
Exceptional service in the national interest
Sandia
National
Laboratories

Exploring the use of Kokkos in HOMME to achieve
performance on multiple architectures

L.Bertagna, M.Deakin, O.Guba, D.Sunderland,
A.Bradley, I.Tezaur, M.Taylor, A.Salinger

Sandia National Laboratories, Albuquerque, NM

November 6th, 2018

SAND 2018-0000

SAND2018-12623PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

El Coding in the spring of HPC architectures

El The CMDV project

From HOMME to HOMMEXX

CI Results

November 6th, 2018 2

The spring of HPC architectures C3 Sandia
National
Laboratories

• In the last decade, we have seen radically different architectures arise in
production clusters (CPU, MIC, GPU).

• More architectures are coming to new clusters soon or may do so in the
future: ARM, P9/P10, FPGA, CSA,...

• Each architecture has peculiar characteristics that must be considered in
order to efficiently use it.

• By far, most radical differences are between GPU and non-GPU: threads
organization, memory access, vectorization,

• Two important keywords:

• performance: achieve a throughput that is reasonably close to the
maximum possibly achievable (due to machine or algorithmic limits);

• portability: have a code whose performance on different architectures is
equally good.

November 6th, 2018 3

The mainteinability challenge 0 Sandia
National
Laboratories

Challenge: how to get performance portable code while separating science
and HPC concerns?

Three main strategies to separate scientist and developer concerns, and
achieve performance-portable code:

• compiler directives: hint/force compiler on how to optimize
(OpenACC, OpenMP)

• GP performance libraries: delegate arch-specific optimizations to
libraries written in the native language (Kokkos, Raja, OCCA)

• DS languages/libraries: add source-to-source compilation step, where
arch-specific choices are made to generate an optimal source code
(Stella, Claw, GridTools).

November 6th, 2018 4

The CMDV project C3Sandia
National
Laboratories

CMDV: Climate Model Development and Validation. Goals:

• improve trustworthiness of the model for decision support,

• improve code agility for adapting to exascale architectures,

• improve productivity through leveraging of cutting-edge computational
science.

November 6th, 2018 5

The CMDV project 0 Sandia
National
Laboratories

CMDV: Climate Model Development and Validation. Goals:

• improve trustworthiness of the model for decision support,

• improve code agility for adapting to exascale architectures,

• improve productivity through leveraging of cutting-edge computational
science.

Software modernization:

• Task: study the feasibility of using Kokkos (a GP library for on-node
parallelism, more on it later) to achieve a single code base which is
performant on a variety of architectures (CPU, MIC, GPU).

• Path: convert a component of E3SM, namely the atmosphere
component (HOMME), to C++, using Kokkos.

• Metrics: correctness (bit-for-bit with original HOMME), and
performance (on par with original HOMME on CPU/MIC).

November 6th, 2018 6

The Kokkos library 0 Sandia
National
Laboratories

• Developed at Sandia National Labs, written in C++ (with C++11
required).

• Provides templated constructs for on-node parallel execution: execution
space (host vs device), execution policy (range vs team), parallel
operation (for, scan, reduce).

• Provides template abstraction for a multidimensional array: data type,
memory space (host, device, UVM), layout (left, right, ...), memory
access/handling (atomic, unmanaged, ...).

• Supports several back-ends: Serial, OpenMP, Pthreads, Cuda,

• Available at http://github.com/kokkos/kokkos.

November 6th, 2018 7

The HOMME dycore C3 Sandia
National
Laboratories

HOMME:High-Order Methods Modeling Environment

• Component of E3SM (and CESM) for dynamics
and transport in the atmosphere.

• Accounts for 20-25% of total run time of typical
fully-coupled simulation.

• Highly optimized for MPI and OpenMP.

• Horizontal (2D) and vertical (1D) differential
operators are decoupled.

• Spectral Element Method (SEM) in the
horizontal direction.

• Eulerian or Lagrangian schemes for vertical
operators.

• Solves for 4 prognostic variables (2 horizontal
velocities, temperature, pressure), and the
transport of N tracers (usually, N-10-40).

 •

.•..

2D element

8November 6th, 2018

From HOMME to HOMMEXX 0 Sandia
National
Laboratories

• Incremental conversion of original Fortran code to C++.

• Heavily tested (-A5% of kernels are individually tested).

• Bit-for-bit agreement with original implementation.

• Minimization of architecture-specific code.

• Primary design goals:

• expose parallelism,
• maximize vectorization,
• minimize memory movement.

November 6th, 2018 9

From HOMME to HOMMEXX 0 Sandia
National
Laboratories

• Incremental conversion of original Fortran code to C++.

• Heavily tested (-A5% of kernels are individually tested).

• Bit-for-bit agreement with original implementation.

• Minimization of architecture-specific code.

• Primary design goals:

• expose parallelism,
• maximize vectorization,
• minimize memory movement.

November 6th, 2018 10

HOMMEXX design: exposing parallelism 0 Sandia
National
Laboratories

• HOMME has 3 layers of nested for loops: element(x
variables), GLL points, vertical levels.

• Elements and levels independently processed through
majority of code.

• 2D differential operators couple GLL points.

• Kokkos supports up to 3 levels of hierarchical
parallelism:

• team level: a parallel region over the number of
teams (of threads)

• thread level: a parallel region over the number of
threads in a team

• vector level: a parallel region over the number of
vector lanes of a thread.

• Hierarchical parallelism allows to expose maximum
parallelism with minimal index bookkeping.

• .
.0-•• •••• ••

2D element

o

November 6th, 2018 11

HOMMEXX design: exposing vectorization 0 Sandia
National
Laboratories

• Core data type is a packed (Vector) of N doubles.

• On CPU, N varies: KNL/SKX N=8, HSW N=4.

• On GPUs, N=1 (no SIMD, only SIMT).

• Vectorization via call to compiler intrinsics.

Two natural choices for vectorization: GLL points and
vertical levels. But:

• 2D differential operator much more frequent than 1D
vertical integrals, and

• matching N with # vertical level feasible, while
matching N with # of GLL point could become
prohibitive.

Vectoriation over vertical levels (and data laid out
accordingly in memory).

November 6th, 2018 12

Results: tested architectures 0 Sandia
National
Laboratories

(IB) Intel Ivy Bridge: 2 sockets/node, 12 cores/socket, 2 threads/core, DDR3

(HSW) Intel Haswell: 2 sockets/node, 16 cores/socket, 2 threads/core, DDR4

(KNL) Intel Xeon Phi: 68 cores/node, 4 threads/core, HBM+DDR4

(SKX) Intel Skylake: 2 sockets/node, 24 cores/socket, 2 threads/core, DDR4

(P9) IBM Power9: 2 sockets/node, 10 cores/socket, 4 threads/core, DDR4

(TX2) Cavium ThunderX2: 2 sockets/node, 28 cores/socket, 4 threads/core,
DDR4

(V100) NVidia Volta: 2 sockets/node, 2 GPUs/socket, 2560 DP cores/GPU

Note: IB, HSW and KNL tested at large scale, SKX, P9, TX2, V100 only
available on testbeds.

November 6th, 2018 13

Results: strong scaling at large scale 0 Sandia
National
Laboratories

2.5-0
o

w 2.0
o
z

Strong Scaling for 86,400 Elements

aci 1.0-0"0-77-17. --,---4-
-o

o

0.5
c

0.0

0- O Cori-HSW HOMME Cori-KNL HOMMEXX

0-0 Cori-HSW HOMMEXX o Edison HOMME

7- V Cori-KNL HOMME •—• Edison HOMMEXX

c, sin "cc,), 3.6 .191 egoo

Number of Compute Nodes

November 6-th, 2018 14

Results: single node performance (40 tracers) 0Sandia
National
Laboratories

-a
c 4.5

:3:1 4.0

• 3.5
8

-8 3.0

?J. 2.5

E 2.0
F
4,i; 1 5

▪ 1.0
0.5

Single Node or GPU

•-• FISW 32x2

A- • FISW 2x32

•-• TX2 56x4

•- • TX2 24x4

FM Power9 40)9

- SKX 4801

II, • SKX 24x2

_V-V KNL 64x2

V- • KNL lx128

•-• vloo
- 18 24

TE (1°6

A_ A A • • • A •

32 64 128 256 512 1024 2048

Number of Elements

4—Low
Workload High —1,

0,

o

Power consumption
(at high workload):

• IB: 260W

• HSW: 360W

• KNL: 260W

• SKX: 330W

• P9: 360W

• TX2: 300W (?)

• V100: 200W

November 6th, 2018 15

Results: single node performance (no tracers) 0Sandia
National
Laboratories

3 24
;11 22

E 20

8 18
01

-8 16

14

%, 12

Single Node or GPU: No Tracers

0-0 I-15W 32x2

0- • HSW 2x32

•-• TX2 56x4

•- • TX2 24x4

M--0 Power9 40

• SKX 48x1

• 5KX 240 ,

V-V KNL 64

V- • KNL 1

4-1 vloo
A-A IB 2471

0
I- 16

 •

32 64 128 256 512 1024 2048 4096 8192

Number of Elements

4—L
Workload

gh

Power consumption
(at high workload):

• IB: 260W

• HSW: 360W

• KNL: 260W

• SKX: 330W

• P9: 360W

• TX2: 300W (?)

• V100: 200W

November 6th, 2018 16

Conclusions 0 Sandia
National
Laboratories

• With Kokkos, HOMMEXX can run on multiple architectures with a
(mostly) single implementation.

• HOMMEXX slightly faster than HOMME on CPU/MIC 1.1x on
HSW, and up to 1.4x on KNL).

• Reasonable performance on GPUs. Need to test performance with
NVLink 2.0.

• C++ and Kokkos is a viable path to achieve a performance portable
code; in particular:

+ relies on state-of-the art on-node parallelism library;
+ benefits from rich language features and libraries in C++;
- has a syntax that can be overwhelming for new developers;
- is not the code climate scientists are used to see.

November 6th, 2018 17

Thank you!

Questions?

November 6th, 2018 18

The mainteinability challenge 0 Sandia
National
Laboratories

All approaches have some good and bad aspects

Directives:

• Pros: can get a working version quickly, limited amount of lines to add.

• Cons: it's a different language from the native one, and may lead to
code duplication.

General Purpose Performance Libraries:

• Pros: hide some aspect of performance optimization while leaving
enough room for ad-hoc tuning

• Cons: requires some effort to identify the best optimization choices for
the particular problem.

Domain Specific Languages/Libraries:

• Pros: hides virtually all the HPC choices, leaving a friendly looking
source code for scientists.

• Cons: limits the ability to add ad-hoc optimization choices.
November 6th, 2018 19

HOMMEXX design: exposing parallelism 0 Sandia
National
Laboratories

A simple nested loop:

for (int i =0; i<dim0; I ti) {
for (int j =0; j<diml ; d—hj)

for (int k=0; k<dim2; ++k) {

// do some work on i , j , k

}}}

November 6th, 2018 20

HOMMEXX design: exposing parallelism 0 Sandia
National
Laboratories

A simple nested loop:

for (int i =0; i<dim0; ++0 {
for (int j=0; j<diml; {

for (int k=0; k<dim2; d—kk) {
// do some work on i , j , k

}}}

Expose parallelism by flattening:

for (int idx=0; idx<dimO*diml*dim2; d—kidx) {
int i = idx / (diml*dim2);
int j = idx / dim2;
int k = idx % dim2;
// do some work on i , j , k

}

November 6th, 2018 21

HOMMEXX design: exposing parallelism 0 Sandia
National
Laboratories

A simple nested loop:

for (int i =0; i<dim0; ++0 {
for (int j=0; j<diml; {

for (int k=0; k<dim2; d—kk) {
// do some work on i , j , k

}}}

Expose parallelism by flattening:

for (int idx=0; idx<dimO*diml*dim2; d—kidx) {
int i = idx / (diml*dim2);
int j = idx / dim2;
int k = idx % dim2;
// do some work on i , j , k

}

Embarassingly parallel.

November 6th, 2018 22

HOMMEXX design: exposing parallelism 0 Sandia
National
Laboratories

A more complex scenario: divergence on the sphere
for (int ie=0; ie<num_elements ; *Fie) {

some_array_type buf (2 ,NP,NP);
for (int idx=0; idx<NP*NP; d—Fidx) {

int i = idx / NP; int j = idx % NP;
double v0 = v(ie ,0,i,j); double vl = v(ie ,1,i,j);
buf(0,i , j) = (J(0,0,i , j)*v0 J(1,0,i ,j)*v1)*metdet(i ,j);
buf(1,i ,j) = (J(0,1,i , j)*v0 J(1,1,i ,j)*v1)*metdet(i ,j);

}

for (int idx=0; idx<NP*NP; d—Fidx) {
int i = idx / NP; int j = idx % NP;
double dudx = 0.0 , dvdy = 0.0;
for (int k = 0; k < NP; H—Fk) {

dudx -F= D(j ,k) * buf(0,i ,k);
dvdy -F= D(i ,k) * buf (1,k, j);

}
}

}
div (ie , i , j) = (dudx+dvdy) / (metdet (i , j)*rearth);

Novmber601,2018 23

HOMMEXX design: exposing parallelism 0 Sandia
National
Laboratories

A more complex scenario: divergence on the sphere
for (int ie=0; ie<num_elements ; *Fie) { E 11 over # teams

some_array_type buf (2 ,NP,NP);
for (int idx=0; idx<NP*NP; d—Fidx) {

int i = idx / NP; int j = idx % NP;
double v0 = v(ie ,0,i,j); double vl = v(ie ,1,i,j);
buf(0,i , j) = (J(0,0,i , j)*v0 J(1,0,i ,j)*v1)*metdet(i ,j);
buf(1,i ,j) = (J(0,1,i , j)*v0 J(1,1,i ,j)*v1)*metdet(i ,j);

}

for (int idx=0; idx<NP*NP; d—Fidx) {
int i = idx / NP; int j = idx % NP;
double dudx = 0.0 , dvdy = 0.0;
for (int k = 0; k < NP; H—Fk) {

dudx -F= D(j ,k) * buf(0,i ,k);
dvdy -F= D(i ,k) * buf (1,k, j);

}
}

}
div (ie , i , j) = (dudx+dvdy) / (metdet (i , j)*rearth);

Novmber601,2018 24

HOMMEXX design: exposing parallelism 0 Sandia
National
Laboratories

A more complex scenario: divergence on the sphere
for (int ie=0; ie<num_elements ; *Fie) { E 11 over # teams

some_array_type buf (2 ,NP,NP);
for (int idx=0; idx<NP*NP; d—Fidx) { over # threads

int i = idx / NP; int j = idx % NP; in a team
double v0 = v(ie,0,i,j); double vl = v(ie,1,i,j);
buf(0,i , j) = (J(0,0,i ,j)*v0 J(1,0,i ,j)*v1)*metdet(i ,j);
buf(1,i ,j) = (J(0,1,i ,j)*v0 J(1,1,i ,j)*v1)*metdet(i ,j);

}

for (int idx=0;
int i = idx /
double dudx =
for (int k =

dudx += D(j
dvdy += D(i

}
}

idx<NP*NP; d—Fidx) { 11 over # threads
NP; int j = idx % NP; in a team
0.0 , dvdy = 0.0;

0; k < NP; H—Fk)
,k) * buf(0,i ,k);
,k) * buf(1,k,j);

}
div (ie , i , j) = (dudx+dvdy) / (metdet (i , j)*rearth);

Novmber601,2018 25

HOMMEXX design: exposing parallelism 0 Sandia
National
Laboratories

A more complex scenario: divergence on the sphere
for (int ie =0; ie<num_elements ; *Fie) { E 11 over # teams

some_array_type buf (2 ,NP,NP);
for (int idx=0; idx<NP*NP; d—Fidx) { over # threads

int i = idx / NP; int j = idx % NP; in a team
double v0 = v(ie,0,i,j); double vl = v(ie,1,i,j);

(0,i , j) = (J(0,0,i ,j)*v0 J(1,0,i ,j)*v1)*metdet(i ,j);
i , j) = (J (0 , j)4<v0 + J(1,1, i , j)*v1)*metdet (i , j);

}
team barrier
for (int idx=0; i. •*NP; d—Fidx) { 11 over # threads

int i = idx / NP; in = idx % NP; in a team
double dudx = 0.0 , dvdy = 0;
for (int k = 0; k < NP; H—Fk)

dudx += D(j ,k) buf (0 ,k shared within team
dvdy += D(i,k) buf ,j);

}
}

}
div (ie , i , j) = (dudx+dvdy) / (metdet (i , j)* rearth);

Novmber601,2018 26

