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The spring of HPC architectures (M) i

Laboratories

= |n the last decade, we have seen radically different architectures arise in
production clusters (CPU, MIC, GPU).

= More architectures are coming to new clusters soon or may do so in the
future: ARM, P9/P10, FPGA, CSA,...

= Each architecture has peculiar characteristics that must be considered in
order to efficiently use it.

= By far, most radical differences are between GPU and non-GPU: threads
organization, memory access, vectorization, ...

= Two important keywords:

® performance: achieve a throughput that is reasonably close to the
maximum possibly achievable (due to machine or algorithmic limits);

® portability: have a code whose performance on different architectures is
equally good.
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The mainteinability challenge (M) i

Laboratories

Challenge: how to get performance portable code while separating science
and HPC concerns?

Three main strategies to separate scientist and developer concerns, and
achieve performance-portable code:

= compiler directives: hint/force compiler on how to optimize
(OpenACC, OpenMP)

= GP performance libraries: delegate arch-specific optimizations to
libraries written in the native language (Kokkos, Raja, OCCA)

= DS languages/libraries: add source-to-source compilation step, where

arch-specific choices are made to generate an optimal source code
(Stella, Claw, GridTools).
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The CMDV project (M) i

Laboratories

CMDV: Climate Model Development and Validation. Goals:
= improve trustworthiness of the model for decision support,
= improve code agility for adapting to exascale architectures,

= improve productivity through leveraging of cutting-edge computational
science.
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CMDV: Climate Model Development and Validation. Goals:
= improve trustworthiness of the model for decision support,
= improve code agility for adapting to exascale architectures,

= improve productivity through leveraging of cutting-edge computational
science.

Software modernization:

= Task: study the feasibility of using Kokkos (a GP library for on-node
parallelism, more on it later) to achieve a single code base which is
performant on a variety of architectures (CPU, MIC, GPU).

= Path: convert a component of E3SM, namely the atmosphere
component (HOMME), to C++, using Kokkos.

= Metrics: correctness (bit-for-bit with original HOMME), and
performance (on par with original HOMME on CPU/MIC).
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The Kokkos library (M) i
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= Developed at Sandia National Labs, written in C++ (with C++11
required).

= Provides templated constructs for on-node parallel execution: execution
space (host vs device), execution policy (range vs team), parallel
operation (for, scan, reduce).

= Provides template abstraction for a multidimensional array: data type,
memory space (host, device, UVM), layout (left, right, ...), memory
access/handling (atomic, unmanaged, ...).

m Supports several back-ends: Serial, OpenMP, Pthreads, Cuda, ....
= Available at http://github.com/kokkos/kokkos.
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The HOMME dycore (M) i
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HOMME:High-Order Methods Modeling Environment

= Component of E3SM (and CESM) for dynamics
and transport in the atmosphere.

= Accounts for 20-25% of total run time of typical
fully-coupled simulation.

= Highly optimized for MPI and OpenMP.

= Horizontal (2D) and vertical (1D) differential
operators are decoupled.

= Spectral Element Method (SEM) in the
horizontal direction. m

= Eulerian or Lagrangian schemes for vertical ‘
operators.

S[OAQ] [EITHIOA T/

= Solves for 4 prognostic variables (2 horizontal
velocities, temperature, pressure), and the = oD siaient
transport of N tracers (usually, N~10-40).
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From HOMME to HOMMEXX (M) i
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= |ncremental conversion of original Fortran code to C++.
= Heavily tested (~85% of kernels are individually tested).
= Bit-for-bit agreement with original implementation.
= Minimization of architecture-specific code.
= Primary design goals:

® expose parallelism,

® maximize vectorization,
B minimize memory movement.
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HOMMEXX design: exposing parallelism (d) i

HOMME has 3 layers of nested for loops: element(x
# variables), GLL points, vertical levels.

Elements and levels independently processed through
majority of code.

2D differential operators couple GLL points.

= Kokkos supports up to 3 levels of hierarchical
parallelism:

® team level: a parallel region over the number of
teams (of threads) )

® thread level: a parallel region over the number of " 2Delement
threads in a team

= vector level: a parallel region over the number of
vector lanes of a thread.

S[OAQ] [BOIIOA T/
uonenduios jo yuswd[y |

= Hierarchical parallelism allows to expose maximum
parallelism with minimal index bookkeping.
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HOMMEXX design: exposing vectorization @ffaé‘ﬁgﬂﬁes

Core data type is a packed (Vector) of N doubles.
On CPU, N varies: KNL/SKX N=8, HSW N=4.
On GPUs, N=1 (no SIMD, only SIMT).

= Vectorization via call to compiler intrinsics.

Two natural choices for vectorization: GLL points and
vertical levels. But:
= 2D differential operator much more frequent than 1D
vertical integrals, and
= matching N with # vertical level feasible, while
matching N with # of GLL point could become
prohibitive.

S[OAJ] [BOTMOA T/
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2D element

= Vectoriation over vertical levels (and data laid out
accordingly in memory).
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R lts: d hi @ﬁai“diﬁ|
esults: tested architectures e

(IB) Intel lvy Bridge: 2 sockets/node, 12 cores/socket, 2 threads/core, DDR3
(HSW) Intel Haswell: 2 sockets/node, 16 cores/socket, 2 threads/core, DDR4
(KNL) Intel Xeon Phi: 68 cores/node, 4 threads/core, HBM+DDR4
(SKX) Intel Skylake: 2 sockets/node, 24 cores/socket, 2 threads/core, DDR4

(P9) IBM Power9: 2 sockets/node, 10 cores/socket, 4 threads/core, DDR4

)

Cavium ThunderX2: 2 sockets/node, 28 cores/socket, 4 threads/core,
DDR4
(V100) NVidia Volta: 2 sockets/node, 2 GPUs/socket, 2560 DP cores/GPU

(TX2

Note: IB, HSW and KNL tested at large scale, SKX, P9, TX2, V100 only
available on testbeds.
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Results: strong scaling at large scale
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Results: single node performance (40 tracers) @Namnal
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Single Node or GPU: No Tracers
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Power consumption
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= With Kokkos, HOMMEXX can run on multiple architectures with a
(mostly) single implementation.

= HOMMEXX slightly faster than HOMME on CPU/MIC (~ 1.1x on
HSW, and up to 1.4x on KNL).

= Reasonable performance on GPUs. Need to test performance with
NVLink 2.0.

m C++ and Kokkos is a viable path to achieve a performance portable
code; in particular:

+ relies on state-of-the art on-node parallelism library;

+ benefits from rich language features and libraries in C++;
- has a syntax that can be overwhelming for new developers;
- is not the code climate scientists are used to see.
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Thank you!

Questions?
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The mainteinability challenge (M) i
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All approaches have some good and bad aspects

Directives:
= Pros: can get a working version quickly, limited amount of lines to add.

= Cons: it's a different language from the native one, and may lead to
code duplication.

General Purpose Performance Libraries:

» Pros: hide some aspect of performance optimization while leaving
enough room for ad-hoc tuning

= Cons: requires some effort to identify the best optimization choices for
the particular problem.

Domain Specific Languages/Libraries:

® Pros: hides virtually all the HPC choices, leaving a friendly looking
source code for scientists.

= Cons: limits the ability to add ad-hoc optimization choices.
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HOMMEXX design: exposing parallelism (M) i
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A simple nested loop:
for (int i=0; i<dim0; ++i) {
for (int j=0; j<diml; ++j) {
for (int k=0; k<dim2; 4++k) {
// do some work on i,j,k

138
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HOMMEXX design: exposing parallelism
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A simple nested loop:

for (int i=0; i<dim0; ++i) {
for (int j=0; j<diml; ++j) {
for (int k=0; k<dim2; 4++k) {
// do some work on i,j,k

138
Expose parallelism by flattening:

for (int idx=0; idx<dimOxdimlxdim2; ++idx) {
int i = idx / (dimlxdim2);
int j = idx / dim2;
int k = idx % dim2;
// do some work on i,j, k

}
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A simple nested loop:

for (int i=0; i<dim0; ++i) {
for (int j=0; j<diml; ++j) {
for (int k=0; k<dim2; 4++k) {
// do some work on i,j,k

138
Expose parallelism by flattening:

for (int idx=0; idx<dimOxdimlxdim2; ++idx) {
int i = idx / (dimlxdim2);
int j = idx / dim2;
int k = idx % dim2;
// do some work on i,j, k

}

Embarassingly parallel.
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HOMMEXX design: exposing parallelism (M) i
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A more complex scenario: divergence on the sphere

for (int ie=0; ie<num_elements; ++ie) {
some_array_type buf(2,NP,NP);
for (int idx=0; idx<NP*NP; 4++idx) {
int i = idx / NP; int j = idx % NP;
double v0 = v(ie,0,i,j); double vl = v(ie,1,i,j);
buf(0,i,j) (J(0,0,i,j)*v0 + J(1,0,i,j)*vl)*metdet(i,j);
buf(1,i,j) (J(0,1,i,j)*v0 + J(1,1,i,]j)*vl)*xmetdet(i,j);

}

for (int idx=0; idx<NP*NP; 4+idx) {
int i = idx / NP; int j = idx % NP;
double dudx = 0.0, dvdy = 0.0;
for (int k = 0; k < NP; ++k) {

dudx += D(j ,k) * buf(0,i,k);
dvdy += D(i,k) % buf(1,k,j)
}
div(ie,i,j) = (dudx+dvdy) / (metdet(i,j)*rearth);
}
}
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A more complex scenario: divergence on the sphere

for (int ie=0; ie<num_elements; ++ie) { € || over # teams
some_array_type buf(2,NP,NP);
for (int idx=0; idx<NP*NP; 4++idx) {
int i = idx / NP; int j = idx % NP;
double v0 = v(ie,0,i,j); double vl = v(ie,1,i,j);
buf(0,i,j) (J(0,0,i,j)*v0 + J(1,0,i,j)*xvl)«metdet(i,]);
buf(1,i,j) (J(0,1,i,j)*xv0 + J(1,1,i,j)*xv]l)*xmetdet(i,j);

}
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int i = idx / NP; int j = idx % NP;
double dudx = 0.0, dvdy = 0.0;
for (int k = 0; k < NP; ++k) {

dudx += D(j ,k) * buf(0,i,k);
dvdy += D(i,k) % buf(1,k,j)
}
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A more complex scenario: divergence on the sphere

for (int ie=0; ie<num_elements; ++ie) { € || over # teams
some_array_type buf(2,NP,NP);
for (int idx=0; idx<NP+NP; ++idx) { ¢——— || over # threads
int i = idx / NP; int j = idx % NP; in a team
double v0 = v(ie,0,i,j); double vl = v(ie,1,i,j);
buf(0,i,j) = (J(0,0,i,j)*v0 + J(1,0,i,j)*vl)*metdet(i,j);
buf(1,i,j) = (J(0,1,i,j)*v0 + J(1,1,i,j)*vl)+*metdet(i,j);

}

for (int idx=0; idx<NP+NP; ++idx) { ¢——— || over # threads
int i = idx / NP; int j = idx % NP; in a team
double dudx = 0.0, dvdy = 0.0;
for (int k = 0; k < NP; ++k) {
dudx += D(j ,k) * buf(0,i,k);
dvdy += D(i,k) = buf(1l,k,j);
}
div(ie,i,j) = (dudx+dvdy) / (metdet(i,j)*rearth);
¥
}
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HOMMEXX design: exposing parallelism (M) i

Laboratories

A more complex scenario: divergence on the sphere

for (int ie=0; ie<num_elements; ++ie) { € || over # teams
some_array_type buf(2,NP,NP);
for (int idx=0; idx<NP+NP; ++idx) { ¢——— || over # threads
int i = idx / NP; int j = idx % NP; in a team
double v0 = v(ie,0,i,j); double vl = v(ie,1,i,j);
(0,i,j) = (J(0,0,i,j)*v0 + J(1,0,i,j)*vl)*metdet(i,j);
i,j) = (J(0,1,i,j)*v0 + J(1,1,i,j)*vl)*xmetdet(i,j);

team barrier
for (int idx=0; id P«NP; ++idx) { ¢——— || over # threads
int i = idx / NP; int~§.= idx % NP; in a team
double dudx = 0.0, dvdy =
for (int k = 0; k < NP; ++k)
dudx += D(j ,k) =
dvdy += D(i,k)

shared within team

}
div(ie,i,j) = (dudx+dvdy) / (metdet(i,j)*rearth);

}
}
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