is paper describes objective technical results and analysis. Any subjective views or opinions that might be expres
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Governm

SAND2018-12620C

Dynamics of zonal flows and drift-wave

turbulence in the presence of nonlinear
wave—wave scattering

D. E. Ruiz
In collaboration with M. E. Glinsky and I. Y. Dodin

June 11th, 2018
SIAM Conference of Nonlinear Waves
and Coherent Structures

———— — — e = @ENERGY ANISA

ratories is amultimission laboratory managed and operated by National Technology & Engineering Sol utions of Sandia,
neywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administr




Interaction of small-scale turbulence with large-scale )
mean fields (structures) is essential to understand.

> In magnetic fusion experiments, large-scale
zonal flows (ZFs) are driven by small-scale

drift-wave (DW) turbulence.

» ZFs are important because they can shear

turbulent eddies and suppress turbulence.

> Turbulent transport is reduced.
» Confinement is improved.

> In the case of planetary atmospheres,
large-scale structures (zonal jets) can
spontaneously emerge from small-scale
turbulence (Rossby waves).?
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1Z. Lin, Science 281, 1835 (1998); P. W. Terry, Rev. Mod. Phys. 72, 109 (2000).
2A. R. Vasavada and A. P. Showman, Rep. Prog. Phys. 68, 1935 (2005).



Much work has been done on homogeneous turbulence.
Inhomogeneous turbulence has been studied more until recently.

Complexity of closures

» Most work on turbulence considers the medium

: MSR
to be homogeneous and stationary, for example:
» WTT, DIA, RMC, and MSR .2
RMC
DIA
> Theories of inhomogeneous turbulence generally WIT
use simpler statistical closures.
» The quasilinear (QL) approximation has been
. N 4 (QL) app Wave kinetic CE2 or
widely used. equation Wigner--Moyal
> This approximation neglects wave-wave scattering. Quasilingar; fessesd . O """"

A T
i T T
GOapprox.  Full wave  !nhomogeneities

> Quasilinear theories can be classified according to the degree of inhomogeneities.®
> The wave kinetic equation (WKE) assumes a scale separation between the medium and the turbulence.

» The CE2 and the Wigner-Moyal (WM) formalisms do not assume any scale separation.

3J. A. Krommes, Phys. Rep. 360, 1 (2002).

4K. Srinivasan and W. R. Young, J. Atmos. Sci. 69, 1633 (2012); P. H. Diamond, et al., Plasma Phys. Control. Fusion 47,
R35 (2005); B. F. Farrell and P. J. loannou, J. Atmos. Sci. 64, 3652 (2007).

5). B. Parker, J. Plasma Phys. 82, 595820602 (2016); also, don't miss J. B. Parker's talk during session MS36 next Wednesday.
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New insights on DW-ZF interactions have been obtained
by using Weyl phase-space representation.®’

Key idea: describe fluctuations as abstract
vectors of a Hilbert space.

io |w) = H W) +i|€)
& . n a—2 A A A—2 .
H = —Bpxpp" + Upx + U pxPp” — itdw

Upon using the Weyl calculus, one obtains
a WM equation for DW-ZF interactions:®

oW = {{H, Wi} +[IN, Wl + F — 2p4w W

a a2
9y J (2m)? pp PH

An improved WKE is obtained in the GO
limit. In contrast to the traditional WKE,
it conserves total enstrophy and energy,
and it describes different dynamics.”-8

The ray phase-space approach has led to
new insights on DW—ZF interactions.?
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5D. E. Ruiz, J. B. Parker, E. L. Shi, and I. Y. Dodin, Phys. Plasmas 23, 122304 (2016).
H. Zhu, Y. Zhou, D. E. Ruiz, and I. Y. Dodin, Phys. Rev. E 97, 053210 (2018).
8For more information, don’t miss the talk by I. Y. Dodin in session MS43 next Thursday.
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DW-ZF interactions have mainly been studied using the
quasilinear approximation. Can we go beyond quasilinear?

QL theory is asymptotically valid in the limit of Complexity of closures
strong ZFs and weak DWs.
MSR
QL theory breaks down when the system is
externally driven stronger.? RMC WKE with wave scattering
DIA
Weak turbule'nce theory (WTT) perturbatively WM with wave scattering
captures nonlinear DW collisions. wrr o Q
WKE icE2 / wm
. . i Quasilinear O / -
In WTT, the nonlinear collisions are described by : %, z
a wave—-wave scattering operator. GOapprox.  Full wave 'nhomogeneities

We recently obtained a WKE-based model that includes nonlinear

DW-ZF interactions, as well as turbulent wave-wave scattering.

9S. M. Tobias and J. B. Marston, Phys. Rev. Lett. 110, 104502 (2013).



| Physical model

» Qur derivation is based on the general Hasegawa—Mima equation, which describes
electrostatic 2D turbulence in magnetized plasmas:1°

otw+v-Vw+ 8ok = Q,
where
P(t,x): electric potential,
w(t,x): generalized vorticity [w = (V? — ngﬁ)w],
v(t,x): fluid velocity [v = e, x V],
Q(t,x): external forcing and dissipation,
B : measure of the background density gradient,

Lp : plasma sound radius.

» K is an operator such that K = 1 in parts of the spectrum corresponding to DWs and K = 0
in those corresponding to ZFs.

> In isolated systems (Q = 0), this equation conserves enstrophy Z and (free) energy &:

Z(t) = %/d2xw2, E(t) = —%/d2xw¢.

10 A. Krommes and C.-B. Kim, Phys. Rev. E 62, 8508 (2000); A. I. Smolyakov and P. H. Diamond, Phys. Plasmas 6, 4410
(1999).



Turbulence theory

Weyl calculus

Wave theory

Our approach is based on three main theoretical pillars.

The fields are separated into their mean and fluctuating parts.
We obtain the eqgs. for the ZF velocity and the DW correlation operator.

The quasinormal approx. is used to statistically close the equations.

The Weyl symbol calculus is used to project the closed operator
equations into the ray phase space (t,x,w, k).

This leads to the Wigner—Moyal formulation of DW-ZF interactions with
nonlinear DW collisions.

We use the geometrical-optics parameter ez, = max (>l‘_d—:", %Df) < 1.
Based on the GO ordering, the Wigner—Moyal egs. can be simplified.

This leads to the WKE model of DW-ZF interactions with nonlinear
wave—wave scattering.




| WKE model with nonlinear wave-wave scattering included!!

d & [ A%k k«ky
Z U pyeU = S =X J(ty, k),  Bd+{J, Q} =2rJj— 2ude+sext+C[J J.
ot ay (2r)? K
L J J \
Ll T
ZF dynamics Ponderomotive driver by DWs DW Hamlltonlan External Wave wave
dynamics dissipation collision operator
DW dissipation External
due to ZFs forcing
» Here J(t,y, k) is the wave-action density for the DWs, and U(t, y) is the ZF velouty.

v

The DW wave frequency €(t, y, k) serves as a Hamiltonian for the wave dynamics
Q(t,y, k) = —Bke/kE + ke U + ke U [ K3
> The dissipation coefficient I'(t, y, k) limits the transfer of enstrophy from DWs to ZFs:
T(t,y, k) = —keky U /K.
» The wave—wave scattering operator C[J, J] is given by
.= nl[J J] - 27n1[J]J
. T

Nonlinear Nonlinear
source dissipation

Up E. Ruiz, M. E. Glinsky, and I. Y. Dodin, under review; arXiv:1803.10817 (2018); D. E. Ruiz, M. E. Glinsky, and I. Y.
Dodin, in preparation.



| C|[J, J] describes nonlinear wave scattering.

> The nonlinear dissipation coeff. vy,1[J] and the nonlinear source term S,[J, J] are

2 2
Y[t y, k) = d(gc;q §*(k—p—a)O(t,y,k,p,a) M(p,a)M(p, k) J(t,y,p),
Suil4, J(t, y, k) = d(;)(; 952k —p — @) O(t,y. k. p.q) IM(p, @) 2 J(t.y, p) (.. ).

Coherent

response
P

Incoherent
noise

> Here ©(t,y,k,p,q) = 7d(AQ) is the frequency resonance
condition, where

Tnl
AQ(t,y,k,p,q) = Qt,y, k) — Qt,y,p) — Qt,y, Q).

M(p,q) =e; - (p x q) (qD - pp )

> M(p,q) is a scattering cross section \

> The present model conserves both total enstrophy Z and total (free) energy £ !

1 dyd k dyd’k J 1 5
= dy (U) £ = = [ ay VA
2 / / y( @2r2 K3 2/ s




How does this WKE-based model compare to previous work?

> In weak turbulence theory (WTT), there exists many studies on nonlinear DW scattering.?

> These works treat both the DW and ZF components of the fields as incoherent.

> The present model makes a distinction between the statistics of the ZFs and the DWs.
» The DW component of the vorticity consists of an incoherent wave bath.
> In contrast, the ZFs are treated as coherent structures. |
> Our model is more complex than the naive way of writing the WKE with the linear part
taken from quasilinear theory and the collision operator taken from homogeneous WTT.

> The frequency resonance condition includes nonlinearities due to the ZFs:

™ kx Px Gx
O(t,y,k,p,q) = B0 5 (_D - —2> .

> |B — U"| is related to the Rayleigh—Kuo criterion, which marks the onset of the tertiary instability.’® |

> The present theory seems to break down in regions where 8 — U’' = 0. I

125ee, for example: C. Connaughton, S. Nazarenko, and B. Quinn, Phys. Rep. 604, 1 (2015).
BH_.L. Kuo, J. Met. 6, 105 (1949); H. Zhu, Y. Zhou, D. E. Ruiz, and I. Y. Dodin, Phys. Rev. E 97, 053210 (2018).
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| Conclusions

> Starting from the gHME, we systematically derived a WKE describing the interaction
between DWs and ZFs with wave—wave collisions included.

» Our approach is based on three main theoretical pillars.
> We applied a statistical closure based on the quasinormal approximation.
> Using the Weyl calculus, we projected the operator egs. to the ray phase space.

> Arguments based on geometrical optics were used to simplify the equations to get the WKE model.

> (Not in this talk) Our procedure was generalized to obtain a WKE for a field satisfying!?

(Dy)(t,x) = (@)(t,x) (By)(t,x) + S(t,x).

Up E. Ruiz, M. E. Glinsky, and |. Y. Dodin, under review; arXiv:1803.10817 (2018)



| Future work

1. Investigate the effects of wave scattering in the WKE for Hasegawa—Mima system.
» How will the spontaneous emergence of ZFs be modified in the presence of wave collisions?
» How will the ZF saturation state be modified?

» How will the Kolmogorov—Zakharov spectrum change in the presence of ZFs?

2. Develop a general theory for nonlinear multicomponent waves.
> Hasegawa—Wakatani equation for DW turbulence
> Raman instability of white light in plasmas

» Dynamo and Magneto—Rayleigh—Taylor instability in magnetohydrodynamics

3. Develop new phase-space models for describing strong turbulence.

> For modeling strong turbulence, there are other statistical closures that have been proposed; e.g.,
DIA, RMC, and MSR.

> Can we marry the phase-space techniques presented here with these more advanced statistical
closures?

o



Backup slides
Deriving the WKE



Dynamics of the mean and fluctuating components

Let us separate ¢ into a large-amplitude, low-frequency, coherent component P and a
small-amplitude, high-frequency, fluctuating component 1):

Y(x) = D(x) + e(x),
where € < 1 is a small parameter characterizing the amplitude of the fluctuations.

For any field g, the mean part is defined as g = [ dx; ((g))/Lx, where Ly is the system
length along the x; axis. ((...)) denotes some statistical average.

A simple calculation gives

BeU + pug U + €0y (Vi) = 0,
Bt + Udx + [B — (B2U)]0xt + paw W + €feday = €&,
where U(t,y) = —9y is the zonal-flow velocity and
foddy [W, W] =V - VW — (V- Vw)).

Here, & is some external stochastic forcing with zero mean.

The coefficients p1q.w ,¢ represent dissipation caused by the external environment.



A\

v

v

v

Dirac abstract representation

w will be described in a Hilbert space L2(R3) of wave states with inner product®

<<1>|w>:/R3 a0 ()W),
=dt d2x

Here w(x) = (x | w), where | x) are the eigenstates of the coordinate operators:
(x| T|x") =t83(x—x), (x| %] x") =x83(x—x).
The frequency operator @ and the wavevector operator k are
(x| @ | w) = id:w(x), (x|ﬁ\v~v>:fi8xv~v(x).
We introduce the correlation operator for the fluctuating fields
W=Tw) (w].

The correlation operator is related to the correlation function used in CE2 theories:

/
e (1 3 x—x) < Tex @I ([ 6) = (6% | W] £.x'),

5]

. Y. Dodin, Phys. Lett. A 378, 1598 (2014).

5



Abstract representation

> The next step is to write dynamics equations in the abstract representation:

2u+uzfu_e £(x|k 2k Why k2 | x),
ot dy
e i€ _
where . R o
D=5 — Uke + (8 — U"Ykcks? + insaws IR = R SR

» Additionally, the ket | fy1[¢, ] ) is given by

|fnl[¢>,w1>ﬁ/d3x|x><¢>|i<(x)\w>, |_fn1[¢',w]>ﬁ/d3x\x><¢\i<(x)|w>,

where

K(t,x) =& | t,x) (t,x|B +F | t,x) (t,x|&.

Here we make use of the Einstein convention to denote summation among the repeated
indices. The operators &/ and [31 are given by

& = (e x kY k52, B =



Abstract representation

> The ket | f,1[W, W] ) is a bilinear mapping that represents the nonlinear coupling:

(t,x | fuw,w]) = (W | X(x) | W)
= (w | kp?(ez x kY | x) (x| K | @)+ (% | K | x) (x| (ez x kYkp? | W)
=—({x|(ez xkY [ 9)) (x| K | @) — (x| K | W))* (x| (ez x kY | %)
= —(e; X —iVY)* - (=iVW) — (—iVW)* - (e; X —IVY)
= —2(e; X V¢) - Vi
= -2v-Vw.

> Here we used |1Z> = —1252 | W), which comes from the relation w = (V2 — L52)1Z.



Statistical closure problem
> We then project the eq. for the fluctuations by ( W | from the right and average.
Substracting with its Hermitian conjugate gives the following set of equations:
8:U + pygU = €20y (x | ky2heWhyk5? | x)
[Du, W + i[Da, Wl = ie[[ falw, W]) (W] + 2i€ [ €) (W [] ;-
> Here the dispersion operator Dis decomposed into its Hermitian and anti-Hermitian parts:
Dy =& — Uks + Bk 2 = [U", kek5?]+/2,
Dp = [0, kekp ]~ /(20) + praw-
> Also, [+, -] respectively denote the commutators and anticommutators:

AR —AB-B4, A B = AB+ BA.

The equations are not closed. = Statistical closure problem




Quasilinear approximation (revisited)

In the quasilinear approximation, one neglects the nonlinear interactions in the equation for

the fluctuations:*
~ i€ PO —— 5 7 5
‘D|W>:§{‘fnl[w nlW7W]>}+’€|£>'

Thus, @W:ldg)(ﬂ Using|v~v)zie@_1\g),we have I

U + pys U = €28y (x| 12]52/%(@/2},/252 I x),
[Du, W- + i[Da, W]4. = 2i€ [$(D1)1]

A?

where § is density operator associated to the source fluctuations

=€) (€]

The equations above are the abstract representation for all quasilinear theories, such as the |
CE2 and the Wigner—Moyal formalisms. I

Since nonlinear interactions are omitted, this quasilinear approximation does not develop a
Kolmogorov—Zakharov spectrum for the waves.



A statistical closure beyond the quasilinear approximation
We shall perturbatively incorporate nonlinear effects into the equation for the fluctuating
field. Let us separate w into two parts:
|w)=|wo)+elw).
These fields satisfy
D|iwg) =0,
N o~ i ~ o~ T T = ~ 7\ S
Dlm) = 5 {Ifulwo, wol) — | fulWo, Wol )} +i]€) -
=D|4)

The fluctuations in Wy ~ O(1) are due to random initial conditions, whose statistics are
considered to be uncorrelated to those of &.

When substituting into the equation for the fluctuations, one finds

[Di, Wl— + ilDa, Wl = ie{[ fu[Wo, Wol ) { wo |} , + 2i€*{| b, Wol ) {Wo |}

+ i€ {| fulio, o] ) (& |}, + 2 [S(D)T], + O(Ed).



Quasinormal approximation

> In the quasinormal approximation, one assumes that the statistics of wy is approximately
given by a normal distribution with zero mean.” Hence,

wy =0, Wo(xl)WQ(XQ) = <X1 ‘ Wo | X2 > s Wg(xl)Wo(XQ)Wo(X3) =0,

Wo (1) Wo (x2) Wo (x3) wo (xa) = (x1 | Wo | x2) (x| Wo | xa) + (x1 | Wo | x3) (x2 | Wo | xa)

+ (x1 | Wo | xa) {x2 | Wo | x3).

» With this approximation, a direct calculation leads to
[ fu1[Wo, wo] ) (wo | =0,
[ fld, ] (o] = [ @xd’y |x) {y (B! R Wo K () Wo,
| farlo, Wo] ) (& | = /d3xd3y Ix) {y [(D™HT Te[ K (x) Wo KT (y) Wo,

where R
Wo = | wp ) (o |.

™. Millionstchikov, C. R. Acad. Sci. U.S.S.R. 32, 615 (1941).



| The abstract representation is useful for these calculations.

» The abstract representation results is very convenient for the calculation of the previous
terms. As an example,

| fur o, Wo] ) (& | = /d3x|x><wo|9?(x)\%><$[

=5 [ @y 1B (| K(x) | o) [ (o | K1) | ) — (o | KT(1) | #0)]

» Using the quasinormal approximation, we obtain

(o | K(x) | wo) [ (Wo | Kt(y)|wo)— (o | Kt(y) | o)]

— ] [ — |
= (o | K(x) | wo) (o | KT(y) | o)+ (Wo | K(x) | wo) (o | KT(y) | wo)

[ — |
=2(wo | K(x) | wo) (w0 | XT(y) | Wo)
= 2Tr[K(x) [Wo ) (wo | Xt (y) [Wo ) (o]
= 2 Te[ K(x) Wo KT () Wo .

» Hence, one obtains

| foalio, 0] ) (] = /d3xd3y 1) (y | D1 TR R () Wo & (v) Wo).




Closed equations in the abstract representation

Upon gathering all the terms, one obtains the set of closed equations:

OrU + pye U = 623y (
[Da, W]— +i[Da, W]y = 2ié?[

X
Ul
N
2
\3‘
X
=N
N
X

‘ﬂ)
)
|
=
>
I
)
=
N
Jr
N
Y
N
=
@

A

where
~ /d3xd3y\x><y\( IR WK (y),

F= %/d3xd3y ) {y | T K () WKT () W],

These equations are accurate upto O(e3). Hence, they could potentially be adequate for
modeling weak wave turbulence with background sheared flows.

These equations are independent of the coordinates used.

To do calculations, a representation is needed. =—> Weyl phase-space representation



The Weyl transformation maps linear differential operators
to functions of phase space.

W[D] = /d7—d3se“‘”"ik's<t+%r,x+%s |D|t— irx—1s)

@ :‘D(Cﬂ,la) D(t,x,w,k)

————————

1
(2m)?

WLD(x, k)] = /d4zd4kd4sD(17k)|xfs/2)(x+s/2|

» Some examples of this transformation are

2 3 ;% ; i
f(f, %) < f(t,x), g(@ k)<= g(w,k), R'kj <= x'k;+ 561’..

» The Weyl symbol of C=ABis given by the Moyal product

AB = A(t, x, w, k)  B(t, x, w, k) = Aexp (éE) B,

Hermann Weyl

E=053 -0 00 +0 90 -0 =1, }o (1085 195%)




| Weyl phase-space representation of the fluctuations

> Applying the Weyl transformation to the equation for the fluctuations leads to
C [Du, Wl— + i[Da, Wt = 2i[F (D)), — 2ie[FW] , +2i (D)),

{ Dy, W} + [[Da, W]l = 22 Im{F » [D7]*} — 22 Im (n x W) + 22 Im{S  [D*]*}.

> Here W(t,y,w,k) is the Wigner function of the fluctuation wave field

(t,y,w,k /drdzse“‘” ikss ~(1.“—!— sT,x + s) w(t — %s)

> Also, {{A, B}} and [[A, B]] are the Moyal brackets

{{A, B} = —i (Ax B — Bx A) = 2Asin (T /2)B,

[[A B]l = Ax B+ B xA=2Acos (T /2)B.

Difficulty: This is an infinite-order PDE in the eight-dimensional phase space !




Assumptions of the wave kinetic equation

> Let (Taw, Adw) and (7,¢, A,r) be the characteristic wavelengths and timescales for DWs and
ZFs, respectively. We then introduce the geometrical optics ordering:8

A L
egoimaX(wa7 dwv_D) <1
Tut  Aaf gt

» Hence, the following estimates will be adopted:8

AW ~ T, 9uW g W, oD« 7;'D,

AW ~ AW, 9pW v AawW,  9yD - A;'D, 9pD - LpD.
» Thus, the Moyal products and brackets are approximated by®

A% B =AB+ hego{A Bls + O(l,),
{{A, B}} = ego{A, B}s + Oe5,):
[[A, Bl = 2AB + O(c2,).

> Also assume that the medium is only slightly dissipative so

Da ~ O(ego)-

> Finally, let the nonlinearity and GO parameters scale as €go ~ €2

13G. B. Whitham, Linear and Nonlinear Waves (John Wiley & Sons, Inc., Hoboken, NJ, USA, 1999).
9S. W. McDonald and A. N. Kaufman, Phys. Rev. A 32, 1708 (1985).



The dispersion manifold

» W(t,x,w, k) describes a density of wave quanta in the 6-dim. phase space.!0

» By GO considerations, the wave quanta should
lie on the dispersion manifold:

0= DH w
= w — Ukx + Bk5? — [[U", kek5211/2 Dy (t.x,w,k) =0
~ w— [~ B /kE + Uk + U ke JK3] . —
Q(t,y k)

» Q(t,y, k) is the wave frequency

Q(t,y, k) = —Bke/kE + Uke + U" ke /K3,

> Hence, we propose as ansatz: .
W = 27§(Dy)J(t, %, k),

where J(t,x,K) is the wave-action density.

g R. Tracy, A. J. Brizard, A. S. Richardson, and A. N. Kaufman, “Ray Tracing and Beyond: Phase Space Methods in Plasma
Wave Theory,” (Cambridge University Press, New York, 2014).
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Deriving the WKE: zonal-flow equation

> In the abstract representation, the equation for the zonal flow is

8:U + ot U = €20y (x | k52 ke Whykp? | x) .

» For any operator /Al, one has

(x| A|x) :/‘2;:;13‘ A(t, x, w, k).

» Hence, one obtains

N /dwdzk kx

R al k
(x[kDka\/\]kykD2 | x) = 2n)? %*W(t,y,w,k)*é

dwd?k Ky k
= 2 W(t,y,w k)— + O(ego)
/v i@ 2

A%k keky
= J(t,y, k O(ego)-
/(27r)2 @ (t,y, k) + O(ego)

16 /23



Deriving the WKE: linear terms

{Du, WY} + [[Da, W]] = 22 Im{F % [D7]*} — 22 Im (n + W) + 262 Im{S « [D~1]*}.

> Regarding the Hamiltonian part, one has

{Du, W3} ~ 2mego{Du, §(Du)J}
= 2megod( D ){Dn, J}
= 2megod(Drr) [0+ + {J, 2},

where
Du(t,y,w, k) ~w — Q(t, y,k), Q(t,y, k) = —Bke/kd + Uks + U ke /KB
» Since dissipation is assumed to be small
[[Da, W] ~ 250 DA W = 47egoDad(Dy)J,

where

Da = —{{U", kekp® 1 /2 + paw =~ —{U", kek2}/2 + praw = U keky /K + piaw-



Deriving the WKE: wave scattering

{Du, W} + [[Da, W]] = 22 Im{F % [D7]*} — 22 Tm (n + W) + 262 Im{S « [D~1]*}. |

» As a reminder, I
5o %/d3xd3y 1x) (y | TE[R(x) WK (y) W].
|
» We first note that the trace can be written as
T KWK (y)W]
= (x| FW@) |y){y BV WE | x)+ (x| FWE) | y) (v | (@) Wak | x)
H(x [ @W@) |y)(y | (BYWE | x)+ (x| @WE) |y)(y| @) WF |x).

» When calculating the Weyl symbol, terms will appear as follows:

(2m)?

very important

Qs e 1. 8 1 1A 1 [ PedPq s
se (x+ 35| Alx—35)(x—35|B|x+3s)= 67 (k — p— q) A(x, p)B(x, —q). |
E N————



| Deriving the WKE: wave scattering
> Applying the previous result gives

1 [d3padd
Fx, k)= [ S£S4

2] )y 8k —p —q)IM(p, Q)W (x, p)W(x, q) + Oego),

where

a P

/W(I),Gl):ez-(qu)(l2 : )

> Inserting W(t,y,w, k) = 2w6(Dy)J(t, y, k) and integrating gives

2, 2
Foe [ SRS (k= p— @) wio — (e x,p) ~ At x @) M(p, )P S(e, . P . )

» Returning to the WKE, when integrating over w, one has

2 2
[ dtm(F 107y = [ SRk~ p - a)O(c. ke p. ) M(p. ) (e, (e, ..

> Here ©(t,y,k,p,q) = 76(ARQ) is the frequency resonance condition, where

AQ(t,y, k,p,q) = Q(t,y, k) — Q(t,y,p) — Qt,y,q).



Deriving the WKE: source term
{Du, W} + [[Da, W]] = 22 Tm{F x [D7]*} — 22 Tm (n % W) + 26> Tm{S « [D~1]*}.

» We assume that 5 is white noise, then
(x 8] x) =&(t,x)E(¥', ') = 8(t — ') =((y + ¥')/2,x — ¥). |

» The Weyl symbol of the zonal-averaged density operator for the stochastic forcing is given by |

B{ey,i = /deQS e HSE e 1 T xt D)t — I x— 3)

= /d2s e™s=(y,s)

—2 [ @5 =(y.5)cos(p ). [Z(r,8) = =(y, )]
» Thus, when integrating over w, one obtains :
1
2ez/dw1m{5*[D_1]*} ~ 2E2Im/dw5 ————  ~2735(t,y, k)
Dy — iDa
N———

~ix§(Dy)+P ﬁ



Backup slides
General WKE with wave scattering



General WKE with wave scattering

Let us consider a scalar real wave (t,x) propagating in a medium that can be
nonstationary and inhomogeneous and also contains a second-order nonlinearity.

Din)(x) = (@) BY)(x)  + S(x)
——— —_——— — ——
linear propagation local quadratic nonlinearity = source term

Following a more general, but similar, procedure, one obtains the following WKE:

Bed + {J,Q} = 2yJ + Sext + C[J, J]. ‘

Here Q is the wave frequency satisfying: Dy (¢, %, Q(t, x, k, k), k)=0.

The dissipation term « and the source term Sext are given by

At %K) = — (afgﬁ)wzg(m i),
Sext(t, x, k) = (m)wzn (t, x, k).

Finally, C[J, J] represents wave-wave collisions

C[J7 J] = Snl[J7 J] - 2’7nl[J]J'



| Wave—wave collisions

> The nonlinear dissipation coeff. v,,1[J] and the nonlinear source term S1[J, J] are

) d3pdiq o(t,x, k, p, q)
Yl x, k) = — [ ——= 83k — p — q) — " Re[ M(t, x, p, Q)M*(t, x, p, —k) ] J(t, x, P),
(27)3 N
. [d’pdiq o(t, x, k, p, q)
Snilds (L, x, k) = / &k —p—q) — 2 |M(t, x, p, q)|* J(t, x, p)J(t, x, Q).
J o (2m)3 N

> Here O(t,x,k,p,q) = m6(AQ), and
AQ(t,x, k, p,q) = Q(t, x, k) — Q(t, x, p) — Qt, x, q).

. . ) Coherent
> N(t,x,k,p,q) is a normalization factor: response
N = 8, Dxu(t, x,k) 8, Du(t, x, p) 8., Du(t,x, q).
» M(x, p, q) is a scattering cross section:
M(t,x,p,q) = M(t, %, po, P, qo, =Q(t,x =Q(t,x,q)>
(t,x,p,q) (t, %, Po, Ps 90, A) | pg=a(t.%,p), ag=a(t,x.q) onderh
M(x, p, q) = a(x, p)B(x, q) + a(x, )B(x, p), noise

where « and 3 are the Weyl symbols of @ and B

Note: (Diinth)(x) = (@)(x) (B)(x) + S(x)




