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Summary - ATS-1/KNL

* Default placement performs poorly when using MPl and OpenMP
together with the Intel programming environment

e Use --cpu-bind=cores
* Intel gives faster, but less consistent performance vs. CRAY and Gnu
* CRAY and Gnu have similar performance on MPI everywhere
* CRAY is a little faster than Gnu on OpenMP everywhere



Summary - ATS-1/Haswell

* CRAY default placement performs poorly for MPI everywhere codes
e Use --cpu-bind=cores

* All placements perform poorly for OpenMP everywhere codes
* Use at least 2 MPI ranks per node
* Use --cpu-bind=sockets

* Intel outperforms CRAY and Gnu for memory performance



Summary - CTS-1/Broadwell

* Intel outperforms Gnu for memory performance
* Do NOT use OMP_PROC_BIND="“spread”
* Local memory access is about 60% faster than remote



Canary In The Coal Mine

* Throughout this study we use the stream microbenchmark to
measure performance because, of the available resources,

* Memory performance is most sensitive to task placement
* Core, MPI and I/O performance are generally next, often in that order

* Depending on how tasks are placed, stream shows performance
impact due to both memory affinity and core loading (i.e., load
imbalance), but not MPI or I/O



ATS1 (Mutrino) KNL



Three Programming Environments

* Cray PE - PrgEnv-cray/6.0.4
* Gnu PE - PrgEnv-gnu/6.0.4
* Intel PE - PrgEnv-intel/6.0.4



Three Memory Environments

* Main Memory (DDR)

S sbatch --constraint=knl,quad,flat

S srun numactl --membind=0 Sexe

e Cache

S sbatch --constraint=knl,quad,cache
S srun Sexe

* High-Bandwidth Memory (HBM)

S sbatch --constraint=knl,quad,flat

S srun numactl --membind=1 Sexe
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Stream on CRAY PE (Default Rank Placement
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Stream on Gnu PE (Default Rank Placement
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Stream on Intel PE (Default Rank Placement
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What is going wrong?

* Srun is not constraining the binding of ranks to hardware threads

* The CPU affinity mask allows all hardware threads to be selected

* This is as it should be, allowing the Linux kernel to manage load balancing
across threads and cores

* Intel OpenMP run-time is binding OMP threads to hardware threads
in an attempt to gain more performance
* Each MPI rank has its own collection of OMP threads
* OMP thread binding is based on the values in the rank CPU affinity mask
 Each OMP run-time is making the same decisions based on the same info

* The result is that each MPI rank is bound to the same hardware threads,
causing a massive load imbalance



It is @ combination of factors...

* The problem is caused by using all of the following at the same time:
e Default (unconstrained) rank binding
* Multiple MPI ranks per KNL node
* Intel OpenMP threads

* The fix is to change any one (or more) of the above conditions
 Explicitly bind MPI ranks to disjoint sets of cores/threads, or...
* Use only a single MPI rank per KNL node, or...

* Compile applications without Intel OpenMP
e Setting OMP_NUM_THREADS=1 is not enough!

* In other words, either avoid hybrid models of parallel execution, or
explicitly bind MPI ranks to disjoint sets of cores



Hierarchy of Controls

* SLURM resource manager (via sbatch) allocates resources

* srun/mpirun/mpiexec
* Launches programs on reserved resources
* Maps MPI ranks to nodes, NUMA domains and cores
* Binds MPI ranks to nodes, NUMA domains and cores

* OMP run-time system may re-map and re-bind ranks and threads

* Linux/TOSS3 kernel executes the requested core/domain bindings
e srun and OMP run-times request mapping and binding
* The kernel is responsible for honoring the binding
* Bindings are communicated via CPU affinity masks
e CPU affinity masks list the allowed hardware threads for a process or thread

11/8/2018 Unclassified, Unlimited Release



Sbatch Options

e --constraint={knl,quad,flat or knl,quad,cache}
 --nodes=Snodes _per job



Srun Options

* --nodes=Snodes _per job

* --ntasks=Sranks_per job

* --ntasks-per-node=Sranks_per_node
e ——distribution={block;cyclic}

* --cpu-bind=...

* Map_Cpu:ry,ry,y,..,foq
e cpu_mask:0xF...F,OxF...F,...
e cores

* numactl --membind={0;1} --cpunodebind={1,0} Sexe
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Mpirun and Mpiexec Options

e Default
e MPI ranks are distributed BLOCK
e All slots are filled

* --map-by ppr:Sranks_per_node:node
* Limited to no more than Sranks_per _node ranks on each node

* --rank-by {node,socket,core,hwthread}
* —-rank-by node - MPI ranks are distributed CYCLIC (i.e., round robin)
e --rank-by socket - MPI ranks are distributed BLOCK

* --bind-to {none,socket,core,hwthread}

 MPI ranks are allowed to float anywhere (none), within the socket (socket),
within a core (core), or not allowed to float (hwthread)
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OpenMP Controls

e export OMP_PROC_BIND=true,false,spread,close,master
* true: threads should not be moved
* false: threads may be moved
* spread: threads are distributed across partitions (i.e., NUMA domains)
 close: threads are kept close to the master thread, similar to master
* master: threads are kept in the same partition as the master thread

e export OMP_PLACES=threads,cores,sockets
* threads: OpenMP threads are placed on successive hardware threads
e cores: OpenMP threads are placed on successive processor cores
* sockets: OpenMP threads are placed on successive sockets



What | used to get the best performance...

* sSrun
--nodes=Snodes_per job
» Specifies the number of nodes to use, must be less than or equal to the nodes allocated

--ntasks=Sranks_per job
» Specifies the total number of MPI ranks to use

--ntasks-per-node=Sranks per _node
» Specifies the number of ranks to use on each node

--cpu-bind=cores
numactl --membind=1 Sexe
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Stream on Intel PE (--cpu-bind=cores
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Memory Performance By Programming Env.
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Combinations of Parallelism

* OpenMP Everywhere - 1 MPI rank; 68, 136, 272 OMP threads / rank
* Hemisphere - 2 MPI ranks; 34, 68, 136 OpenMP threads per rank

* Quadrant - 4 MPI ranks; 17, 34, 68 OpenMP threads per rank

e Octant - 8 MPI ranks; 8, 17, 34 OpenMPI threads per rank

e x17 - 17 MPI ranks; 4, 8, 17 OpenMPI threads per rank

* X34 - 34 MPI ranks; 2, 4, 8 OpenMPI threads per rank

* MPI Everywhere - 68 MPI ranks; 1, 2, 4 OpenMP threads per rank



Using Combinations of Parallelism

* OpenMP Everywhere (default)
 MPI Everywhere (--cpu-mask=cores)

* Hemisphere (x2) --cpu-mask=
0x000000003 FFFFF 000000003 FFfffFFF000000003ffffFFFF000000003FFFFffff,
OxFFFFFFFFc00000000FFF T FFFc00000000fffffffFc00000000fFFfffFfc00000000

* Quadrant (x4) --cpu-mask=
0x0000000000001ffff0000000000001f 0000000000001 fFFF0000000000001FFFf,
0x000000003fffe0000000000003fffe0000000000003 fffe0000000000003fffe0000,
0x00007fffc0000000000007 f 0000000000007 FfFc0000000000007 FFFc00000000,
0xf 8000000000000 8000000000000 FFF8000000000000FFFF8000000000000



Other Combinations of Parallelism

e Octant (x8) --cpu-mask=
0x000000000000000FF000000000000000Ff000000000000000FF000000000000000Ff,
0x0000000000000FF000000000000000FF000000000000000Ff000000000000000F00,

0x000ff000000000000000ff000000000000000ff000000000000000fF000000000000,
0x0ff000000000000000fF000000000000000ff000000000000000fF00000000000000

* Xx17 --cpu-mask=
0x0000000000000000F0000000000000000f0000000000000000F00000000000000007,

0x000000000000000F0000000000000000F0000000000000000F00000000000000000, 17

0x0f0000000000000000F0000000000000000F0000000000000000F000000000000000,
0xf0000000000000000f0000000000000000F0000000000000000F0000000000000000

* x34 --cpu-mask=
0x00000000000000003000000000000000030000000000000000300000000000000003,

0x0000000000000000c0000000000000000c0000000000000000c0000000000000000c¢, 34

0x30000000000000000300000000000000003000000000000000030000000000000000,
0xc0000000000000000c0000000000000000c0000000000000000c0000000000000000

11/Q/79N19Q I TmrlaceiEind 11 mited Ralaac 2/
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Three Programming Environments

* Cray PE - PrgEnv-cray/6.0.4
* Gnu PE - PrgEnv-gnu/6.0.4
* Intel PE - PrgEnv-intel/6.0.4

* And two memory domains



Default Distribution and Bindings (MPI)
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--cpu-bind=sockets (MPI)
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--cpu-bind=cores (MPI)
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--cpu-bind=map_cpu:0,16,1,...,30,15,31 (MPI)
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Threads Only - (1 Rank, kK Threads per Node)
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2 Ranks, k Threads per Node
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Single Socket Local and Remote (MPI
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CTS1 (Eclipse) Broadwell



Two Programming Environments

& cores cores
* Gnu - we used gnu/7.3.1 S | 000000000 | 9P| 500000000
: o | 000000000 000000000
* Intel - we used intel/18.0 = :

Memory

Domain 0 Domain 1 HCA

* And two memory domains (local and remote)
* Memory in domain O is local to cores in domain O
* Memory in domain 1 is local to cores in domain 1
* Memory in domain O is remote to cores in domain 1, and vice versa
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Default Placement (MPI
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Threads With Default and Spread (OMP)
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Single Socket Local and Remote (MPI
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Questions?
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