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B) These observations are combined with topography and input into the Weather Research and Forecasting (WFR) to construct high-resolution atmospheric state predictions

speeds and scattering as well as any coupling between the Earth and the atmosphere. In this work,
for each day-of-year for each SPE event analyzed here.
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estimated isotropic explosion source is highly variable. This suggests that 1) the majority of the 5 x10 , , v
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p g A) We select three atmospheric models for each SPE event: an average model (formed by averaging all ten atmospheric states obtained in step 1) and two extrema states (Table 1 5
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B) We estimate the Green'’s functions for each model using a 3D, staggered grid finite difference algorithm. The finite difference scheme takes into account the surface topography, § 0f o —_———< 20104 IS 51 ~
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Table 1: The date and explosive yield of each SPE event analyzed here. The last two columns indicate which years 5
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infrasound arrays, where the Depth of Scaled Depth of first extrema first extrema 5L i Spall

SPE event | Date of Experiment | Yield (tons
yellow circles indicate the arrays P ( ) Burial (m) | Burial (m/kt~(1/3)) combination combination 0 0.5 1 1.5 0

that we used for the work here. SPE-2 25 October, 2011 1 45.7 457 2006; cool and windy [ 2007; warm and calm Time s}
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g(r:\s;i}c/i:::c:rrl\:;dedwwhl;c:ht\tmvaet;cf)me :2 5711 — V‘V :: ?1 The estimated source terms for the three atmospheric models, for all We computed thg data misfi'F by convolving the est‘intnated source terms with
for | 2 ; 4 model IS 73 _ IS 73 - four SPE events analyzed: the black is the estimated source term using the Green'’s functions (equation 2). Observed data is in black and the
HECOHREIOFIVOURIORVEaImOHE) i ) =t .. ¥ the average atmospheric model and the red and blue are the computed data is in red. The numbers above the time series indicate the
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orwar oae IS 84 . IS 84 shown here have been filtered to 1-5Hz passband. In general, the this, we compute L2 norm of the data residual and normalized by the L2
IS 83 IS 83 estimated spall source term is stable and repeatable whereas the norm of the observed data. We only show the misfit for the first station of
We assume that the pressure acoustogram time series atx’ is a sum of two sources: IS 82 IS 82 estimated explosion source term is highly erratic. eachianray, andignlyiiortie 10-yearaverage modelWWemoteiatihe data
IS 81 T IS 81 A—’V‘“ misfit is the lowest when using both source terms.
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where G is the pressure Green’s function of the i general source S% located at x. We assume two IS 62 T — 2006 H IS 62 "'”\[: —2005 I
sources: 1) a buried chemical explosion M(x,, ¢) and 2) surface deformation (spall) F(x,, ?): IS 61 Y —2007 I IS 61 Y —2011 i A) Atmospheric prediction and Green’s function estimation
o @ 0 5 1'0 1'5 0 5 1'0 1'5 * We didn’t use any on-site atmospheric measurements to build the atmospheric models. Rather, we used regional-scaled historic data to
p(x',t") = Gexpl(x': X1, )M oy (x1,8) + G (X' x5, ) QF (x5, t) (2) . T predict the state of the atmosphere at the day-of-year and time-of-day for each SPE event. For each SPE event, we formed an average model
ey e ! based on ten years of historical atmospheric data, as well as two extrema models.
where @ denotes time-domain convolution. We approximate the explosion source M, , as a * For each atmospheric model, we estimated the atmospheric Green’s functions. Acoustic wave speeds vary by as much as +/- 3%, between
isotropic moment tensor and the spall source F as a vertically directed force: ‘ SPE-5 ' ‘ ' SPE-6 ' ' the models, effecting the the timing of the modeled acoustic arrivals accordingly.
IS 54 IS 54 L * The waveforms of the (filtered) Green’s functions were only minimally affected by the variation in the atmospheric model estimates.
M () 0 0 0 IS 53 IS 53 * The method that we used to estimate the Green’s functions treats the Earth as a fluid, with a acoustic velocity of 500m/s. This precludes the
) — y — IS 52 IS 52 realistic simulation of shear waves, surface waves, and elastic-to-acoustic coupling at the Earth-air interface.
M expry (X;, T yy (£ Flx;, t L IS 51 IS 51
0 0 M,,(t) E,(t) s = - ¥4 B) Inversion results
IS 73 - JVV__ IS 73 * The estimated spall term is relatively stable and repeatable for all of the SPE data that we invert, regardless of the atmospheric model used
Note that we assume that for the explosion term, M, (1)=M, (1)=M_(?) and therefore treat the IS 72 . IS 72 AP Sl functlon's. . S
explosion term as a 1D vector in the inversion IS 71 A -V IS 71 * Conversely, the estimated explosion term is highly variable in all cases.
IS 84 IS 84 * These two results suggest that 1) the explosion source term is not a significant contributor to the the observed acoustic data and/or 2) the
IS 83 IS 83 model we use to construct the explosion Green’s function is too simplistic to realistically simulate the acoustic response of the buried
Inverse Method IS 82 IS 82 isotropic explosion. Our analysis is not able to assess the relative importance of these two possibilities.
) ) ) ) :2 21 \f¥ :: 21 * The inversion results for SPE-5 have the poorest fit to the data, suggesting that this large explosion produced non-linear affects that are
Equation (2) is recast in the frequency domain - ‘“"V¥ not captured by our forward models.
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i=1 0 5 1'0 1'5 0 5 1'0 1'5 Using historical weather data to estimate or predict the state of the atmosphere appears to be a viable technique of inverting
here S= dSO=F h fth ix . . . high-quality, low noise infrasound data for the seismoacoustic source when on-site, in situ measurements are not available.
where §“=M,,,(f) an =F_(f) are the spectra of the source terms. In matrix form, equation time, sec time, sec i listic simulation techni i likelv b ded t ture th losi " fth del
4is written as p = GS owever, more realistic simulation techniques will likely be needed to capture the explosion portion of the source model.
The estimated atmospheric Green’s functions for the spall source model for the four SPE event analyzed here. Each panel shows three sets of Green’s functions, corresponding to the
and solved for § using generalized least squares. The term § contains the complex spectra of both of average atmospheric model (1—year average, black), and the two extrema models (red and green). The Green’s functions have been convolved with an 8.0-Hz Gaussian wavelet and trace Acknowledgments
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