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4 G rowth & Age
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Understanding and dealing with the PV system aging process is creating a
new and unknown set of challenges



5 PV Plants as Complex Systems
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Fig. 1. Simplified schernatic diagrarri of photovoltaic plant.

Initiating
Action

Failure

Cristaldi et al., (2015)

Lots of parts and interconnections

Both human and machine elements
in latent weaknesses and controls

Precursors can be maintenance-
oriented

Actions can be chronic or acute

\ on-linear pathways with lots of
uncertainty and dynamic components

COMPLEX SYSTEM
Adapted from the DOE Human Performance Improvement Handbook



6 I Distributions

Describe likelihood of an event

Commonly applied to understand TTF, TTR,
MTBF, etc.

Help characterize systemic issues in
performance.

Infant mortality vs random

O Lags between failures and response rates

Limitations

Failures are specific to a piece of hardware

Aggregating data assumes same root cause

o Uncertainty increases with aggregation

o Reflect a conditional probability
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Text Mining with O&M Logs

Short descriptions of events are often
captured

Provides valuable insight into details
behind the incident as well as measures
taken to address the observed issues

Patterns in word clouds
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8 Grouping co-occurring content
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9 Trends over time
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10 Work in Progress

Include additional metadata
(climate info, site
characteristics, etc.)

Add additional datasets
(including annual reports)

Parse text into different
parts of speech

Label uncategorized text
0
. . •

Machine learning models
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"All models are wrong, but some are useful"
- George P. Box

'All data are incomplete, but some are insightful...for
answering a particular business question"*

- Thushara Gunda & Patrick Carlson

*many have voiced similar sentiments, including P.J. Diggle from Lancaster



1 2 Continuous Improvement Process

How are post-failures activities influencing ongoing processes?

Do current data/analyses capture these relevant details?

Accuracy and completeness issues are not unknown
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13 I Improving Data Collection

Differences in available entries across
platforms

Does database enable capturing of relevant
details?

Right level of granularity for informing response
and CIP?

- Capture quality of corrective action response for
addressing failure?

Differences in training approaches across
companies

Is workforce trained in capturing relevant
details?

Does the database match their needs?

) Are they aware of their role in CIP?



14 Evolving Process

Feedback is appreciated

Individual insights into
O&M practices, data
collection, and data
analysis are valuable

Always interested in
more industry data
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1 5 I Summary

Value of O&M has increased with aging plants

Distributions are helpful but can be more informative

Valuable insights captured in O&M description logs

Machine learning and data science can help inform characterization

Data should be viewed as a continuous improvement process

Analysis could inform data collection methods (database design and training)

Evolving process: feedback (and data!) are always welcome!
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