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Dynamic SAMG Modeling
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Motivation:
 Develop scenarios that will support 

training for the MBDBE rule

 Provide a modeling basis for 
SAMGs: now based on expert 
judgement

 Investigate known differences in 
MELCOR/MAAP applied to SAMGs

Objective: 

Use severe accident analysis signatures to test SAMG symptom-
based approach and confirm that SAMGs can address a wide-range 
of accident signatures and be successful in accident mitigation 
strategies

SRV cycling (10 min)

RPV pressure control 800-1000 psig

RPV pressure control 400-600 psig

RPV pressure control 200-400 psig

RPV pressure control via 
manual operation of 1 SRV
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Dynamic SAMG Modeling – Goals

 Event timings
 Identify and determine the impact of different actions on key event timings

 Long-term water management
 Explore impact SAWA and SAWM strategies on long-term accident 

progression

 Impact of different models within MAAP and MELCOR on event 
scenario
 Fully characterize possible severe accident event progression pathways

 Provide guidance on possible simplification of SAMG pathways
 Identify locations where SAMGs could be streamlined

 Provide guidance on SAMG training
 Based on severe accident signatures from MAAP and MELCOR from working 

through a SAMG scenario branches
3
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SAMG Modeling Using ADAPT

 Analysis of Dynamic Accident Progression Trees (ADAPT) splits 
scenario at key times

 Develops visualization tool to focus on parameters of interest
 Returns portions of tree meeting a set of rules 

 Branches with water level below TAF at t<40 min and lower head 
penetration failure at t>4 hr

 Developed dynamic importance measures to determine impact 
of parameters
 Events: return ratio of a measure of consequence (e.g. extent of 

radionuclide release) for event occurrence vs non-occurrence

 Compatible with non-binary branching

 Events with both uncertain occurrence and timing

 Physical parameters: return ratio of consequence measure for each 
sampled value vs overall
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Concept of Dynamic Event Trees
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ADAPT Software Framework

 ADAPT is a Job Schedule 
ONLY

 Provide stop & restart 
commands to system code 
(MELCOR)

 Creates and tracks 
branches based on 
uncertain dynamic events

 Timing

 Phenomena
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Work to Date

 Run-down of a SAMG scenario with industry representatives
 Steady State Operation  Initiating Event EOP  SAMG

 Developed scenario based off of EOPs, TSGs, SAMGs and 
expert opinion
 Attended TSG workshop and received BWROG EPC guidance

 Informed by ex-vessel analysis experts

 ADAPT framework for queuing MELCOR cases
 Updates and setup of scenario framework 

 Dynamic approach: single run that diverges at key times

 Pump failure or start-up

 Different injection rates

 Water injection timings based on different pressure signatures

 Simulations of scenarios into EOP and SAMG space
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SAMG Modeling - Metrics
 Event timings

 Water levels: TAF, BAF

 Zr-oxidation pickup

 Core plate 

 Lower head failure

 Ex-vessel signatures

 Long-term water management
 SAWA

 SAWM

 Different long-term injection rates into the PCV

 Impact on total release (accident source)

 Assess impact of different models within MAAP and MELCOR on event 
scenario
 In-vessel treatment of core relocation 

 Core quenching

 Lower head failure modeling
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 MCCI model impact on long-term PCV behavior

 Ex-vessel gas generation

 Debris coolability

 Environmental release fraction of Cs & I
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SAMG Scenario Runs
 Base case for ADAPT-MELCOR run

 Subsequent runs will be horsetail plots showing different operator actions, 
decisions and bifurcation points

 Steady State Operation  Initiating Event EOP  SAMG

 Based on accident scenario that was iterated on by EPRI, Industry, and 
Sandia

 SRV cycling

 RPV pressure control via manual operation of 1 SRV

 Containment venting

 RCIC operation

 Analysis past the point of SAMG entry

 Significant simulation of EOP space

 RPV Pressure Control

 RCIC operation

 Drywell venting

 Importance of capturing stratification within the wetwell
9
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ADAPT Horsetail Plots for RPV 
Pressure Response
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ADAPT Horsetail Plots for RPV 
Pressure Response
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Liner melt-through & venting

RCIC 
failure

Drywell head leaking with water addition

Drywell head leaking
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Sample ADAPT Iodine Source 
Term Plots
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Accident uncertainties can lead to early 
releases  (various RCIC failure mechanisms)

Late releases can be more rapid and larger

RCIC failure at 4 hr

RCIC failure at 16 hr

RCIC failure at 48 hr
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1F1 Issues with Uncertainties

• 1F1 is a real-world need for dynamic modeling
• Investigate the ‘State Space’ of uncertainty

• Amount of hydrogen generated
• Some variation among codes

• Mode of RPV depressurization
• SRV seizes open vs. MSL failure

• SRV gasket failure?

• Lower head failure
• Currently modeled as low-pressure creep rupture

• Could an earlier penetration failure occur?

• Would it release significant core material?
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Unit 1 Results - Refueling Bay Vapor/Gas 
Molar Concentrations

• Steam, H2, and CO enter the refueling bay via 
the drywell head flange leakage (drywell head 
lifts due to high containment pressure).

• Persists for ~10 hours

• O2 concentration decreases as air is displaced 
by steam H2 and CO.

• Wetwell is vented at ~24 hr; containment 
pressure drops and drywell head reseats.

• Water injection also stopped

• Steam concentration decreases and O2

increases as steam condenses and air ingress 
commences

• Well-mixed volume concentrations are slightly 
below the minimum H2/CO flammability limit

• Total of 900 kg vented into the refueling bay, but 
only 100 to 200 kg resident at any given time.

• Thermally buoyant plume of H2/steam rising to 
ceiling not modeled

• Light gas (H2) stratification not modeled
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Hydrogen Accumulation in 1F1

 Between ~12 hours and ~23 hours, steam and hydrogen leaks from drywell 
head flange and enters RB via shield plug seams

 Hydrogen, CO and steam rises to roof and spreads laterally

 Steam produced in MCCI and from emergency water injection

 Condensation in refueling bay depletes steam in hot layer and enriches 
hydrogen

 Mixture displaces air from building

 Steam mole fraction exceeds 50% - inert conditions prevent combustion

Spent fuel 
pool

Shield plug
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Combustible Conditions Follow PCV Venting in 1F1

 At around ~23 hours, steam and hydrogen leakage from PCV greatly reduced
 Water injection was stopped

 PCV was depressurized by operator venting action

 Continuing condensation without steam source….
 Reduces steam molar fraction to below 50% in refueling bay, and

 Produces partial vacuum that draws in outside air

 Air ingress and steam condensation leads to conditions favoring combustion

 Hydrogen stratification produces flammable or detonable concentrations of H2/O2

Air ingress
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Damage from Explosions

Used by permission from TEPCO
Kenji Tetawa
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