SAND2018- 11913PE

Performance Effects of Task Placement
on ATS1 and CTS1

Managing MPI Rank and OpenMP Thread Placement with SLURM

PRESENTED BY

Douglas M. Pase, PhD/Sandia National Laboratories = ;
Wlth Anthony M. AgelaStOS and Joel O' Stevenson Sandia National Laboratories is a multimission

laboratory managed and operated by National
Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department of
\ Energy’s National Nuclear Security Administration

1 1/8/20 /‘“ under contract DE-NA0003525.
18 AsC

Summary - ATS-1/KNL

* Default placement performs poorly when using MPl and OpenMP
together with the Intel programming environment

e Use --cpu-bind=cores
* Intel gives faster, but less consistent performance vs. CRAY and Gnu
* CRAY and Gnu have similar performance on MPI everywhere
* CRAY is a little faster than Gnu on OpenMP everywhere

Summary - ATS-1/Haswell

* CRAY default placement performs poorly for MPI everywhere codes
e Use --cpu-bind=cores

* All placements perform poorly for OpenMP everywhere codes
* Use at least 2 MPI ranks per node
* Use --cpu-bind=sockets

* Intel outperforms CRAY and Gnu for memory performance

Summary - CTS-1/Broadwell

* Intel outperforms Gnu for memory performance
* Do NOT use OMP_PROC_BIND="“spread”
* Local memory access is about 60% faster than remote

Canary In The Coal Mine

* Throughout this study we use the stream microbenchmark to
measure performance because, of the available resources,

* Memory performance is most sensitive to task placement
* Core, MPI and I/O performance are generally next, often in that order

* Depending on how tasks are placed, stream shows performance
impact due to both memory affinity and core loading (i.e., load
imbalance), but not MPI or I/O

ATS1 (Mutrino) KNL

Three Programming Environments

* Cray PE - PrgEnv-cray/6.0.4
* Gnu PE - PrgEnv-gnu/6.0.4
* Intel PE - PrgEnv-intel/6.0.4

Three Memory Environments

* Main Memory (DDR)

S sbatch --constraint=knl,quad,flat

S srun numactl --membind=0 Sexe

e Cache

S sbatch --constraint=knl,quad,cache
S srun Sexe

* High-Bandwidth Memory (HBM)

S sbatch --constraint=knl,quad,flat

S srun numactl --membind=1 Sexe

Unclassified, Unlimited Release

Stream on CRAY PE (Default Rank Placement

500,000

450,000

400,000

350,000

300,000

250,000

Triad (MB/s)

200,000

150,000

100,000

50,000

11/8/2018

352,151 360,577

‘] ‘

1x64

1 MPI Rank

348,572

71,109

1x128

353,592

347,015 346,899

331,402 335,721
| i | |] |

1x256 64x1
MPI Ranks x OMP Threads

Unclassified, Unlimited Release
B cache EDDR EHBM

64 MPI Ranks
333,401 335,866
| 67,192 |

64x2

346,479 347,575

[

[}

s

)

(b}

0

0

66,653 -
()
o]0]

| -

©

-

64x4

Stream on Gnu PE (Default Rank Placement

500,000

450,000

400,000

350,000

300,000

250,000

Triad (MB/s)

200,000

150,000

100,000

50,000

11/8/2018

305,461 310,821

| i |

1x64

1 MPI Rank

288,229

68,172

1x128

290,144

330,472
235,380 238,568
64,898 67,273 67,086

1x256 64x1
MPI Ranks x OMP Threads

Unclassified, Unlimited Release
B cache EDDR EHBM

354,542

64 MPI Ranks

350,592 353,743

64x2

350,127 345,705

o

v

s

)

v

o]

8.2

66,690 -
()
oo

—

©

—

64x4

10

Stream on Intel PE (Default Rank Placement

500,000

450,000

400,000

350,000

300,000

250,000

Triad (MB/s)

200,000

150,000

100,000

50,000

11/8/2018

338,506

| 97,383

1x64

394,832

475,786

1 MPI Rank

340,571

100,636

1x128

462,495
335,114
97,835
15,357 16,017 15,402
1x256 64x1

MPI Ranks x OMP Threads

Unclassified, Unlimited Release
B cache EDDR EHBM

64 MPI Ranks

(5\

16,911 17,243 16,879

64x2

27,118 27,100 27,124

64x4

11

Larger is better.

What is going wrong?

* Srun is not constraining the binding of ranks to hardware threads

* The CPU affinity mask allows all hardware threads to be selected

* This is as it should be, allowing the Linux kernel to manage load balancing
across threads and cores

* Intel OpenMP run-time is binding OMP threads to hardware threads
in an attempt to gain more performance
* Each MPI rank has its own collection of OMP threads
* OMP thread binding is based on the values in the rank CPU affinity mask
 Each OMP run-time is making the same decisions based on the same info

* The result is that each MPI rank is bound to the same hardware threads,
causing a massive load imbalance

It is @ combination of factors...

* The problem is caused by using all of the following at the same time:
e Default (unconstrained) rank binding
* Multiple MPI ranks per KNL node
* Intel OpenMP threads

* The fix is to change any one (or more) of the above conditions
 Explicitly bind MPI ranks to disjoint sets of cores/threads, or...
* Use only a single MPI rank per KNL node, or...

* Compile applications without Intel OpenMP
e Setting OMP_NUM_THREADS=1 is not enough!

* In other words, either avoid hybrid models of parallel execution, or
explicitly bind MPI ranks to disjoint sets of cores

Hierarchy of Controls

* SLURM resource manager (via sbatch) allocates resources

* srun/mpirun/mpiexec
* Launches programs on reserved resources
* Maps MPI ranks to nodes, NUMA domains and cores
* Binds MPI ranks to nodes, NUMA domains and cores

* OMP run-time system may re-map and re-bind ranks and threads

* Linux/TOSS3 kernel executes the requested core/domain bindings
e srun and OMP run-times request mapping and binding
* The kernel is responsible for honoring the binding
* Bindings are communicated via CPU affinity masks
e CPU affinity masks list the allowed hardware threads for a process or thread

11/8/2018 Unclassified, Unlimited Release

Sbatch Options

e --constraint={knl,quad,flat or knl,quad,cache}
 --nodes=Snodes _per job

Srun Options

* --nodes=Snodes _per job

* --ntasks=Sranks_per job

* --ntasks-per-node=Sranks_per_node
e ——distribution={block;cyclic}

* --cpu-bind=...

* Map_Cpu:ry,ry,y,..,foq
e cpu_mask:0xF...F,OxF...F,...
e cores

* numactl --membind={0;1} --cpunodebind={1,0} Sexe

Unclassified, Unlimited Release

Mpirun and Mpiexec Options

e Default
e MPI ranks are distributed BLOCK
e All slots are filled

* --map-by ppr:Sranks_per_node:node
* Limited to no more than Sranks_per _node ranks on each node

* --rank-by {node,socket,core,hwthread}
* —-rank-by node - MPI ranks are distributed CYCLIC (i.e., round robin)
e --rank-by socket - MPI ranks are distributed BLOCK

* --bind-to {none,socket,core,hwthread}

 MPI ranks are allowed to float anywhere (none), within the socket (socket),
within a core (core), or not allowed to float (hwthread)

11/8/2018 Unclassified, Unlimited Release

OpenMP Controls

e export OMP_PROC_BIND=true,false,spread,close,master
* true: threads should not be moved
* false: threads may be moved
* spread: threads are distributed across partitions (i.e., NUMA domains)
 close: threads are kept close to the master thread, similar to master
* master: threads are kept in the same partition as the master thread

e export OMP_PLACES=threads,cores,sockets
* threads: OpenMP threads are placed on successive hardware threads
e cores: OpenMP threads are placed on successive processor cores
* sockets: OpenMP threads are placed on successive sockets

What | used to get the best performance...

* sSrun
--nodes=Snodes_per job
» Specifies the number of nodes to use, must be less than or equal to the nodes allocated

--ntasks=Sranks_per job
» Specifies the total number of MPI ranks to use

--ntasks-per-node=Sranks per _node
» Specifies the number of ranks to use on each node

--cpu-bind=cores
numactl --membind=1 Sexe

1/9/9019 Hnrlaccifiad [Hnlimitad Ralaaca
1/8/ 2018 Unclassitied, Unlimited Release

Stream on Intel PE (--cpu-bind=cores

500,000

450,000

400,000

350,000

300,000

250,000

Triad (MB/s)

200,000

150,000

100,000

50,000

11/8/2018

338,506

| 97,383

1x64

394,832

475,786

340,571

100,636

1x128

462,495

335,114
| 97,835

1x256

357,514

328,363
| 89,740

64x1

MPI Ranks x OMP Threads

Unclassified, Unlimited Release
B cache EDDR EHBM

363,937

322,789
| 89,442

64x2

305,972

89,964

64x4

360,909

20

Larger is better.

Memory Performance By Programming Env.

(]
-8 500,000
> CRAY PE
—
C 450,000
© OMP MP]
g o]
.85 400,000
| -
l—
G 350,000
Q
| -
)
n

300,000
=
S~
o
2 250,000
©
@
=

200,000
« 150,000
Q
+—
i
3]
o0 100,000
w
S
O
L 50,000
o0
o

0
1x64 1x128 1x256 64x1 64x2 64x4

11/8/2018

500,000

450,000

400,000

350,000

300,000

250,000

200,000

150,000

100,000

50,000

Gnu PE
OMP MPI
1x64 1x128 1x256 64x1 64x2 64x4

Unclassified, Unlimited Release

500,000

450,000

400,000

350,000

300,000

250,000

200,000

150,000

100,000

50,000

® Without
OpenMP
: MPI+OMP
g Hybrid
Intel PE
O‘ | | MPI
1x64 1x128 1x256 64x1 64x2 64x4

21

mcache mMDDR EMHBM Ranks x Threads B cache EDDR EMHBM Ranks x Threads B cache EDDR EHBM

Combinations of Parallelism

* OpenMP Everywhere - 1 MPI rank; 68, 136, 272 OMP threads / rank
* Hemisphere - 2 MPI ranks; 34, 68, 136 OpenMP threads per rank

* Quadrant - 4 MPI ranks; 17, 34, 68 OpenMP threads per rank

e Octant - 8 MPI ranks; 8, 17, 34 OpenMPI threads per rank

e x17 - 17 MPI ranks; 4, 8, 17 OpenMPI threads per rank

* X34 - 34 MPI ranks; 2, 4, 8 OpenMPI threads per rank

* MPI Everywhere - 68 MPI ranks; 1, 2, 4 OpenMP threads per rank

Using Combinations of Parallelism

* OpenMP Everywhere (default)
 MPI Everywhere (--cpu-mask=cores)

* Hemisphere (x2) --cpu-mask=
0x000000003 FFFFF 000000003 FFfffFFF000000003ffffFFFF000000003FFFFffff,
OxFFFFFFFFc00000000FFF T FFFc00000000fffffffFc00000000fFFfffFfc00000000

* Quadrant (x4) --cpu-mask=
0x0000000000001ffff0000000000001f 0000000000001 fFFF0000000000001FFFf,
0x000000003fffe0000000000003fffe0000000000003 fffe0000000000003fffe0000,
0x00007fffc0000000000007 f 0000000000007 FfFc0000000000007 FFFc00000000,
0xf 8000000000000 8000000000000 FFF8000000000000FFFF8000000000000

Other Combinations of Parallelism

e Octant (x8) --cpu-mask=
0x000000000000000FF000000000000000Ff000000000000000FF000000000000000Ff,
0x0000000000000FF000000000000000FF000000000000000Ff000000000000000F00,

0x000ff000000000000000ff000000000000000ff000000000000000fF000000000000,
0x0ff000000000000000fF000000000000000ff000000000000000fF00000000000000

* Xx17 --cpu-mask=
0x0000000000000000F0000000000000000f0000000000000000F00000000000000007,

0x000000000000000F0000000000000000F0000000000000000F00000000000000000, 17

0x0f0000000000000000F0000000000000000F0000000000000000F000000000000000,
0xf0000000000000000f0000000000000000F0000000000000000F0000000000000000

* x34 --cpu-mask=
0x00000000000000003000000000000000030000000000000000300000000000000003,

0x0000000000000000c0000000000000000c0000000000000000c0000000000000000c¢, 34

0x30000000000000000300000000000000003000000000000000030000000000000000,
0xc0000000000000000c0000000000000000c0000000000000000c0000000000000000

11/Q/79N19Q I TmrlaceiEind 11 mited Ralaac 2/
11/8/2018 Unclassified, Unlimited Release 24

ATS1 (Mutrino) Haswell

Three Programming Environments

* Cray PE - PrgEnv-cray/6.0.4
* Gnu PE - PrgEnv-gnu/6.0.4
* Intel PE - PrgEnv-intel/6.0.4

* And two memory domains

Default Distribution and Bindings (MPI)

140,000

120,000

100,000

80,000

Triad (MB/s)

60,000

40,000

20,000

11/8/2018

10

Intel cpu affinity mask=[0-63]

Gnu cpu affinity mask=.[0—63]

CRAY cpu affinity mask=[0]

15 20
Ranks (cores)

Unclassified, Unlimited Release
®cray @gnu @intel

25

30

35

27

--cpu-bind=sockets (MPI)

Triad (MB/s)

140,000

120,000

100,000

80,000

60,000

40,000

20,000

11/8/2018

10

Intel cpu affinity

mask=[0-15,32-47

1,[16-31,48-63]

Gnu cpu affinity mask=[0-15,32-47.],[16-.31,48;63

CRAY cpu affinity mask=[0],[16]

15

Ranks (cores)

20

Unclassified, Unlimited Release
®cray @gnu @intel

25

30 35

28

--cpu-bind=cores (MPI)

140,000
Intel cpu affinity mask=[0,32],[16,48],[1,33]...,[31,63]
120,000 . o ® S o ° ® ® ®
100,000 .
® ® [] @ [] ° [J [] []
- 50,000 L e . ® " ® ° ®)))
2 . - %
E L Gnu cpu affinity mask=[0,32],[16,48],[1,33], ...,[31,63]
~ 60,000
Y @
. CRAY cpu affinity mask=[0],[16],[1],[17],...,[31]
40,000 ® o
]
20,000 ®
[]
0
0 5 10 15 20 25

Ranks (cores)
11/8/2018 Unclassified, Unlimited Release

®cray egnu @intel

--cpu-bind=map_cpu:0,16,1,...,30,15,31 (MPI)

140,000
Intel cpu affinity mask=0,16,...,15,31
120,000 ° ° ® ® ® ® ® @ ®
100,000 . . ’ :
® ® ® ® ® ® ® ®
< 80,000 ® ¢ . ¢ ¢ ! * * *
B o ¢ Gnu cpu affinity mask=0,16,...,15,31
~ 60,000 " e
. CRAY cpu affinity mask=0,16,...,15,31
40,000 e o
e
20,000 °
[]
0
0 5 10 15 20 25 30 35

Ranks (cores)

11/8/2018 Unclassified, Unlimited Release 30
®cray @gnu @intel

Threads Only - (1 Rank, kK Threads per Node)

50,000

45,000

40,000

35,000

30,000

25,000

Triad (MB/s)

20,000

15,000

10,000

5,000

11/8/2018

10

© ® 4]
@
e O @
® ® o [] *
°®
15 20

Threads (cores)

Unclassified, Unlimited Release
®cray @gnu @intel

25

30

35

31

2 Ranks, k Threads per Node

100,000
2x Performance vs. OMP Only

90,000
° 4 H ¢ o s

] ®
80,000

70,000
60,000

50,000]

Triad (MB/s)

40,000
30,000
20,000

10,000

0 5 10 15 20 25
Total Threads per Node (cores)

11/8/2018 Unclassified, Unlimited Release
®cray @gnu @intel

Single Socket Local and Remote (MPI

70,000

60,000

50,000

40,000

Triad (MB/s)

30,000

20,000

10,000

11/8/2018

® cray local

Py @ [) ®
& ('] O [
[] [] [] ®

8 10

MPI Ranks (cores)

Unclassified, Unlimited Release

® gnu local

@ intel local

® cray remote @ gnu remote

12

intel remote

14

16

18

33

CTS1 (Eclipse) Broadwell

Two Programming Environments

& cores cores
* Gnu - we used gnu/7.3.1 S | 000000000 | 9P| 500000000
: o | 000000000 000000000
* Intel - we used intel/18.0 = :

Memory

Domain 0 Domain 1 HCA

* And two memory domains (local and remote)
* Memory in domain O is local to cores in domain O
* Memory in domain 1 is local to cores in domain 1
* Memory in domain O is remote to cores in domain 1, and vice versa

11/8/2018 Unclassified, Unlimited Release

Default Placement (MPI

140,000

120,000

100,000

80,000

Triad (MB/s)

60,000

40,000

20,000

11/8/2018

10

[]
o H ®
- ® ° .
o o .
[)
. []
[]
°® ® []
e
2
15 20

Ranks (cores)

]
' []
[]

°
® $
25

Unclassified, Unlimited Release

@ gnu-mpi-omp @ intel-mpi-omp @ gnu-mpi

@ intel-mpi

30

35

40

36

Threads With Default and Spread (OMP)

140,000
‘ Py ® ® ® °® e °®] ° °
° ° - & s ., 8 e . ° ° $§ o o
120,000 3 o 8 - & * 5
] o}
® o
$ e ! ?
°
L ®
100,000
’ ° °® °® ° ° ° e ©
N ® 2 ° ® " - ® ® ® @ ° ® s ¥
® PY L]
e o s ° o ° ®
° * i o
% 80000 . o o T
A & ®
= ® o ® e ©
E g ° ® o
60,000 o ¢ S
® ° °
40,000 ® 2
8
° o
°
20,000 -
®
o o
0
0 5 10 15 20 25 30 35 40
Threads (cores)
11/8/2018 Unclassified, Unlimited Release 37

@ gnu-def @intel-def @gnu-spread @ intel-spread

Single Socket Local and Remote (MPI

70,000

60,000

50,000

40,000

Triad (MB/s)

30,000

20,000

10,000

11/8/2018

oo

® ® ®)
- ® ® e
®
() I})
° ® ’ .
)
®
® ® ® ®) ® ® ® @
®)))) ®) ®)
6 8 10 12 14

MPI Ranks (cores)

Unclassified, Unlimited Release
®gnulocal @intellocal ®@gnuremote @ intel remote

16

18

20

38

Questions?

11/8/2018

Unclassified, Unlimited Release

39

