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Dislocations, the Mechanism for Plastic Deformation

* At the atomic level, metals are crystals—their atoms exist in regular, repeating
patterns. This pattern 1s the “crystal lattice”.

* Dislocations are local distortions in the crystal lattice, in which an additional half-
plane of atoms have been introduced.

* When a metal is subjected to loading, its dislocations move, creating permanent
deformations in the metal which persist after loading is removed. This deformation
is called plastic strain.
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Dislocations, the Mechanism for Plastic Deformation

* Dislocations are line objects, and can curve and bend to form intricate structures.

* The strength of metals is determined by the collective action of ensembles of
dislocations and their interactions with other defects.

* Understanding the behavior of dislocations through theory, experiment, and
simulation has been an important area of research in materials science.
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Solutes, Single Atoms Different from the Surrounding Lattice

* Solutes are single atoms which differ from the surrounding lattice. Two types:
* Substitutional Solutes: an atom in the lattice has been replaced (e.g. alloys like AIMg)

* Interstitial Solutes: an atom which lies in between lattice sites (e.g. carbon in steel)

* Solutes expand (or contract) the surrounding lattice, causing a local distortion in
the lattice.

* Solutes strengthen a metal by restricting the motion of dislocations.
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Dynamic Strain Aging
Dynamic Strain Aging

* Below the dislocation, atoms are more spread out, leading bulky 0000
solute atoms to congregate underneath the dislocations 000 O
forming Cottrell atmospheres.
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* These atmospheres restrict dislocation motion, holding them in

place. C N N N
* This causes an increase in strength as dislocations arrested by |
their solute atmospheres are unable to move, and thus unable 0000
to produce plastic strain. 0000 0O
* This process is called dynamic strain aging (DSA) O X )
* “Dynamic” because solute atoms must 7ove to form these o0 . PS
atmospheres. This motion takes time, making DSA dependent on the

amount of time solutes have to move.
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The Problem

* Many theoretical/computational models of DSA exist in the literature.
* Still a gap between predictions from theory and results of experiment.

* Two questions central to understanding DSA.
1. How quickly do solute atmospheres form?

2. How strongly do they restrict dislocation motion?

* We seek to understand solute-dislocations and DSA via a continuum model.

* Continuum model gives a general understanding of many materials at the cost of perfect
accuracy for any specific material.

Computational Models in Materials Science
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10 I The Mathematical Model

Solute distribution is modelled as a continuum concentration field y (¢, x). (a)
* X is the fraction of solute sites filled.

Motion of solutes is governed by the diffusion equation (b)

Chemical potential (c) contains enthalpic contribution pAV due to solute-dislocation
interaction and entropic contribution kgT In /(1 — x)

Solute concentration considered in a 2D plane perpendicular to dislocation line.
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11 I Computational and Numerical Considerations

* The diffusion equation (b) is a second-order, o _
nonlinear, parabolic partial differential equation. Diffusion Equation (b)

* Discretized using a second-order accurate finite M — - ( D x(t, %) Vu(x))
difference scheme on a nonuniform mesh (d) Jat kgT
* Mesh has higher density near dislocation core, where

higher solute gradients are more difficult and more Mesh (d)
important to resolve. | |

* Time stepping is performed using the implicit
trapezoidal scheme.
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* Time step sizes is controlled adaptively to bound the error
per step.
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* A sparse direct solver, UMFPACK, 1s used to solve
sparse lineat systems. |

* Implemented in a C++ code.
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13 1 Condensation
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Computational simulation of atmosphere formation allows us to predict the rate of
formation and strength of atmospheres




141 Competing Models

* Two existing models for atmosphere formation:

1. Classical Continuum (Cottrell and Bilby 1949; Louat 1981): atmosphere condensation
results from solute atoms from outside the dislocation core entering the core—so called

“bulk diffusion”.

2. Cross-Core (Curtin, Olmstead, and Hector 20006): atmosphere condensation results
from solute atoms crossing from one side of the dislocation to the other.

* Both diffusion types are important: can we capture both?
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15 I Bulk and Cross-Core Diffusion

* Our continuum model captures both the cross-core and bulk diffusion types.

* Cross-core diffusion was believed to be beyond the scope of the continuum model
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* Our accurate continuum computations show the classical continuum theory is

based on bad assumptions and must be corrected.




16 I Elevated Core Diffusivity

* It was observed by Picu and Zhang (2004) that the
diffusivity D of solutes in the core is much higher
than in the bulk. (e)

* This can be incorporated in our model by using a
diffusivity function (f), rather than a diffusivity
constant.
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* By choosing a sufficiently large diffusivity
radius, we are able to get reasonably close
agreement between simulation (blues) and
cross-core model (green). See (g)




17 1 Comparison of Models

* Two diffusion types for atmosphere formation:
1. Bulk

2. Cross-Core

2 Are both diffusion types

important?
Diffusion Types Experimental Agreement
Model Bulk Core Timescale | Strength
Classical v X X X
Cross-Core X v v v
Us v v v X

* Bulk diffusion occurs in simulations of all types (molecular dynamics, kinetic
Monte Carlo, continuum), yet the best agreement with experiments is achieved by
ignoring it.

* The Puzzle: How can we develop of a theoretical model of DSA which agrees
with both simulation and experiment which includes bulk and core diffusion?



18 I Conclusions

* Summary
* Developed a continuum model of dislocation-solute interactions
* Model is able to accurately capture both cross-core and bulk diffusion types

* By accounting for the elevated core diffusivity, the model correctly predicts the time scale

of DSA effects, but still over-predicts the strengthening

Draft manuscript under preparation
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