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Objective:
Use severe accident analysis signatures to test SAMG symptom-
based approach and confirm that SAMGs can address a wide-range
of accident signatures and be successful in accident mitigation

strategies
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Dynamic SAMG Modeling — Goals @ @i

= Event timings
= |dentify and determine the impact of different actions on key event timings

= |Long-term water management

= Explore impact SAWA and SAWM strategies on long-term accident
progression

= |mpact of different models within MAAP and MELCOR on event
scenario

= Fully characterize possible severe accident event progression pathways

" Provide guidance on possible simplification of SAMG pathways

= |dentify locations where SAMGs could be streamlined

" Provide guidance on SAMG training

= Based on severe accident signatures from MAAP and MELCOR from working
through a SAMG scenario branches
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SAMG Modeling Using ADAPT OERSY ()
= Analysis of Dynamic Accident Progression Trees (ADAPT) splits
scenario at key times

= Develops visualization tool to focus on parameters of interest

= Returns portions of tree meeting a set of rules

= Branches with water level below TAF at t<40 min and lower head
penetration failure at t>4 hr
= Developed dynamic importance measures to determine impact
of parameters
= Events: return ratio of a measure of consequence (e.g. extent of
radionuclide release) for event occurrence vs non-occurrence

= Compatible with non-binary branching

= Events with both uncertain occurrence and timing

= Physical parameters: return ratio of consequence measure for each
sampled value vs overall
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ADAPT Software Framework

=  ADAPT is a Job Schedule
ONLY

=  Provide stop & restart
commands to system code
(MELCOR)

=  (Creates and tracks
branches based on
uncertain dynamic events
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" Phenomena
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Work to Date Ociersy (i)

" Run-down of a SAMG scenario with industry representatives
= Steady State Operation =2 Initiating Event=>» EOP =» SAMG

= Developed scenario based off of EOPs, TSGs, SAMGs and
expert opinion
= Attended TSG workshop and received BWROG EPC guidance
= |nformed by ex-vessel analysis experts

= ADAPT framework for queuing MELCOR cases
= Updates and setup of scenario framework

= Dynamic approach: single run that diverges at key times
= Pump failure or start-up
= Different injection rates
= Water injection timings based on different pressure signatures

= Simulations of scenarios into EOP and SAMG space
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SAMG Modeling - Metrics orEn MR

= Event timings

Water levels: TAF, BAF
Zr-oxidation pickup
Core plate

Lower head failure
Ex-vessel signatures

= Long-term water management

SAWA

SAWM

Different long-term injection rates into the PCV
Impact on total release (accident source)

= Assess impact of different models within MAAP and MELCOR on event
scenario

In-vessel treatment of core relocation = MCCI model impact on long-term PCV behavior
Core quenching = Ex-vessel gas generation
Lower head failure modeling = Debris coolability

=  Environmental release fraction of Cs & |
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SAMG Scenario Runs Oicrey () i,

= Base case for ADAPT-MELCOR run

= Subsequent runs will be horsetail plots showing different operator actions,
decisions and bifurcation points

= Steady State Operation =» Initiating Event=» EOP =» SAMG
=  Based on accident scenario that was iterated on by EPRI, Industry, and
Sandia
= SRV cycling
= RPV pressure control via manual operation of 1 SRV
=  Containment venting
= RCIC operation

= Analysis past the point of SAMG entry

= Significant simulation of EOP space
= RPV Pressure Control
= RCIC operation
= Drywell venting

= |mportance of capturing stratification within the wetwell
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ADAPT Horsetail Plots for RPV
Pressure Response
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Sample ADAPT lodine Source  eums g,
Term Plots

Accident uncertainties can lead to early

releases (various RCIC failure mechanisms)
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Late releases can be more rapid and larger RCIC tailure at 48 hr




1F1 Issues with Uncertainties o [
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* 1F1 is a real-world need for dynamic modeling
* Investigate the ‘State Space’ of uncertainty

« Amount of hydrogen generated
« Some variation among codes

* Mode of RPV depressurization

* SRV seizes open vs. MSL failure
* SRV gasket failure?

» Lower head failure
» Currently modeled as low-pressure creep rupture

* Could an earlier penetration failure occur?
« Would it release significant core material?




Unit 1 Results - Refueling Bay Vapor/Gas
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Steam, H,, and CO enter the refueling bay via
the drywell head flange leakage (drywell head
lifts due to high containment pressure).

* Persists for ~10 hours

O, concentration decreases as air is displaced
by steam H, and CO.
Wetwell is vented at ~24 hr; containment
pressure drops and drywell head reseats.

* Water injection also stopped
Steam concentration decreases and O,
increases as steam condenses and air ingress
commences

Well-mixed volume concentrations are slightly
below the minimum H,/CO flammability limit

+ Total of 900 kg vented into the refueling bay, but
only 100 to 200 kg resident at any given time.

Thermally buoyant plume of H,/steam rising to
ceiling not modeled

Light gas (H,) stratification not modeled
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Hydrogen Accumulation in 1F1 @ciErsy ()
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= Between ~12 hours and ~23 hours, steam and hydrogen leaks from drywell
head flange and enters RB via shield plug seams

= Hydrogen, CO and steam rises to roof and spreads laterally

= Steam produced in MCCI and from emergency water injection

= Condensation in refueling bay depletes steam in hot layer and enriches
hydrogen

= Mixture displaces air from building

=  Steam mole fraction exceeds 50% - inert conditions prevent combustion
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Combustible Conditions Follow PCV Venting in 1F1 @ciErey ()
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= At around ~23 hours, steam and hydrogen leakage from PCV greatly reduced
= Water injection was stopped

= PCV was depressurized by operator venting action

= Continuing condensation without steam source....

= Reduces steam molar fraction to below 50% in refueling bay, and
= Produces partial vacuum that draws in outside air

= Airingress and steam condensation leads to conditions favoring combustion
* Hydrogen stratification produces flammable or detonable concentrations of H,/0,
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Damage from Explosions

Used by permission from TEPCO
Kenji Tetawa




