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Growth & Age

Source: SEIA/Wood Mackenzie
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Understanding and dealing with the PV system aging process is creating a
new and unknown set of challenges




; ‘ PV Plants as Complex Systems @)

m‘z{v‘;l“ L 'T"LEZL;D" B c.u{rfr?t::ﬁrs ™| » z AC
:f = %:-' g g é —»™  Inverter Switch
mz_livulc B J“E‘;:;U“ Ba {:UI(I_:I]:::::UTS B i Fuses Box
Cristaldi et al., (2015)
Fig. 1. Simplified schematic diagram of photovoltaic plant.
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6 ‘ Distributions

Describe likelihood of an event

Commonly applied to understand TTE, TTR,
MTBE, etc.

Help characterize systemic 1ssues in
performance.

° Infant mortality vs random

° Lags between failures and response rates

Limitations
° Failures are specific to a piece of hardware

> Aggregating data assumes same root cause
> Uncertainty increases with aggregation

° Reflect a conditional probability
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Text Mining with O&M Logs
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8 ‘ Grouping co-occurring content
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9 ‘ Trends over time
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0 | Work in Progress

United States map of Képpen climate classification
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° Include additional metadata
(climate info, site
characteristics, etc.)

o> Add additional datasets

(including annual reports)

4
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° Parse text into different
parts of speech

° Label uncategorized text
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“All models are wrong, but some are useful”
- George P. Box

“All data are incomplete, but some are insighttul...for
answering a particular business question”*

- Thushara Gunda & Patrick Carlson

*many have voiced similar sentiments, including P.J. Diggle from Lancaster



How are post-failures activities influencing ongoing processes?
Do current data/analyses capture these relevant details?

Accuracy and completeness issues are not unknown
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i3 | Improving Data Collection

Differences in available entries across
platforms

Does database enable capturing of relevant
details?

> Right level of granularity for informing response
and CIP?

° Capture quality of corrective action response for
addressing failure?

Ditferences in training approaches across
companies

Is workforce trained in capturing relevant

details?
o Does the database match their needs?
> Are they aware of their role in CIP?

(@)



1« | Evolving Process
Feedback 1s appreciated

Individual insights into
O&M practices, data
collection, and data
analysis are valuable

Always interested in
more industry data
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United States map of Képpen climate classification
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s | Summary

Value of O&M has increased with aging plants

Distributions are helptful but can be more informative

Valuable insights captured in O&M description logs

Machine learning and data science can help inform characterization

Data should be viewed as a continuous improvement process

Analysis could inform data collection methods (database design and training)

Evolving process: feedback (and datal) are always welcome!
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