR vs. RBE3)

Mode
Test [Hz]

Full
Interface
RBAR

Full
Interface
RBE3

Reduced
Interface
RBAR

Reduced
Interface
RBE3

Reduced,
Bonded
interface

Mode Shape

1 258.0 0.60% 0.43% 0.63% 0.29% 3.65%

2 331.7 0.37% -1.65% -0.47% -2.12% -0.48%

3 478.6 -0.78% -0.98% -0.87% -0.99% -0.88%

4 567.7 -2.20% -2.24% -2.22% -2.23% -2.25%

5 708.3 -0.78% -0.05% -0.25% -0.12% 3.71%

6 851.5 -0.34% 0.33% 0.16% 0.12% 4.26%

Table 5: Linear spring stiffnesses for each candidate model

Spring Full Interface
RBAR Spring

Full Interface
RBE3 Spring

Reduced Interface
RBAR Spring

Reduced Interface
RBE3 Spring

Tx [1b/in] 1.00E+08 1.65E+10 6.71E+12 5.04E+11

Ty [lb/in] 1.43E+12 1.68E+05 1.20E+05 1.43E+09

Tz [lb/in] 4.81 E+03 1 .84E+02 1 .48E+03 3.00E+04

R x [ira-d1131
2.55E+07 8.59E+04 1.25E+06 2.85E+06

R Y
3.66E+05 1.89E+06 6.10E+05 1.04E+07

[iira-d113

nz L rad
2.08E+06 7.72E+11 4.15E+07 1.82E+07

The S4 Beam has several different types of mode shapes, and each is influenced by different springs
depending on how the joint is loaded. The mode shapes shown in Table 4 can be used to deduce these
differences. For example, Modes 1 and 5 involve opening of the joint and hence are most sensitive to
the Z-direction translational stiffness, whereas Mode 4 is completely insensitive to the joint stiffness.

While the overall agreement was similar for each candidate model, a few differences are noted between
the results obtained using RBE3 and RBAR elements. Most notably, the models with RBE3s were not
able to capture Mode 2 as accurately; this mode is sensitive to the axial stiffness of the joint, loading it in
the fashion of the lap joints that have been studied in many prior works [6], [12]. The RBE3 models have
very high values for T, and yet they still under-predict the frequency of this mode. On the other hand, the
RBE3 models do slightly better at predicting the frequencies of Mode 1, and this might have been
expected since the RBE3 doesn't artificially rigidize the interface and Mode 1 would tend to be sensitive
to this because it bends the interface region.



In comparing the results with the reduced and full interfaces, one can see that the reduced interface
typically required higher spring stiffnesses than the full interface (e.g. consider Ry in Table 5). This result
makes sense, as reducing the interface area effectively decreases the stiffness of the joint region, and
so the spring constants must be increased to compensate. To get a sense of how sensitive the natural
frequencies are to the spring constants found in each case, the constants for the full interface RBAR case
were used in the three other models and the natural frequencies were computed. As expected, the
natural frequencies of modes 3 and 4 didn't change significantly. However, the models gave frequency
errors ranging from 1 and 7% for the other modes. For conciseness, these results are presented in the
Appendix.

In the end, considering only the ability of the models to capture the linear natural frequencies, the best
models contained RBAR elements, as those were able to best capture Mode 2. Overall, the area of
influence had a weaker effect than the choice of spider elements (i.e. RBAR vs. RBE3). These effects
are somewhat overshadowed by the errors in Modes 3 and 4, which were not sensitive to any spring
constants. All modes, apart from Mode 4, were correlated to below one percent error. Mode 4 is the only
mode that involves bending in the y-direction (stiff direction), and the six springs all have negligible effect
on this mode since the joint is not loaded when the structure bends into this mode. It was thought that
this mode may be sensitive to the mass of the bolts or accelerometers, but those were included in the
model and their values verified and even then, the agreement shown is the best that could be obtained
within the timeline of the project. Furthermore, since this mode is linear, this mode was not one of interest
and no further steps were taken to improve correlation and as a result, these spring stiffnesses can be
then applied as a basis for QSMA.

The uncertainty of these spring parameters must be evaluated prior to nonlinear updating, i.e. can
different sets of parameters produce the same linear natural frequencies? If so, there is additional
uncertainty and these parameters must be variable during nonlinear updating. The figure below shows
the objective function for each iteration of the Monte Carlo study versus each of the spring stiffnesses.
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Figure 5: Monte Carlo study depicting the objective function as a function of the spring stiffnesses for the Full
Interface RBAR model.



This figure illustrates that the objective function, and hence the percent error in each natural frequency,
is governed primarily by the Y rotation spring stiffness. The objective function can be small even when
the other spring stiffnesses vary by several orders of magnitude, but it is only small if Y is between about
2e5 and 8e5 in-lb/rad. In other words, there are no other local minima that might produce similar results.
Additionally, the X translation spring and the Z rotation spring must be above about 106 in order to obtain
good correlation. To further illustrate which parameters are important in linear updating and what ranges
for these parameters might be reasonable, Figure 6 depicts the percent error in each natural frequency
(compared to the experimental) as each design variable changes relative to the values in Table 5.
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Figure 6: Frequency Error as each spring stiffness is varied separately for the full interface RBAR model

Although the elastic modulus was established with the single beam study, it was varied in the parameter
study to see if the second beam affected the modulus of the system. It changes the frequencies of every
mode in approximately the same way. Furthermore, no value of the X rotation spring stiffness can better
correlate the model since the joints and modes do not exercise this rotation within the frequency range
of interest. For the other parameters, there exists an optimal value that can improve the correlation of
some modes, while not affecting the other modes. Mode 2 is only sensitive to X translation spring stiffness
but has a large range of applicable values that result in little change in the other linear frequencies. This
allows the freedom to vary the parameter in nonlinear updating in order to improve correlation. For Mode
6, a mode involving shearing of the joint, the Y translation and Z rotation springs can be selected to
minimize the error, while marginally affecting the other modes. However, there is little freedom to vary
the Z rotation spring stiffness before one begins to reduce the correlation of the fifth and sixth natural
frequencies.

4. NONLINEAR MODEL UPDATING

This paper uses the methodology discussed in Section 2 to identify the lwan parameters of the
whole-joints. In the results that follow, since only Mode 6 was considered, an lwan element was only
placed in the Z rotation direction since that affects the shearing of the joint and is assumed to cause the
nonlinearity observed in this mode. The tangential stiffness (Kt) of the joint is chosen as the linear



stiffness obtained from the linear model updating, while the other three parameters are free parameters
to be calibrated. In order to ensure that a global optimum is obtained, Monte Carlo simulation (MCS) is
used to explore the parameter space and find an optimal solution for unknown lwan parameters. Before
running MCS, it is informative to first perform a sweep of some of the parameters to understand what
effect they have and to define limits over which to vary the parameters in the MCS. The power law
exponent, x, is measured from the slope of the experimental damping vs. amplitude curve [3], [13], and
therefore is treated as a known parameter in this study; however since Fs and 13 cannot be measured,
they are allowed to vary. To illustrate the effect of these parameters, using x = —0.12 and an arbitrary
= 1 for both of the joints (in the z-rotation direction), and allowing Fs to vary over a large range, we see

the behavior shown in Figure 7. The model predictions are compared with the measurement for Mode 6
at an impact level of 22.5 lbf and a torque levels of 25.1 N-m (18.5 ft-lb).
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Figure 7: Frequency shift and Damping ratio amplitude dependency for different Fs. values for the full interface
RBAR model

This preliminary test shows excellent correlation between model and experiment for both damping and
frequency trends for Fs = 0.599, and gives an idea of how large of a change in Fs might be needed to
probe the parameter space. This was repeated for various values of 13, revealing that 13 had a much
weaker effect. This provided an initial guess for Fs and established the range of these parameters to use
in the Monte Carlo simulation.

A large Monte Carlo simulation was then conducted for full/reduced interfaces and RBAR/RBE3 joint
models where 16 was uniformly distributed in a logarithmic sense over 6 orders of magnitude, centered
on 13 = 0.1, and Fs as well over 2 orders of magnitude centered on Fs = 0.1, while x was varied linearly
between 0 and -0.2. Figure 8 depicts the root mean square (RMS) error in damping and frequency shift
for each iteration of the MCS, and Table 6 gives the numerical value of the RMS errors and the lwan
parameters obtained for the optimal solution.
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In the study in [14] a Pareto front was observed where one was forced to choose between low error in
frequency or damping. In contrast, in this study the RMS error in frequency and damping are found to
tend to zero together. However, the minimum errors obtained in each model vary quite significantly, with
the Full Interface RBAR model obtaining an order of magnitude smaller error in frequency and damping
than the others (see Table 6). Furthermore, the maximum errors varied greatly for each of the models,
with the Full RBAR model having the least maximum RMS error in both frequency and damping. So, in
a sense, each of these models is limited in how well it can fit the measurements for any value of the lwan
parameters, as was the model in [6].

Table 6: lwan parameters and errors from the Monte Carlo simulations

Interface F, Kt RMS wr, shift RMS damping
error [Hz] error

Full RBAR 0.4472 2.08e6 -0.1697 I 2.3521 0.023 2.62e-5

Reduced RBAR 0.0971 4.15e7 -0.1833 7.589e-5 0.274 1.567e-4

Full RBE3 0.0945 7.72e11 -0.112 0.00307 0.716 3.6975e-4

Reduced RBE3 0.1207 1.83e7 -0.1905 0.000951 0.113 1.155e-4



-3

a.) Full Interface RBAR

10-2 101 10°

Acceleration Amplitude (kg(1/2)*m)

103

cc
rn

ici4
E

- Exper
QSMA

10-2 10 1 10°

Acceleration Amplitude (kg0/2)*m)

-4

c.) Reduced Interface RBAR

102 10-1 10°

Acceleration Amplitude (kg11/2)*m)

103
o

cc
cr,
Eo_104
E

102 101 10°

Acceleration Amplitude (kg(1/2)*m)

-Exper
QSMA

0 -

g -2
o-

-3

b.) Full Interface RBE3

10-2 101 10°

Acceleration Amplitude (kg0/2)*m)

o
To 10-5

rn

-
0

10-1°  
102 101 10°

Acceleration Amplitude (kg0/2)*m)

-4 
102

10-3

fo0
Ce
oi

Exper
QSMA

d.) Reduced Interface RBE3

101 10°

Acceleration Amplitude (kg(1/2)*m)

Exper
QSMA

102 101 10°

Acceleration Amplitude (kg(112)*m)

Figure 9: Experimental damping and frequency shift versus QSMA predictions for the candidate models after
optimization

The amplitude dependent frequency and damping for each set of optimal lwan parameters are shown in
Figure 9, where the best solution is obtained by the Full Interface RBAR model and the Full Interface
RBE3 model gave very poor results. The optimization routine was able to find reasonably good
correlation for the other two models, however, the curve in the damping versus amplitude plots reveals
that the parameters of the lwan joints are tuned such that the models are nearing macro-slip. As a result,
the models do not agree very well at higher amplitudes, and if the model was forced a little too high then
it might exhibit macro-slip whereas the measurements show no sign that macro-slip is imminent.
Interestingly, this same behavior was observed in the study by Lacayo et al. [6], and was the primary
deficiency in their reduced model. The authors have had similar experiences with other models.

In an effort to understand why the Full Interface RBAR model was superior, a parameter study was
conducted in the spring stiffness was varied for the Full I nte rf a c e RBAR model and the resulting frequency
and damping curves are shown in Fig. 10. In this case study, the optimal FS , x and 13 values were used,
and the spring stiffness was varied from 1% to 10000% of the value obtained from linear updating. This
parameter study shows that a small decrease in Kt leads to an increase in damping. However, as Kt is
decreased further, the damping begins to decrease. In other words, there is not a single, simple rule of
thumb governing how Kt will affect the results. To explore this further, QSMA was performed for 1000



values of Kt between 1% and 10000% and the RMS Error in frequency and damping is shown in Figure
11.
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Figure 10: Natural frequency and damping versus amplitude when the lwan joint stiffness (Kt) is scaled and
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Figure 11: Error plot for the case study where the lwan joint stiffness (Kt) is varied and Fs. is held at the optimal
value for the Full Interface RBAR model



The results in Figure 11 further show that the frequency shift and damping do not depend monotonically
on Kt, and that one might observe several Pareto fronts, depending on the range used for Kt. The arrows
show the direction of increasing stiffness. A solution in Region A will yield only excellent damping
correlation, whereas a solution in region B will yield only excellent frequency correlation. Region B will
yield the optimal solution for both damping and frequency. Clearly the quasi-static solution depends
strongly on Kt, and yet, for a single spidering method one has little leeway in adjusting the value of Kt,
without impairing the model's ability to capture the linear natural frequencies of the structure.
Furthermore, this case study was conducted with an F., value that correlates to an optimal solution using
the nominal Kt, and different results might be obtained for other values of F.

It is very interesting that, although these models all produced relatively similar results for linear updating,
they produce completely different results for the nonlinear damping. Furthermore, since the reduced
interface of the S4B was established through a nonlinear contact simulation, it was expected that the
reduced interface would yield the most optimal results; however, this was not the case as the full interface
was most accurately able to capture the measured dynamic behavior.

5. CONCLUSION

This paper explored the applicability of linear and nonlinear model updating to a new nonlinear
benchmark structure, the S4 Beam. High fidelity models were created using RBAR and RBE3 spidered
joints to understand the effects of the area of influence for the joint (i.e. using full and reduced contact
interface areas). The viability of the models was studied by evaluating their ability to reproduce the linear
natural frequencies of the assembly (i.e. by updating linear springs at the interface) and their ability to
capture the amplitude dependent frequency and damping caused by the joints (i.e. by updating the
parameters of nonlinear lwan elements at the interfaces).

The linear updating exercise showed that all models were quite similar, although the models with spiders
constructed with rigid bar elements captured the second mode more accurately, and this was significant
because the second mode was sensitive to shearing of the joint due to bending of the beam, a
phenomenon that is often observed in lap joints. We also explored simply bonding aIl nodes in the
interface that were found to be in contact by a high fidelity simulation of preload, but we did not obtain as
good of agreement using that approach as was seen by Fronk et. al. [14] although that aspect of this
study deserves further investigation.

Quasi-static modal analysis was then used to update the parameters of the nonlinear lwan elements,
using the joint stiffnesses found in the linear updating step. Although the models captured the linear
modes quite similarly, they produced a widely varying results for the nonlinear damping and for the
change in frequency with vibration amplitude. The model with a full interface spidered with RBAR
elements resulted in the excellent correlation between the experimental nonlinear frequency and damping
curves, perhaps the best that has been observed in this type of study to date, whereas the model that
used the Full Interface with RBE3 spiders gave very poor results. Both of the models using a reduced
interface area gave reasonable correlation, but the lwan joints were forced to the verge of macro-slip and
so one would not have high confidence in simulations from these models. The preliminary conclusion of
this work is that the method of spidering the interface does indeed matter very much for this type of
modeling. Future work will be needed to understand this further and to develop best practices.
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Appendix: Full Interface RBAR Springs for all Models

In this case study, the full interface RBAR case linear spring stiffnesses were used to attach the
four interfaces for the other three models. The tables below depict their results with Table A1 showing
the linear frequencies and A2 showing the percent errors.

Table A1: Linear frequencies for each model using the spring stiffnesses of the full interface RBAR case

Mode Experimental
[Hz]

Full Interface
RBAR [Hz]

Full Interface
RBE3 [Hz]

Reduced Interface
RBAR [Hz]

Reduced Interface
RBE3 [Hz]

1 258.01 259.56 246.92 253.41 244.39

2 331.73 332.97 325.90 329.80 324.34

3 478.55 474.81 473.86 474.40 473.83

4 567.69 555.22 555.00 555.10 555.03

5

6

708.29 702.80 670.48 687.05 663.68

851.54 848.68 812.16 817.12 797.27

Table A2: Percent errors for the modes for each model using the spring stiffnesses of the full interface RBAR
case

Mode Full Interface
RBAR [%]

Full Interface
RBE3 [%]

Reduced Interface
RBAR [%]

Reduced Interface
RBE3 [%]

1 0.60 -4.30 -1.78 -5.28

2 0.37 -1.76 -0.58 -2.23

3 -0.78 -0.98 -0.87 -0.99

4 -2.20 -2.24 -2.22 -2.23

5 -0.78 -5.34 -3.00 -6.30

6 -0.34 -4.62 -4.04 -6.37

In comparison to the optimal models, the frequencies for Modes 3 and 4 did not change.
However, for all other modes, the frequency errors increased significantly though not dramatically.


