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Interaction of small-scale turbulence with large-scale
mean fields (structures) is essential to understand.

11-077, 

► In magnetic fusion experiments, large-scale
zonal flows (ZFs) are driven by small-scale
drift—wave (DW) turbulence.

► ZFs are important because they can shear I
turbulent eddies and suppress turbulence.1 I
o Turbulent transport is reduced.
1.• Confinement is improved.

o In the case of planetary atmospheres,
large-scale structures (zonal jets) can
spontaneously emerge from small-scale
turbulence (Rossby waves).2

poloidal
magnetic field

plasma current toroidal magnetic field

1Z. Lin, Science 281, 1835 (1998); P. W. Terry, Rev. Mod. Phys. 72, 109 (2000).

2A. R. Vasavada and A. P. Showman, Rep. Prog. Phys. 68, 1935 (2005).
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Much work has been done on homogeneous turbulence.
lnhomogeneous turbulence has been studied more until recently.

► Most work on turbulence considers the medium
to be homogeneous and stationary, for example:
► WTT, DIA, RMC, and MSR.3

0- Theories of inhomogeneous turbulence generally
use simpler statistical closures.

I. The quasilinear (QL) approximation has been

widely used.4

I. This approximation neglects wave—wave scattering.

Complexity of closures

• MSR

• RMC

• DIA

Quasilinear

Wave kinetic CE2 or
equation Wigner--Moya I

GO approx. Full Wave Inhomogenexes

► Quasilinear theories can be classified according to the degree of inhomogeneities.5
1. The wave kinetic equation (WKE) assumes a scale separation between the medium and the turbulence.

I. The CE2 and the Wigner—Moyal (WM) formalisms do not assume any scale separation.

3J. A. Krommes, Phys. Rep. 360, 1 (2002).
4K. Srinivasan and W. R. Young, J. Atmos. Sci. 69, 1633 (201.2); P. H. Diamond, et al., Plasma Phys. Control. Fusion 47,

R35 (2005); B. F. Farrell and P. J. loannou, J. Atmos. Sci. 64, 3652 (2007).
5J. B. Parker, J. Plasma Phys. 82, 595820602 (2016); also, don't miss J. B. Parker's talk during session MS36 next Wednesday.

3/12



I New insights on DW-ZF interactions have been obtained
by using Weyl phase-space representation.6,7

0- Key idea: describe fluctuations as abstract
vectors of a Hilbert space.

ia0 la%) = + I
- + 015x + 0" Pxi3,32 - imdv,

0- Upon using the Weyl calculus, one obtains
a WM equation for DW—ZF interactions:8

arw = vvi-} + Ur, F — 21, dw W

a cep A, Pyat + 1.0.f = —ay (2,02 
Iv*

PD

0- An improved WKE is obtained in the GO
limit. In contrast to the traditional WKE,
it conserves total enstrophy and energy,
and it describes different dynamics.7,8

0- The ray phase-space approach has led to
new insights on DW—ZF interactions.8
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6D. E. Ruiz, J. B. Parker, E. L. Shi, and I. Y. Dodin, Phys. Plasmas 23, 122304 (2016).

7H. Zhu, Y. Zhou, D. E. Ruiz, and I. Y. Dodin, Phys. Rev. E 97, 053210 (2018).

8For more information, don't miss the talk by I. Y. Dodin in session MS43 next Thursday.
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DW—ZF interactions have mainly been studied using the
quasilinear approximation. Can we go beyond quasilinear?

► QL theory is asymptotically valid in the limit of
strong ZFs and weak DWs.

► QL theory breaks down when the system is
externally driven stronger.9

► Weak turbulence theory (WTT) perturbatively
captures nonlinear DW collisions.

Complexity of closures

Quasilinear
o In WTT, the nonlinear collisions are described by

a wave—wave scattering operator.

MSR

RMC

DIA

wrr ♦

WKE with wave scattering

W▪ KE

WM with wave scattering
•

CE2 / WM

• ir
L T

GO approx. Full wave Inhornageneities

We recently obtained a WKE-based model that includes nonlinear

DW—ZF interactions, as well as turbulent wave—wave scattering.

9S. M. Tobias and J. B. Marston, Phys. Rev. Lett. 110, 104502 (2013).
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Physical model

► Our derivation is based on the general Hasegawa—Mima equation, which describes
electrostatic 2D turbulence in magnetized plasmas:1°

where

Otw+v •Vw + )384= Q,

(t, x) : electric potential,

w(t , x) : generalized vorticity [w (V2 — Li7)21014

v(t, x) : fluid velocity [v = ez x

Q(t, x) : external forcing and dissipation,

: measure of the background density gradient,

LD : plasma sound radius.

is an operator such that = 1 in parts of the spectrum corresponding to DWs and R= 0
in those corresponding to ZFs.

1- In isolated systems (Q = 0), this equation conserves enstrophy Z and (free) energy E:

Z(t) 
2 
f d2x w2, E(t) 21 f d2x wV).

10J. A. Krommes and C.-B. Kim, Phys. Rev. E 62, 8508 (2000); A. I. Srnolyakov and P. H. Diamond, Phys. Plasmas 6, 4410
(1999).
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I Our approach is based on three main theoretical pillars.

Turbulence theory

Weyl calculus

Wave theory

0- The fields are separated into their mean and fluctuating parts.

0- We obtain the eqs. for the ZF velocity and the DW correlation operator.

0- The quasinormal approx. is used to statistically close the equations.

0- The Weyl symbol calculus is used to project the closed operator
equations into the ray phase space (t, x, w, k).

0- This leads to the Wigner—Moyal formulation of DW—ZF interactions with
nonlinear DW collisions.

0- We use the geometrical-optics parameter 6g. = max ( ,  )« 1.

0- Based on the GO ordering, the Wigner—Moyal eqs. can be simplified.

0- This leads to the WKE model of DW—ZF interactions with nonlinear
wave—wave scattering.

7 12



I WKE model with nonlinear wave—wave scattering included11 iiiM
a u+Azf= a f  d2k k x.1(— ay,/ (27)2 kit

 J( t, y, k),at

ZF dynamics Ponderomotive driver by DWs

8tJ-F{J,Q} = 217-/-2/-tdw-i+sext C[J, J].

1—v--I

DW Hamiltonian External Wave—wave
dynamics dissipation collision operator

DW dissipation External
due to ZFs forcing

► Here J(t, y, k) is the wave-action density for the DWs, and U(t, y) is the ZF velocity.

0- The DW wave frequency ft(t, y,k) serves as a Hamiltonian for the wave dynamics

Q(t, y, —Okx/k2D+ kxU kxU"/kij.

0- The dissipation coefficient 1-(t, y,k) limits the transfer of enstrophy from DWs to ZFs:

1-(t, y, k) = —kxkyUm//41).

0- The wave—wave scattering operator C[J, J] is given by

C[J, J] = Sn1[J, J] — 2-yr,1[J]J.

1-1-1 1-1-1
Nonlinear Nonlinear
source dissipation

11D. E. Ruiz, M. E. Glinsky, and I. Y. Dodin, under review; arXiv:1803.10817 (2018); D. E. Ruiz, M. E. Glinsky, and I. Y
Dodin, in preparation.
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I C[J , J] describes nonlinear wave scattering.
0- The nonlinear dissipation coeff. -,„1[J] and the nonlinear source term SAJ, J] are

'Yni[A(t, y, k) 
f d2

(27

p 

)2 

d2q 
5
2
(k — p — q) 0( t, y, k, p, M(p, q)M(p, k)J(t, y, p),

Sn1P, M(t, 31, k) 
f d2

(27

p 

)2 

d2q 
5
2
(k — p — t, y, k, p, q) M(p, q)12 J(t, y,p)J(t, y, q).

0- Here O(t, y, k, p, q) = 71-0,6S2) is the frequency resonance
condition, where

Af2(t, y, k, p, q) f2(t, y, k) — 1-2(t, y, p) — f2(t, y, q).

10- M(p, q) is a scattering cross section

A4(p, ez (p x q) (.4;2 _ iG2)

7n1

1- The present model conserves both total enstrophy Z and total (free) energy E !

z = f 1 dy d2k
 J 1 f dy )2,

2 (2702 2
E=

1 dy d2k J 1 f dy 
U.

2

f 

(2702 ki2, 2 j

Coherent
response

Incoherent
noise



How does this WKE-based model compare to previous work?

0- In weak turbulence theory (WTT), there exists many studies on nonlinear DW scattering.12

10: These works treat both the DW and ZF components of the fields as incoherent.

► The present model makes a distinction between the statistics of the ZFs and the DWs.

0: The DW component of the vorticity consists of an incoherent wave bath.

I. In contrast, the ZFs are treated as coherent structures.

0- Our model is more complex than the naive way of writing the WKE with the linear part
taken from quasilinear theory and the collision operator taken from homogeneous WTT.

0. The frequency resonance condition includes nonlinearities due to the ZFs:

e(t,y,k,p,q) =   
k„ p„ q„

10 — U"(t, .Y) l (kD PD cit

1. 113 — U" l is related to the Rayleigh—Kuo criterion, which marks the onset of the tertiary instability.13

0. The present theory seems to break down in regions where — U" = O.

12See, for example: C. Connaughton, S. Nazarenko, and B. Quinn, Phys. Rep. 604, 1 (2015).

"H.-L. Kuo, J. Met. 6, 105 (1949); H. Zhu, Y. Zhou, D. E. Ruiz, and I. Y. Dodin, Phys. Rev. E 97, 053210 (2018).
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Conclusions

Starting from the gHME, we systematically derived a WKE describing the interaction
between DWs and ZFs with wave—wave collisions included.

► Our approach is based on three main theoretical pillars.

0. We applied a statistical closure based on the quasinormal approximation.

IP- Using the Weyl calculus, we projected the operator eqs. to the ray phase space.

P. Arguments based on geometrical optics were used to simplify the equations to get the WKE model.

(Not in this talk) Our procedure was generalized to obtain a WKE for a field satisfyingn

(DO)(t, x) = (ii0)(t, x) (0:0)(t, x) S(t, x).

11D. E. Ruiz, M. E. Glinsky, and I. Y. Dodin, under review; arXiv:1803.10817 (2018)



Future work

1. Investigate the effects of wave scattering in the WKE for Hasegawa—Mima system.

► How will the spontaneous emergence of ZFs be modified in the presence of wave collisions?
► How will the ZF saturation state be modified?
► How will the Kolmogorov—Zakharov spectrum change in the presence of ZFs?

2. Develop a general theory for nonlinear multicomponent waves.

► Hasegawa—Wakatani equation for DW turbulence

► Raman instability of white light in plasmas

► Dynamo and Magneto—Rayleigh—Taylor instability in magnetohydrodynamics

3. Develop new phase-space models for describing strong turbulence.

► For modeling strong turbulence, there are other statistical closures that have been proposed; e.g.,
DIA, RMC, and MSR.

► Can we marry the phase-space techniques presented here with these more advanced statistical
closures?



Backup slides
Deriving the WKE
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Dynamics of the mean and fluctuating components

0- Let us separate ti) into a large-amplitude, low-frequency, coherent component 17) and a
small-amplitude, high-frequency, fluctuating component 0:

0(x) = 0(x) E '1[1(X),

where e <1 is a small parameter characterizing the amplitude of the fluctuations.

t• For any field g, the mean part is defined as g= f dxi ((g))1Lx, where Lx is the system
length along the xi. axis. (...)) denotes some statistical average.

► A simple calculation gives

at + btzf + €2 ay ((lix =
at 17v + Uax t7v + [0 — (8.1J)].9xb + Pdw Efeddy = CZ

where U(t, y) = —03,11) is the zonal-flow velocity and

feddy [CV, 171/] = • vo — 0 • vcv-D•

1- Here, some external stochastic forcing with zero mean.

1. The coefFicients iLdw,zf represent dissipation caused by the external environment.
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Dirac abstract representation

tiv will be described in a Hilbert space L2(R3) of wave states with inner produce'

(W I W) = f3 ,(43;.; (x) W(x).

=dt d2„

0- Here w(x) = (x cif), where Ix) are the eigenstates of the coordinate operators:

(x I II x) = t (x — x ) , (x ix) = xe(x x').

10- The frequency operator c7., and the wavevector operator k are

(x I 63 I t7v) = ii9o7v(x), (x I I i7v) = —i0.17v(x).

► We introduce the correlation operator for the fluctuating fields

'i7C7 1w)(wl.

0- The correlation operator is related to the correlation function used in CE2 theories:5

e (t,Y+ "Y  , x x') t, x I 170 ( I t, xi)= ( t, x I 17c I t, x'),
2

61. Y. Dodin, Phys. Lett. A 378, 1598 (2014).
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Abstract representation

► The next step is to write dynamics equations in the abstract representation:

where

a a , , \—
at t „ .) allzfU = 

2 
\ x tip ^y,,D IX 1 7

l ) 2 I fn [ ) 2
 

fn [ +

01,x+(o— 0")1<„1,E,2+

o. Additionally, the ket frilp,,d) is given by

fn1[95, f d3x (95 x(X) I ,P), I fnl [4), ,d )= fd3x lx)(01R(x)10,

where

Here we make use of the Einstein convention to denote summation among the repeated
indices. The operators and are given by

(ez x Kyk,32,



Abstract representation

0- The ket I ful[fiv,i,i,]) is a bilinear mapping that represents the nonlinear coupling:

( = R(x) 1 17v- )

=07vII<E2(ezxlcYlx)(x1V1 170+07v- IVIx)(xl(ezxl)il;]32 1Ci')

= —((x (ez x '3))* (x I ((x -OW (x (ez kY I
= —(ez x —iV;TP)* • (—iViTt%) — (—iVt7v")* • (ez x

= —2(e, x V;.1)) • Vvi?

= —2V • Vcit.

10- Here we used = ii%), which comes from the relation cii- = (V2 — LL2):zi;.



Statistical closure problem

► We then project the eq. for the fluctuations by ( w I from the right and average.
Substracting with its Hermitian conjugate gives the following set of equations:

atu + izzfu = f2ay (x I f<L2kxlivIrykE,2 x),

115H , 11%1- + , 11\1+ = ic [I fiil[cv, cv-] ) ( + 21f 1-1/- H•

► Here the dispersion operator 5 is decomposed into its Hermitian and anti-Hermitian parts:

DH = 6-) — Okx +,3kE,2 — [it, i(xi<]3,2]42,

DA = —[()", irxiG2]— /PO Adw •

P.- Also, [.,1T respectively denote the commutators and anticommutators:

rk, — = :16 + jVIT.

The equations are not closed. Statistical closure problem



Quasilinear approximation (revisited)

0- In the quasilinear approximation, one neglects the nonlinear interactions in the equation for
the fluctuations:4

511;1%) = 2 L I fniP w, wl) +

0- Thus, 15*=i€1:5-)(1. Using 1 w)^ i€13-1 I -6, we have

atu + f = E2 ( X 
210,(7/-ry ki32 

~x),

+ ill3A,CC1+ = 2iE2 A5-1)1A,

where is density operator associated to the source fluctuations

► The equations above are the abstract representation for all quasilinear theories, such as the
CE2 and the Wigner—Moyal formalisms.

► Since nonlinear interactions are omitted, this quasilinear approximation does not develop a
Kolmogorov—Zakharov spectrum for the waves.

7 / 23



A statistical closure beyond the quasilinear approximation

1.• We shall perturbatively incorporate nonlinear effects into the equation for the fluctuating
field. Let us separate cv" into two parts:

These fields satisfy

1 tz, = 1 + ) •

5 1 oo) = 0,

51 = 2 { 1 fnibzo, -41) — 1 fnibzo, -Fi 1 )•

251,75.)

The fluctuations in Cv-0 0(1) are due to random initial conditions, whose statistics are

considered to be uncorrelated to those of

0- When substituting into the equation for the fluctuations, one finds

[5H, 'CA1— -*1-p = 1€{1 fnirvit• 1}A 2if2{1 fng• Cvol C4'0 1}A

+ if2f1fn1P0hlzol)Ci:I}A +2ie2A5-1)1A +0(e3).
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Quasinormal approximation

1.- In the quasinormal approximation, one assumes that the statistics of 1.7v-0 is approximately
given by a normal distribution with zero mean.7 Hence,

Cv-o = 0, wo(xi)wo(x2) = (X1 1 WO 1 X2 ) WO(X1)W0(X2)WO(X3) = 0,

io(xi.)-W0(x2)17v0(x3)Cv-0(x4) = (X1 1 *0 1 X2 (X3 1 1A7 0 1 X4 ) ( 1 -*0 1 X3 ( X2 1 *0 1 X4

( X1 1 iA:70 1 X4 ( X2 1 1/ 13 1 X3 ) •

► With this approximation, a direct calculation leads to

I ini[wo, wo] ) ( wo I = 0,

I tr.ild;, ck,1 ) (14 I = f d3xd3Y I x ) (3, I (25-1)t 5((x)1/V70 Rt(Y)Wo,

I frarwo, ool ) ( = f d3xd3Y I x) (3, I (5-1)t Tr[0c(x)CC7o Rt(y)Wo 1,

where

fvo = wo wo

7M. Millionstchikov, C. R. Acad. Sci. U.S.S.R. 32, 615 (1941).
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The abstract representation is useful for these calculations.

► The abstract representation results is very convenient for the calculation of the previous
terms. As an example,

lf.iRo,0101) (01 = f d3x x) (C*0 l jC(x) Cv-o)

= 1 fd3xd3y Ix) (.), (5-1)t( 5C(x) ) [ Cvo Rt(Y) aki — (ak) 30(Y) I i'''710 )1 •

0- Using the quasinormal approximation, we obtain

(00 IR(x)I 00) Poo IRt(y) I 00 —(00 xt(y) 00]

' I 1
= ( -0ft 1 3C(x) 1 C•i.,o C41.-0 1 XttY) 1 00 ) Oo 1 9C(x) 1

1
=2(001X(x)lii)o)(c-vo' 190(y) I ci6)
= 2Tr[R(x)I 00)(00150(y)100) (0011
= 2 TYIR(x) Rt(Y)

0. Hence, one obtains

1 fnIFY0 01 = f d3xd3Y 1 x ) (Y 1 (13-1)tTr[R(x)17V0 (Y)170 i•
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Closed equations in the abstract representation

Upon gathering all the terms, one obtains the set of closed equations:

where

a, u + Azf u = €2ay (xi IrE2k,W(y1<,32 I x)

[DTI, i[DA,Cv1+ = 2;e2[g'(D-1)1 A — 2ie2 [931N] A + 2ie2 AD-1)1A,

fd3xd3y I x) (D-1)154x)'fAiRt(y),

fd3xd3y x) (y1Tr[5C(x)*Rt(y)fiV].

0- These equations are accurate upto O(e3). Hence, they could potentially be adequate for
modeling weak wave turbulence with background sheared flows.

1- These equations are independent of the coordinates used.

i• To do calculations, a representation is needed. Weyl phase-space representation
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The Weyl transformation maps linear differential operators
to functions of phase space.

= D(x,i(9)

Idr C138 e"—i" (t 1T, X + Is I 15 I t-lr,x-ls)

D(t,x,w,k)

W-1[D(x, k)] (27,1 )4 jexekes D(x, k) Ix - s/2)(x + s/2 I

0- Some examples of this transformation are

f (i, cc) f (t, x), , fc) -<=>- g(w, k), cc1k <=> +

0- The Weyl symbol of -e =./Ij3 is given by the Moyal product

<=> A(t, x, k)* B(t, x, k) A exp B ,

• • +‘ • - • k‘ = {•, 48.
Hermann Weyl

(1885-1955)
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Weyl phase-space representation of the fluctuations

► Applying the Weyl transformation to the equation for the fluctuations leads to

OH, vil_ +i[5A,cs, = 2;e2[g-(5-1)t] A — 2ie2 [1ii7V1 A 2ie21§(5-1)1 A

{{pH, W}} + UDA,W11 = 2e2 Im{F * [D-1]*} — 2e2 Im 0 * W) + 2e2 Im{S * [D-1]1.

Here W(t, y,w, k) is the Wigner function of the fluctuation wave field

W(t, y, w, k) = f d2s ei"—ik's Ri(t + 1T, X + 15) t — 1T, X — 15) .

- Also, {{A, B}} and [[A, B]] are the Moyal brackets

{{A, B}} (A * B — B * A) = 2A sin (-2/2) B,

[[A,B]]=A*B+B*A=2A cos (?/2) B.

Difficulty: This is an infinite-order PDE in the eight-dimensional phase space !
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Assumptions of the wave kinetic equation
1.- Let (Td„„Adw) and (Tzf,Azf) be the characteristic wavelengths and timescales for DWs and

ZFs, respectively. We then introduce the geometrical optics ordering:8

ego = max 
(Tdw Ad, LD

Tzf Azf Azf 

< 1.

► Hence, the following estimates will be adopted:8

8,14/ -Tzf'w, a,
ay vti Azf1 W, ap W Ad, W,

atD ;VD,

yD V D, OPD LD D.

0- Thus, the Moyal products and brackets are approximated by9

A * B = AB + iego{A, B}6 0(E2gc,),

{{A, B}} = ego{A, B}6 0(€3g.),

Bfi = 2AB + 0(f2s0).

► Also assume that the medium is only slightly dissipative so

DA 0(Ego).

► Finally, let the nonlinearity and GO  parameters scale as Ego r•J E2 .

13G. B. Whitham, Linear and Nonlinear Waves (John Wiley & Sons, Mc., Hoboken, NJ, USA, 1999).
95. W. McDonald and A. N. Kaufman, Phys. Rev. A 32, 1708 (1985).
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The dispersion manifold

► W(t,x,w,k) describes a density of wave quanta in the 6-dim. phase space.10

► By GO considerations, the wave quanta should
lie on the dispersion manifold:

=

= — Ukx l3kE2 — 
ii 

kx1G11/2

[—Okx/k6 Ukx U"kx/k6] .

n(t,y,k)

► f2(t, y, k) is the wave frequency

y, —Okx/ki2D Ukx U"kx/kl.

0- Hence, we propose as ansatz:

W = 27S(DH)J(t, x, k),

where J(t, x, k) is the wave-action density.

ÐH(t, x, w, k) = 0

 • k

10E. R. Tracy, A. J. Brizard, A. S. Richardson, and A. N. Kaufman, "Ray Tracing and Beyond.. Phase Space Methods in Plasrna
Wave Theory" (Cambridge University Press, New York, 2014).
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Deriving the WKE: zonal-flow equation

0- In the abstract representation, the equation for the zonal flow is

at + µzf U= f2ay k,32kxcvkykE,2 x) .

For any operator A, one has

(x A x)_ f d(2cu7rd)k3 A(t, k).

Hence, one obtains

(x1 1(E)21()11"y1(]32 1 x) = 
f du; d2k kx ky

* W (t, y, k) *
J (27)3 ki2j kp

f dca d2k kx
W (t, y,co, k) 0(ego)

(2703 lc?) k2

— f(2 

d2k 

)2 1 

kx

45
Y J(t, y,k) 0(ego).

7 
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Deriving the WKE: linear terms

{{DH, W}} [[DA, W]] = 2e2 Im{F * [D-1]1 — 2e2 Im * W) 2e2 Im{S * [D-1]1.

0- Regarding the Hamiltonian part, one has

{{ D111 W}} 27rego{DHADH)J}
= 271-egADH){
= 27regoS(DH) [atJ {J,12}],

where

DH(t, y, k) —S2(t,y,k), c2(t,y,k) —01(x/ki2) Ukx U" kx1I(F).

Since dissipation is assumed to be small

[[DA, W]] 2CgODA W = 4iregoDADH)J,

where

DA = —{{U", kx1G2}1/2 Adw —{U", kxki32}/2 = Umkxky/14 Pclw•
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Deriving the WKE: wave scattering

{{DH, W}} [[DA, W]] = 2e2 Im{F * [D-1]1 — 2e2 Im * W) 2€2 * [D-l]* 1.

As a reminder,

fd3x d3y ix)(yi Tr[jC(x)1375Ct(y)i;\)].

o. We first note that the trace can be written as

Tr[R(x)Wje(y)W]

= (x Ri%v(a-k)t ly)(y (e)t i%vai lx)+(x VO(ak)1. ly)ly (&-k)f ifv -4 Ix)

+(x ajW(ak)t y)(y I 64k)t WR lx)+(xl -&-'17\7(ak)t ly)(yl («k)1• WR Ix).

io When calculating the Weyl symbol, terms will appear as follows:

f d3sed“ (x+1sIdilx-15)(x-11.511x+Is)=fc1(3 211:11)33q 83(k — p — ci),4(x, p)8(x,
very important
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Deriving the WKE: wave scattering
Applying the previous result gives

F(x, k) — 
 

2 

f d

(2

3p

7)3

d3q 
<5
3
( k — p — q)1M(p, q)12 W(x, p)W(x, q) (Ego),

where
1 1

M(p, q) = ez • (p x q) 
2

qD PD

oo Inserting W(t, y,co, = 27S(DH)J(t, y, k) and integrating gives

F f d2(213:1)22c1 52 (k — p — q)7(5(w — 1-2(t, x, p) — ft(t, x, q))1M(p, q)12J(t, y, p)J(t, y, q).

0- Returning to the WKE, when integrating over w, one has

f Im{F * [D—l]*l f d(27)2p d2
2
q52(k — p — q) e(t; y, k, p. q)1M(p, 02J(t, y. p)J(t, y, q).

► Here e(t,y,k,p,q) 75(0Q) is the frequency resonance condition, where

LS2(t, y.k,p,q) Q(t, y, k) — f2(t, y. p) — Q(t, y. q).
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Deriving the WKE: source term

{{DH, W}} + RDA, = 2E2 * [D—l]* } — 2€2 Im * W) + 2€2 *

1.• We assume that white noise, then

( x x ) = xk-(t/, xi) = (5(t — t') E((y y')/ 2, x — x').

► The Weyl symbol of the zonal-averaged density operator for the stochastic forcing is given by

S(t, y,k) = f dr d2s e—i"-Fik*%(t x !g(t — x —

= f cgs sik•s E(y, s)

= 2 f d2s E(y, s) cos(p • s). [ E(Y, s) = E(Y, —s)

0- Thus, when integrating over w, one obtains

2€2 f clwIm{S* [D-1]* 2€2Im fdw S  
1 

27r€2S(t, y,
DH — iDA

-'i7r,5(DH)-EP 
DH
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Backup slides
General WKE with wave scattering
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General WKE with wave scattering
0- Let us consider a scalar real wave ti)(t, x) propagating in a medium that can be

nonstationary and inhomogeneous and also contains a second-order nonlinearity.

OH = (a0(x) (/J0)(x) S(x)

linear propagation local quadratic nonlinearity source term

0- Following a more general, but similar, procedure, one obtains the following WKE:

at.i+p,s-21= Sext C[J , J].

lw Here Q is the wave frequency satisfying: DH(t, x, Q(t, x, k, k), k)=0.

0- The dissipation term -y and the source term Sext are given by

y(t, x, k) 
(  DA 

aDH/aco )„,_n 
(t, x, k),

Sext(t, x, k)
aDHS/aco

1- Finally, C[J , J] represents wave—wave collisions

C[J, J] = Sni 27,n Pi/
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I Wave—wave collisions
0. The nonlinear dissipation coeff. yni[J] and the nonlinear source term Sni[J , J] are

7.1E-1(t, x, k) 
f 

(2/03 

d3p d3q 63(k p q) 

N-

e(t, x, k, p, q)
  Re[ M(t, x, p, q)M*(t, x, p, —k)] J(t, x, p),

SnIP , Jlit , x, k) = 
f d3p

(27)
3 Ai 

d3q 63 ( k p q) 49(t, x, k, p, q)
  IM(t, x, p, q)12 J(t, x, p)J(t, x, q).

0- Here O(t, x, k, p, q) 71-6(Al2), and

.6.S2(t, x, k, p, S2(t, x, k) — f2(t, x, p) — C2(t, x, q).

▪ x, k, p, q) is a normalization factor:

N- 0„, DH(t , x, k) 0„,DH(t, x, p)O,DH(t, x, q).

► M(x, p, q) is a scattering cross section:

M(t, x, p, M(t , x, po, p, qo, Capo=o(t,x,p), q0=1-1(t,x,q),

M(x, p, oz(x, p)0(x, oz(x, q)0(x, p),

where a and /3 are the Weyl symbols of a and /4.

Note: (25iir p)(x) = (6i/p)(x)(N))(x)-p S(x)

7n1

n1

Coherent
response

Incoherent
noise
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