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2 I LENS Modeling Overview

0 Overview of modeling efforts — integration into lifecycle analysis

0 Part scale thermal-mechanical LENS modeling results
Experimental validation efforts

Effect of laser scan pattern and baseplate size on residual stress

High fidelity coupled solid/fluid simulations
Methodology and development

Initial results

wo

Daryl Dagel



Lifecycle Analysis of Manufactured Components
Process Design
and Simulation

Advanced process controls and
diagnostics enable simulation
tools to "grow" near-net-shape
Time = 3 1100 structure

Margin/Uncertainty
Design Life

Service requirements may
dictate design iteration to
assure sufficient margin
based on predictive
uncertainties.
The lifecycle analysis
provides a tool to enable
design optimization to
meet the requirements.
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Microstructure and Properties

Internal state variable
models account for
microstructural
evolution and
distribution of
properties
(related to spatial
variations of thermal
history)

• Predictive uncertainties result in large safety
factors, reduced lifetimes, and increased costs.

• Our approach develops tools to reduce
uncertainty, increase understanding, and enhance
predictive capability.

Crack Initiation, Growth and
Failure

Transition from crack
'c;- initiation to failure is not

well characterized and
depends on microstructure
and defects
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Residual Stresses
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\ Tension

Compression

Solidification and thermal
history result in strong residual
stresses, which can impact
performance

Assembly and Service

Multiphysics approaches for fully
coupled simulation of
chemical/ thermal transport,
mechanical loading, etc. to predict
performance

Butlanterationy'
Hydrogen-assisted

H H 
frocturEn
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(includes unique service environments, such as hydrogen
embrittlement, corrosion, microstructural aging, etc)
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4 Additive Manufacturing Modeling at Sandia

Much of this work shown
belongs to Sandia's Born

Qualified project

Powder Behavior
Mark Wilson

Powder Spreading
Dan Bolintineanu

Mesoscale Thermal/Fluid Behavior
Brad Trembacki, Dan Moser

& Mario Martinez

Mesoscale Texture/Solid 
Mechanics/CX

Judy Brown, Theron Rodgers and
Kurtis Ford

Simulation Codes:
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5 Process Modeling of LENS Additive Manufacturing

Step 1 Thermal Activation

Initial mesh:

Deposition Block
• Zero conductivity
• Initially inactive

Substrate Block

Step 6 Map Back to
Reference Configuration
• Map material state variables,

displacements, and temperatures
back to original mesh

* Displacements shown 15x

I 
> 

Step 2 Remove
Inactive Elements

• Remove elements that
are below melt
temperature

• Create surfaces for
radiation and convection

Step 5 Structural Analysis

• Calculate residual stresses as a result of
thermal gradients

• Solid elements (below melt temperature)
• Solid material properties

• Fluid elements
• Newtonian fluid material model

Step 3 Thermal
Analysis

• Radiation, convection,
and conduction

Step 4 Map and/or
Initialize Mechanical

Variables

< 
1 • Map material state variables

and displacements from
previous solid mechanics
solution

• Newly activated elements are
given initial material
parameters



6 Constitutive Model 304L Stainless Steel

Elastoviscoplastic temperature dependent material model calibrated for
304 L (BCJ mem)
Calibrated for room temperature to forging temperatures (< 1200 K)

0 Continuing work into higher temperature calibration up to near melt (-1700 K)

0 Temperature dependent thermal and mechanical properties

Flow rule
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7 High Temperature Material Testing

Gleeble tests underway to calibrate high temperature material
parameters



8 Example - Single Pass LENS Deposition
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9 Effect of Scan Pattern and Baseplate Size

All builds of a 1/2" diameter 1/4 " high cylinder

3 Scan Patterns

Spiral Out 90 Degree Cross Hatch

2 Baseplate Sizes
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10 I Lumped Laser Method
Computational throughput remains a primary challenge for process simulation

"Lumped laser method" employed to improve computational efficiency

Gaussian Uniform
Distribution Distribution

Laser beam spot size
Enlarged to increase material

activation rate

This method is inherently mesh dependent
Mesh size, laser spot size, and laser velocity

must be appropriately defined

WAt > le
rt < le

Initial Laser and
Mesh Configuration

Spatial Activation Process
For 3 Time Steps

WAt

Activated
Volume

No activated Elements

= le

rt

tipt

Uri
tria•

171At < 1,

ri

WAt



1 1 LENS Cylinder Build Thermal Comparisons

Temperature (C)
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12 Influence of Differential Laser Scan Patterns

Temperature (K)
1.500e+03
1.198e+03
8.966e+02
5.949e+02
2.931e+02

90 Degree Cross Hatch
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13 Residual Stress and Plastic Strain Evolution

Stress XX (Pa)

4.000e+08
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5.000e+07
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Temperature (K)

1.500e+03
1.198e+03
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2.931e+02

Equivalent Plastic Strain

1.000e-01
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2.500e-02
0.000e+00



14 Residual Stress Predictions

Spiral Out Large Plate

Cross Hatch Big Plate

1111MINI

Spiral In Big Plate

8/3/2018

Spiral out Small Plate

•

Cross Hatch small Plate

Spiral In Small Plate

t* Stress xx (Pa)
2.500e+08
1.250e+08
0.000e+00
-1.250e+08
-2.500e+08



15 Contour Measurements UC Davis
Contour method measurements conducted to determine residual
stresses
Inverse problem to back out tractions on surfaces to return deformed shape back to pre cut
condition

Contour measurement
data provided by M. Hill
and C. D'Elia, UC Davis

Original residual
stress distribution

A

P art cut in half,
stresses relieved
on face of cut

Force cut surface
back to original state (A)

Pagliaro et al., 2010

Force cut surface back to original state
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16 Comparison to Contour Measurements

90 Degree Cross Hatch Big Plate
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1 Model and Experiment Exhibit Oscillations Consistent
4with Layer Height
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18 Fluid Mapping Onto Solid Mechanics Mesh

Using SIERRAAdagio, map the field data from the fluid model to
initialize the solid mechanics run:

Fluid model results
(tet4 elements)

Hex8 mesh to conduct the solid Mapping of fluid results on Hex8
mechanics mesh to compute residual stress

Now, we have a thermal history and topology from the thermal/fluid model as an input to
the solid mechanics to compute the residual stresses with only the "active" elements...



New Fluid/Solid Workflow Provides Enhanced
19 Fidelity

Run fluid model to get the
thermal history and

topology for the full build
(-8M tetrahedral

elements)

Compute the new state
variables and deformation using
the thermal history and previous

state for that topology

previous
iteration's state

variables onto the new
hex mesh topology

Using CUBIT's sculpt
algorithm, mesh the

"active" regions of material
(fluid/solid)

(-300,000 hex8 elements)

3p the thermal
)ry onto the hex

mesh to use for solid
mechanics input for

that topology
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New Fluid/Solid Workflow Provides Enhanced
2° Fidelity
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21 Conslusions

Can we understand the properties and performance of LENS components?
Multiphysics models are being implemented and validated by experiments

Models can elucidate the conditions that give rise to observed properties

Can we integrate appropriate experimentai aata to provide moaei validation?
General agreement observed in temperatures, dislocation density/plastic strain, and residual
stress

Additional validation work will increase confidence in results going forward

Ultimately, can we certify LENS components for use in critical engineering applications?
0 Traditional manufacturing processes (e.g. forging, machining) have relied on large empirical
knowledge bases developed over decades

Integrated computational materials engineering (ICME) can provide a pathway for accelerated
science-based certification of AM components



22 Additional Slides



23 Thermal Influence on Plastic Strain Rate

Temperature (K)

1.031e+03
8.466e+02
6.621e+02
4.776e+02
2.931e+02

Build Pattern

2.471e-01
1.853e-01
1.235e-01
6.177e-02
0.000e+00

Nonzero plastic strain rates are in high temperature regions



Several Fine-Scale Features to Consider in LENS
24 

Microstructure
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