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4 Dislocations, the Mechanism for Plastic Deformation

• At the atomic level, metals are crystals—their atoms exist in regular, repeating
patterns. This pattern is the "crystal lattice".

• Dislocations are local distortions in the crystal lattice, in which an additional half-
plane of atoms have been introduced.

• When a metal is subjected to loading, its dislocations move, creating permanent
deformations in the metal which persist after loading is removed. This deformation
is called plastic strain.
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5 Dislocations, the Mechanism for Plastic Deformation

• Dislocations are line objects, and can curve and bend to form intricate structures.

• The strength of metals is determined by the collective action of ensembles of
dislocations and their interactions with other defects.

• Understanding the behavior of dislocations through theory, experiment, and
simulation has been an important area of research in materials science.
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6 Solutes, Single Atoms Different from the Surrounding Lattice

• Solutes are single atoms which differ from the surrounding lattice. Two types:

• Substitutional Solutes: an atom in the lattice has been replaced (e.g. alloys like AlMg)

Interstitial Solutes: an atom which lies in between lattice sites (e.g. carbon in steel)

Solutes expand (or contract) the surrounding lattice, causing a local distortion in
the lattice.

• Solutes strengthen a metal by restricting the motion of dislocations.
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7 Dynamic Strain Aging

• Below the dislocation, atoms are more spread out, leading bulky
solute atoms to congregate underneath the dislocations
forming Cottrell atmospheres.
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• These atmospheres restrict dislocation motion, holding them in
place.

This causes an increase in strength as dislocations arrested by
their solute atmospheres are unable to move, and thus unable
to produce plastic strain.

• This process is called dynamic strain aging (DSA)

• "Dynamic" because solute atoms must move to form these
atmospheres. This motion takes time, making DSA dependent on the
amount of time solutes have to move.

Dynamic Strain Aging
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8 The Problem

• Many theoretical/computational models of DSA exist in the literature.

• Still a gap between predictions from theory and results of experiment.

• Two questions central to understanding DSA.

1. How quickly do solute atmospheres form?

2. How strongly do they restrict dislocation motion?

We seek to understand solute-dislocations and DSA via a continuum model.

• Continuum model gives a general understanding of many materials at the cost of perfect
accuracy for any specific material.
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10 The Mathematical Model

• Solute distribution is modelled as a continuum concentration field x(t, x). (a)

• x is the fraction of solute sites filled.

• Motion of solutes is governed by the diffusion equation (b)

Chemical potential (c) contains enthalpic contribution 017 due to solute-dislocation
interaction and entropic contribution kgT ln x/(1 — x)

Solute concentration considered in a 2D plane perpendicular to dislocation line.
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11 Computational and Numerical Considerations

• The diffusion equation (b) is a second-order,
nonlinear, parabolic partial differential equation.

• Discretized using a second-order accurate finite
difference scheme on a nonuniform mesh (d)

• Mesh has higher density near dislocation core, where
higher solute gradients are more difficult and more
important to resolve.

Diffusion Equation (b)
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• Time stepping is performed using the implicit
trapezoidal scheme.

• Time step sizes is controlled adaptively to bound the error
per step.
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13 Condensation
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14 Competing Models

• Two existing models for atmosphere formation:

1. Classical Continuum (Cottrell and Bilby 1949; Louat 1981): atmosphere condensation
results from solute atoms from outside the dislocation core entering the core—so called
"bulk diffusion".

2. Cross-Core (Curtin, Olmstead, and Hector 2006): atmosphere condensation results
from solute atoms crossing from one side of the dislocation to the other.

• Both diffusion types are important: can we capture both?
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15  Bulk and Cross-Core Diffusion

• Our continuum model captures both the cross-core and bulk diffusion types.

• Cross-core diffusion was believed to be beyond the scope of the continuum model
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16 Elevated Core Diffusivity

• It was observed by Picu and Zhang (2004) that the
diffusivity D of solutes in the core is much higher
than in the bulk. (e)

• This can be incorporated in our model by using a
diffusivity function (f), rather than a diffusivity
constant.
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17 Comparison of Models

• Two diffusion types for atmosphere formation:

1. Bulk

2. Cross-Core

Both diffusion types are important: can we capture both? Are both diffusion types
important?

Diffusion Types Experimental Agreement

Model Bulk Core Timescale Strength

Classical ./ X X X

Cross-Core X ./ ./ si

Us ./ ./ ./ X

• Bulk diffusion occurs in simulations of all types (molecular dynamics, kinetic
Monte Carlo, continuum), yet the best agreement with experiments is achieved by
ignoring it.

• The Puzzle: How can we develop of a theoretical model of DSA which agrees
with both simulation and experiment which includes bulk and core diffusion?



1 8 Conclusions

• Summary

• Developed a continuum model of dislocation-solute interactions

• Model is able to accurately capture both cross-core and bulk diffusion types

• By accounting for the elevated core diffusivity, the model correctly predicts the time scale
of DSA effects, but still over-predicts the strengthening

Draft manuscript under preparation
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