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The spring of HPC architectures C3 Sandia
National
Laboratories

• In the last decade, we have seen radically different architectures arise in
production clusters (CPU, MIC, GPU).

• More architectures are coming to new clusters soon or may do so in the
future: ARM, P9/P10, FPGA, CSA,...

• Each architecture has peculiar characteristics that must be considered in
order to efficiently use it.

• By far, most radical differences are between GPU and non-GPU: threads
organization, memory access, vectorization,

• Two important keywords:

• performance: achieve a throughput that is reasonably close to the
maximum possibly achievable (due to machine or algorithmic limits);

• portability: have a code whose performance on different architectures is
equally good.

November 6th, 2018 3



The mainteinability challenge 0 Sandia
National
Laboratories

Challenge: how to get performance portable code while separating science
and HPC concerns?

Three main strategies to separate scientist and developer concerns, and
achieve performance-portable code:

• compiler directives: hint/force compiler on how to optimize
(OpenACC, OpenMP)

• GP performance libraries: delegate arch-specific optimizations to
libraries written in the native language (Kokkos, Raja, OCCA)

• DS languages/libraries: add source-to-source compilation step, where
arch-specific choices are made to generate an optimal source code
(Stella, Claw, GridTools).
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The CMDV project C3Sandia
National
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CMDV: Climate Model Development and Validation. Goals:

• improve trustworthiness of the model for decision support,

• improve code agility for adapting to exascale architectures,

• improve productivity through leveraging of cutting-edge computational
science.
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CMDV: Climate Model Development and Validation. Goals:

• improve trustworthiness of the model for decision support,

• improve code agility for adapting to exascale architectures,

• improve productivity through leveraging of cutting-edge computational
science.

Software modernization:

• Task: study the feasibility of using Kokkos (a GP library for on-node
parallelism, more on it later) to achieve a single code base which is
performant on a variety of architectures (CPU, MIC, GPU).

• Path: convert a component of E3SM, namely the atmosphere
component (HOMME), to C++, using Kokkos.

• Metrics: correctness (bit-for-bit with original HOMME), and
performance (on par with original HOMME on CPU/MIC).
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The Kokkos library 0 Sandia
National
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• Developed at Sandia National Labs, written in C++ (with C++11
required).

• Provides templated constructs for on-node parallel execution: execution
space (host vs device), execution policy (range vs team), parallel
operation (for, scan, reduce).

• Provides template abstraction for a multidimensional array: data type,
memory space (host, device, UVM), layout (left, right, ...), memory
access/handling (atomic, unmanaged, ...).

• Supports several back-ends: Serial, OpenMP, Pthreads, Cuda,

• Available at http://github.com/kokkos/kokkos.
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The HOMME dycore C3 Sandia
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HOMME:High-Order Methods Modeling Environment

• Component of E3SM (and CESM) for dynamics
and transport in the atmosphere.

• Accounts for 20-25% of total run time of typical
fully-coupled simulation.

• Highly optimized for MPI and OpenMP.

• Horizontal (2D) and vertical (1D) differential
operators are decoupled.

• Spectral Element Method (SEM) in the
horizontal direction.

• Eulerian or Lagrangian schemes for vertical
operators.

• Solves for 4 prognostic variables (2 horizontal
velocities, temperature, pressure), and the
transport of N tracers (usually, N-10-40).
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From HOMME to HOMMEXX 0 Sandia
National
Laboratories

• Incremental conversion of original Fortran code to C++.

• Heavily tested (-A5% of kernels are individually tested).

• Bit-for-bit agreement with original implementation.

• Minimization of architecture-specific code.

• Primary design goals:

• expose parallelism,
• maximize vectorization,
• minimize memory movement.
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HOMMEXX design: exposing parallelism 0 Sandia
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• HOMME has 3 layers of nested for loops: element(x
# variables), GLL points, vertical levels.

• Elements and levels independently processed through
majority of code.

• 2D differential operators couple GLL points.

• Kokkos supports up to 3 levels of hierarchical
parallelism:

• team level: a parallel region over the number of
teams (of threads)

• thread level: a parallel region over the number of
threads in a team

• vector level: a parallel region over the number of
vector lanes of a thread.

• Hierarchical parallelism allows to expose maximum
parallelism with minimal index bookkeping.

• .
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HOMMEXX design: exposing vectorization 0 Sandia
National
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• Core data type is a packed (Vector) of N doubles.

• On CPU, N varies: KNL/SKX N=8, HSW N=4.

• On GPUs, N=1 (no SIMD, only SIMT).

• Vectorization via call to compiler intrinsics.

Two natural choices for vectorization: GLL points and
vertical levels. But:

• 2D differential operator much more frequent than 1D
vertical integrals, and

• matching N with # vertical level feasible, while
matching N with # of GLL point could become
prohibitive.

Vectoriation over vertical levels (and data laid out
accordingly in memory).
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Results: tested architectures 0 Sandia
National
Laboratories

(IB) Intel Ivy Bridge: 2 sockets/node, 12 cores/socket, 2 threads/core, DDR3

(HSW) Intel Haswell: 2 sockets/node, 16 cores/socket, 2 threads/core, DDR4

(KNL) Intel Xeon Phi: 68 cores/node, 4 threads/core, HBM+DDR4

(SKX) Intel Skylake: 2 sockets/node, 24 cores/socket, 2 threads/core, DDR4

(P9) IBM Power9: 2 sockets/node, 10 cores/socket, 4 threads/core, DDR4

(TX2) Cavium ThunderX2: 2 sockets/node, 28 cores/socket, 4 threads/core,
DDR4

(V100) NVidia Volta: 2 sockets/node, 2 GPUs/socket, 2560 DP cores/GPU

Note: IB, HSW and KNL tested at large scale, SKX, P9, TX2, V100 only
available on testbeds.
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Results: strong scaling at large scale 0 Sandia
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Laboratories

2.5-0
o

w 2.0
o
z

Strong Scaling for 86,400 Elements

aci 1.0-0"0-77-17. --,---4-
-o

o

0.5 
c

0.0 

0- O Cori-HSW HOMME Cori-KNL HOMMEXX

0-0 Cori-HSW HOMMEXX o Edison HOMME

7- V Cori-KNL HOMME •—• Edison HOMMEXX

c, sin "cc, ), 3.6 .191 egoo

Number of Compute Nodes

November 6-th, 2018 14



Results: single node performance (40 tracers) 0Sandia
National
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Results: single node performance (no tracers) 0Sandia
National
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Conclusions 0 Sandia
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• With Kokkos, HOMMEXX can run on multiple architectures with a
(mostly) single implementation.

• HOMMEXX slightly faster than HOMME on CPU/MIC 1.1x on
HSW, and up to 1.4x on KNL).

• Reasonable performance on GPUs. Need to test performance with
NVLink 2.0.

• C++ and Kokkos is a viable path to achieve a performance portable
code; in particular:

+ relies on state-of-the art on-node parallelism library;
+ benefits from rich language features and libraries in C++;
- has a syntax that can be overwhelming for new developers;
- is not the code climate scientists are used to see.
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Thank you!

Questions?
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The mainteinability challenge 0 Sandia
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All approaches have some good and bad aspects

Directives:

• Pros: can get a working version quickly, limited amount of lines to add.

• Cons: it's a different language from the native one, and may lead to
code duplication.

General Purpose Performance Libraries:

• Pros: hide some aspect of performance optimization while leaving
enough room for ad-hoc tuning

• Cons: requires some effort to identify the best optimization choices for
the particular problem.

Domain Specific Languages/Libraries:

• Pros: hides virtually all the HPC choices, leaving a friendly looking
source code for scientists.

• Cons: limits the ability to add ad-hoc optimization choices.
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HOMMEXX design: exposing parallelism 0 Sandia
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A simple nested loop:

for ( int i =0; i<dim0; I ti) {
for (int j =0; j<diml ; d—hj )

for (int k=0; k<dim2; ++k) {

// do some work on i , j , k

}}}
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A simple nested loop:

for ( int i =0; i<dim0; ++0 {
for ( int j=0; j<diml; {

for ( int k=0; k<dim2; d—kk) {
// do some work on i , j , k

}}}

Expose parallelism by flattening:

for (int idx=0; idx<dimO*diml*dim2; d—kidx) {
int i = idx / (diml*dim2);
int j = idx / dim2;
int k = idx % dim2;
// do some work on i , j , k

}
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A simple nested loop:

for ( int i =0; i<dim0; ++0 {
for ( int j=0; j<diml; {

for ( int k=0; k<dim2; d—kk) {
// do some work on i , j , k

}}}

Expose parallelism by flattening:

for (int idx=0; idx<dimO*diml*dim2; d—kidx) {
int i = idx / (diml*dim2);
int j = idx / dim2;
int k = idx % dim2;
// do some work on i , j , k

}

Embarassingly parallel.
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HOMMEXX design: exposing parallelism 0 Sandia
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A more complex scenario: divergence on the sphere
for (int ie=0; ie<num_elements ; *Fie ) {

some_array_type buf (2 ,NP,NP);
for (int idx=0; idx<NP*NP; d—Fidx) {

int i = idx / NP; int j = idx % NP;
double v0 = v(ie ,0,i,j); double vl = v(ie ,1,i,j);
buf(0,i , j) = (J(0,0,i , j)*v0 J(1,0,i ,j)*v1)*metdet(i ,j );
buf(1,i ,j) = (J(0,1,i , j)*v0 J(1,1,i ,j)*v1)*metdet(i ,j );

}

for (int idx=0; idx<NP*NP; d—Fidx) {
int i = idx / NP; int j = idx % NP;
double dudx = 0.0 , dvdy = 0.0;
for (int k = 0; k < NP; H—Fk) {

dudx -F= D(j ,k) * buf(0,i ,k);
dvdy -F= D(i ,k) * buf (1,k, j );

}
}

}
div ( ie , i , j ) = (dudx+dvdy) / (metdet (i , j )*rearth );
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A more complex scenario: divergence on the sphere
for (int ie=0; ie<num_elements ; *Fie ) { E 11 over # teams

some_array_type buf (2 ,NP,NP);
for (int idx=0; idx<NP*NP; d—Fidx) { over # threads

int i = idx / NP; int j = idx % NP; in a team
double v0 = v(ie,0,i,j); double vl = v(ie,1,i,j);
buf(0,i , j) = (J(0,0,i ,j)*v0 J(1,0,i ,j)*v1)*metdet(i ,j );
buf(1,i ,j) = (J(0,1,i ,j)*v0 J(1,1,i ,j)*v1)*metdet(i ,j );

}

for (int idx=0;
int i = idx /
double dudx =
for (int k =

dudx += D(j
dvdy += D(i

}
}

idx<NP*NP; d—Fidx ) { 11 over # threads
NP; int j = idx % NP; in a team
0.0 , dvdy = 0.0;

0; k < NP; H—Fk)
,k) * buf(0,i ,k);
,k) * buf(1,k,j);

}
div (ie , i , j ) = (dudx+dvdy) / (metdet (i , j )*rearth );
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A more complex scenario: divergence on the sphere
for ( int ie =0; ie<num_elements ; *Fie ) { E 11 over # teams

some_array_type buf (2 ,NP,NP);
for ( int idx=0; idx<NP*NP; d—Fidx) { over # threads

int i = idx / NP; int j = idx % NP; in a team
double v0 = v(ie,0,i,j); double vl = v(ie,1,i,j);

(0,i , j) = (J(0,0,i ,j)*v0 J(1,0,i ,j)*v1)*metdet(i ,j );
i , j ) = (J (0 , j )4<v0 + J(1,1, i , j )*v1)*metdet (i , j );

}
team barrier
for ( int idx=0; i. •*NP; d—Fidx) { 11 over # threads

int i = idx / NP; in = idx % NP; in a team
double dudx = 0.0 , dvdy = 0;
for ( int k = 0; k < NP; H—Fk)

dudx += D(j ,k) buf (0 ,k shared within team
dvdy += D(i,k) buf ,j);

}
}

}
div (ie , i , j ) = (dudx+dvdy) / (metdet (i , j )* rearth );
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